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Highlights 

 We propose our power model at architecture level based on complex networks, which can 

estimate power consumption of the software with small error and meet requirements of 

software power modeling at high level. 

 We test our power model on real computer platforms and the results validate the rationality of 

our assumption that there is a nonlinear relation between the network characteristics of 

software and its power consumption and our method of measuring the network characteristics 

of software is effective. 

 BP neural network as a approximation tool is effectively reflecting the nonlinear relation 

between the network characteristics of software and its power consumption 

 Our experiment proves that software power consumption could be analyzed from high level, 

which has important meaning for low-power software design. 

 

 

 



Abstract 

The architecture of software systems can be naturally represented in the form of complex 

networks, especially for object-oriented software. Software as a kind of artificial complex 

networks, where entities of the software are nodes and interactions between entities are edges. 

These interactions are data-flows, instruction-flows and control-flows of the software, and these 

flows driving hardware circuit is the internal cause of power consumption of software. In this 

paper, we model software systems as complex networks at architecture level, assuming that the 

relation between the network characteristics of software and its power consumption is nonlinear. 

Based on this assumption, we propose a software power modeling method at architecture level. 

The model first measures network characteristics of software and then fit the nonlinear relation 

between the network characteristics of software and its power consumption by BP neural network. 

Experimental results show that our model could accurately estimate power consumption of the 

software, and the error is less than 11.2% compared to the measured value, which indicates our 

assumption is reasonable and our model is effective.  

Keywords: software power modeling; architecture; complex networks; BP neural network; 

network characteristics of software  



1. Introduction 

In recent years, power dissipation and energy saving have acquired comprehensive concerns. 

According to a report of Gartner entitled "Green IT: a new wave of industry impact" in 2007, 

carbon emissions of ICT (Information and Communications Technology) equipment one year 

accounts for about 2% of global carbon emissions, they pointed out that when we Google once, 

the energy consumed is equal to that consumed by boiling half pot of water [1]. Meanwhile, the 

power consumed by ICT equipment accounts for 10% of all power consumption of the United 

Kingdom in 2008, and 8% for the United States. With internet of things, cloud computing and new 

information technology applications developing, global ICT industry is still growing rapidly. 

According to a forecast by METI in 2010[2], the power consumed by ICT equipment is forecasted 

to reach about 20% of all power consumed worldwide by 2025. 

Computer system is a typical system controlled by software, which directly drives the 

underlying hardware. For example, different instruction execution, data access operation and other 

operations of the software drive the underlying hardware circuit, which indirectly result in power 

generation. Thus we can conclude that software is the consumer and manager of hardware, 

software itself does not cause energy consumption, energy consumption is "by-products" of 

software execution. Also we can say that software consumes energy actively and determines 

energy consumption of computer system. In order to have a better understanding and improve 

energy efficiency of computer system, much research has been done from different aspects. Such 

as upgrade manufacturing process, change circuit structure at circuit level[3-4]; compiler 

optimization, instruction transformation, instruction rearrangement, loop structure optimization 

and power analysis at instruction layer [8-11]; expression changes, optimizing data representation, 

program structure rearrangement, elimination of redundant computation, compressed data storage 

space, algorithm selection and estimation of energy consumption and execution time at source 

code level[10-15]; estimating the energy consumption of pervasive Java-based software and 

distributed Java-based at component level[20-21]and fine-grained power management using 

process-level profiling at process level[22-24];high-level software energy macro-modeling, system 

structure selection, transformation and simplification at architecture level[24-21]; and power 

management technique at system level, such as DPM, DVS, RTOS task scheduling, cooperative 

game theoretical technique which presents dynamic method for voltage-scaling based task 

scheduling for simultaneous optimization of performance, energy, and temperature under 

dynamically varying task and system conditions [22-29].  

While software power consumption measuring and estimation is the basis of software power 

optimization, current software power consumption measuring and estimating method has different 

levels and granularity, including hardware-based level [5-7];instruction level [8-13];source code 

level [16-21];software component level [25-26] process level [27-29] and architecture level 

[30-32]. Hardware-based power measuring method always leverages multimeter to sample the 

current and voltage of the software and then calculates energy consumption of the software; 

Instruction-level power model first measures power consumption of each assembly instruction, 

and then calculates whole power consumption by summating all instructions of the program; while 

source code level power model first recodes execute paths and power consumption of the software, 

then calculates power consumption of each line of the code by linear regression; component level 



power model which estimates energy consumption of software component by combining 

construction-time estimation and runtime estimation; architecture level modeling focuses on high 

level characteristics of software, finds the relation between the characteristics and its power 

consumption, which can quickly analyze and forecast energy consumption of the software. 

However, research on building power model at architecture level is few. Software as a kind of 

artificial complex system, especially for object-oriented software, its architecture can be naturally 

represented in the form of complex networks and many studies investigate different characteristics 

of the software from this perspective [27-32]. Inspired by this, we try to explore software power 

model at architecture level based on complex networks in this paper. 

First we model software as complex networks, analyze different network characteristics of 

software and their influence on software power consumption. These network characteristics 

include number of nodes, number of directed edges, average path length, clustering coefficient and 

average degree of the software. Then we assume that the relation between these network 

characteristics of software and its power consumption is nonlinear, and we use BP neural network 

to fit the nonlinear relation. Finally we validate our model by experiments and the results show 

our model can achieve 11.2% error compared to measured value, which indicates our assumption 

is reasonable and our model is effective. Thus our contributions in this paper are: 

(1) A software power model at architecture level is proposed in this paper, which can estimate 

power consumption of the software with small error and meet requirements of high level 

software power modeling. 

(2) We test our power model on real computer platforms and the results validate the rationality of 

our assumption and our method of measuring network characteristics of software is effective. 

(3) Our experiment proves that software power consumption could be analyzed from high level, 

which has important meaning for low-power software design at architecture level. 

2. Related work 

Many software power models have been put forward from different levels, including 

hardware-based level [5-7], instruction level [8-13], source code level [16-21], software 

component level [25-26], process level [27-29] and architecture level [30-32]. Now we have a 

brief introduction to each model. 

Hardware-based level: Hardware-based power measurements [5-7] mainly are divided into 

three types, which are power measurement with meters [5], measurement with special designed 

devices [6] and measurement by integrating sensors into hardware [7]. Direct power measurement 

with meters is a straight forward method to understand the power dissipation of devices and the 

full system, the differences of various measurement methods are which type of meters is used to 

do the measurement and at which place it is done. Though direct measurement with meters is 

simple, it does not supply methods to control the process of the measurement process, thus some 

special designed power measurement devices are presented to measure the power in these 

circumstances. The third type of approach is mainly used in high-performance servers, which are 

integrated with power sensors to monitor the power consumed, and then this information is 

supplied to the administrator for power management. Although we can get power information 

accurately by hardware, this method requires professional knowledge and it does not easy to 

operate for ordinary users. 



Instruction level: Tiwari [8,9,10] first put forward the concept of software power 

consumption and proposed instruction-level power model, which was shown in formula (1), total 

power consumption Ep of the program p is composed of three parts: 

i i, j k
( )p i i i, j i, j kE B N O N E                               (1) 

Bi is the base power cost of instruction i, Oi, j is the power consumption caused by circuit state 

switch between instruction i and instruction j. Ek is the power consumption caused by other effects 

between instructions (such as pipeline stalls, Cache miss, etc…), all of them are determined by 

corresponding hardware circuit. Ni is execution times of the instruction i, Ni,j is the number of 

occurrences in the program, all these two parameters are determined by program execution path, 

path information can be obtained by dynamic analysis of the program. The model helps in 

formulating instruction level power models which provides the fundamental information needed to 

evaluate power cost of the entire programs, and has been applied to two commercial 

microprocessors: Intel 486DX2 and Fujitsu SPARClite 934. Based on the instruction power model, 

Nikolaidis[6] and Leite[7] proposed fine-grained approach for power consumption analysis and 

prediction, also put forward new methods for low power applications. 

 Source code level: Brandolese [16] presented a fully automatic method which combines 

instruction-level simulation and static-time source characterization for estimating the execution 

time and power consumption of a C program, also Julien [18] proposed functional approach for 

estimating the power of an algorithm directly from the C code without compilation. Šimunić [17] 

employed a profiler, which exploits a cycle-accurate energy consumption simulator to relate the 

embedded system energy consumption and performance to the source code. Li [19] put forward a 

power model at source code level, which is implemented by combining hardware-based power 

measurements with program analysis [22] and statistical modeling. First they recorded code 

execution paths and their power consumption information by hardware profiling tool as software 

running, and then used linear regression to calculate the power consumption of each line by the 

statistical path information and energy consumption. What’s more, they put forward software 

power model at method level and byte-code level [23] based on source code power model. Based 

on these power models, they found power consumption characteristics of mobile applications in 

[24], for example on average mobile applications spend 61% of their energy in idle states, network 

is the most energy consuming component, and only a few APIs (Application Program Interfaces) 

dominate non-idle energy consumption, which is helpful for improving energy efficiency of the 

applications. Hannah [21] evaluated power consumption of different algorithms and pointed out 

that input size and running time are key factors affecting power consumption of the algorithm. 

 Software component level: Seo [25-26] presented a framework which estimates the energy 

consumption of a pervasive Java-based software system at software component level. The 

estimation framework provides a novel approach that facilitates the estimation of a system’s 

energy consumption during construction-time and during runtime, based on monitoring the 

changes in a small number of easily tracked system parameters. The framework allows the 

engineer to estimate the software system’s energy consumption at construction time and refine it at 

runtime, which is well suited for a large class of today’s distributed, embedded, and pervasive 

applications. In a large number of distributed application scenarios, the framework showed very 

good precision on the whole, giving results that were within 5% of the actually measured power 

losses incurred by executing the software. 



 Process level: Thanh [27] proposed a simple and efficient process-level power profiling tool 

pTop, which consists of an power profiling daemon running at the kernel space, continuously 

profiling resource utilization of each application process according to their ID and track all 

available system activity information, thus the model cloud provide real-time information about 

the power consumed by each process in terms of different resource components. Also in [28] they 

designed a group of APIs for power aware system modules to acquire real-time power information, 

then the modules make power-aware decisions based on this information. The module called 

EnergyGuard which can eliminate energy wasted by abnormal-behavior applications. Since pTop 

is software-based, requires no additional hardware, and it is easy to apply in various platforms. 

Thus in our paper, we use pTop to profile power consumption of the software for comparing. 

Architecture level: To the best of our knowledge, Tan [30-31] made a first step toward 

considering energy saving could be done during the design of software architecture and proposed 

a systematic framework for software architectural transformations to reduce power consumption, 

his work demonstrates the impact of considering energy saving at architecture level, which is 

consistent with our idea that software energy could be analyzed at high level. What‘s more, in 

recent years, complex networks is now attracting an increasing research attention and a lot of 

studies investigate software from the perspective of complex networks [27-32]. Complex networks 

as an emerging theory which provides a powerful tool and a new perspective for the research of 

software systems. Inspired by this, we try to explore software power consumption at architecture 

level based on complex networks.  

3. Our model 

First we get the system class diagram of the software by reversing its source code and then 

convert it into a complex network, where nodes of the network represent classes of the software, 

and edges represent interactions between the classes. Thus the abstract software network can be 

defined by a tuple, namely G: 

( ),V {s | 1,2,..., )}, { | 1,2,..., )}s s s i s jG V ,E i N E e j M             (2) 

Here VS is the set of classes and ES is the set of interactions between classes of the software, N is 

total number of nodes and M is total number of edges. Since we know that all the edges in the 

network are data-flows and control-flows of the software, and these flows driving hardware circuit 

is the internal cause of power consumption of software. While for the software network G, each 

class is modeled as a node, however, we know that the number of fields or methods are different 

among different classes, correspondingly, power consumption contributed by these different 

classes will differ, which is also the same for different edges (since the interactions between 

different classes are different). So in order to accurately reflect the influence of different nodes and 

different edges on energy consumption, we need to assign different weights to different edges and 

nodes in order to estimate power consumption of the whole software more accurately. So we 

present our new weighted software network WG based on the original software network, defined 

by a four tuple and its formula is (3).  

( )s sWG V ,E ,H,K                                            (3) 

Vs is the set of classes of the software and Es is the set of interactions between classes, H 



represents the weights of each node, and K represents the weights of each edge. The specific 

weight calculation procedure is given in the next section. 

For a given weighted software network, the number of nodes and directed edges describe the 

size of the software, the weight of each node describes possible execution paths at run time and 

the weight of each edge describes total interaction paths between two nodes. Average path length 

reflects communication link costs of message transferring in the network, clustering coefficient 

reflects the cohesion degree and the transmission property of the networks, and average degree 

reflects weights of the node for communications cost in the software network, these three 

parameters reflect communication cost of message passing and data exchange during software 

running, and all these five characteristics describe the essential characteristics of the software at 

architecture level. Previous studies [19,21-23,30,33] mainly use linear regression to fit the relation 

between characteristics of software and its power consumption, using linear regression method has 

a high speed in power analyzing, while there are many shortcomings. In theory, the assumption 

that the relation between characteristics of software and its power consumption is linear, which 

lacks real support; in practice, accuracy of the method is poor.  

Based on above analysis, we consider that the relation between software characteristics and 

its power consumption is nonlinear (linear relation can be considered as a special nonlinear 

relation), by analyzing the relation between network characteristics of software and its power 

consumption, we propose our software power model as follows: 

( ) ( , , , , )s s s s sE P T f m T f V E L C K T                       (4) 

In formula (4), Es is the total power consumption of the software in Ts period, P is the average 

power consumption of the software, ms is network characteristics of software and f is the nonlinear 

relation between network characteristics of software and its power consumption. V is the number 

of nodes, E is the number of directed edges, L is the average path length, C is the clustering 

coefficient and K is the average degree of the network. Now we present detail steps of our power 

model. 

(1) Assuming that there is a nonlinear relation between network characteristics of software and its 

power consumption. 

(2) Extract the network characteristics of software related with software power consumption at 

architecture level, which are V, E, L, C, and K of the software network. 

(3) Get ES and TS by running multi sets of benchmarks on the experimental platform and then 

calculate average power consumption P according to formula (5). 

(4) Training BP neural networks to fit the nonlinear correlation function f, input of the function f 

is the five network characteristics and output is average power consumption of the above 

benchmarks. 

(5) Input software network characteristics to the trained neural network, and then get its power 

consumption of the software. 

/s sP E T                                                  (5) 

In the following part, we present our detail analysis of the five characteristics affecting power 

consumption of software and describe how to calculate them, and describe the calculate method of 

the weight of each node and each edge. 



4. Extract network characteristics of the software                                                                                                                

4.1. Number of nodes  

Software is converted into binary instructions that can be recognized by hardware after 

complied, and computer performs various operations according to the instructions. In the execute 

process, microprocessor completes the operations of instruction fetch, decode, operand fetch, 

execution and so on. Among them, instruction fetch and operand fetch involve memory read/write 

access and data transfer, decoding involves internal arithmetic operation and logic operation of the 

microprocessor, which complete different operations according to the type of the instructions in 

execution stage, such as memory read and write, I/O read and write, etc. These operations will 

drive hardware circuit, resulting in energy consumption of the hardware. 

It can be seen that the execution of binary instructions is the essence of software power 

consumption. Tiwari [8,9,10] pointed that each binary instruction has a fixed power consumption 

value in a specified platform. The more instructions executed, the greater power consumed. For a 

specific weighted software network, the node set and the edge set determine the number of binary 

instructions of the software. As for the node set, we know that possible execution paths inside each 

node is different, thus in order to reflect actual impact of different node on software power 

consumption, we assign the number of possible execution paths inside the node as its weight. As 

we know that each node in the network is a specific class, and the number of possible execution 

paths inside a class is the number of all possible execution paths for all the methods in this class, 

and the number of possible execution paths for each method is the complexity cyclomatic of the 

method, so the complexity cyclomatic of all the methods in the class is Weighted Methods per 

Class (WMC), thus the weight of each node is WMC of the class, which we can get by metrics 

plugin 1.3.6 [50] in the reversing process, so the weight of all the nodes H={WMCi |i=1,2,..,N}, N 

is the number of nodes of the software network. In this paper, the node set is the specific entity 

classes of the software, and the abstract classes and interfaces are not included since all of them 

are just containers of specific classes, which does not drive hardware circuit, thus the calculation 

of number of nodes V is presented in formula (6), Vi is node i and its initial value is 1, WMCi is the 

WMC value of class i and VS is the node set. 

1

*
N

i i

i

V V WMC


                                           (6) 

4.2. Number of direct edges 

Every edge in the network represents interaction between different nodes of the software, 

general type of the interactions are message passing, data exchange, and program calls. Message 

passing is usually unidirectional, and data exchange is bidirectional, the essence of program call is 

also data exchange, since data and program have the same expression. Message passing and data 

exchange will drive state switch of the corresponding hardware, thus result in power consumption 

indirectly.  

Table 1 Classification of the directed edge 

Relation between classes edge direction Edge collection 



Generalization  <Vi ,Vj> 

Dependency  <Vi ,Vj> 

Association  <Vi,Vj>  <Vj ,Vi> 

Aggregation  <Vj ,Vi> 

Composition  <Vj ,Vi> 

In a weighted software network, when one of the following five kinds of relation (shown in 

Table 1) exists between two nodes, we say that V1 and V2 are related, and this relation will be 

included in the set of directed edges. For generalization relation, we only calculate the relation 

between two classes. For dependency and association relation, V1 mainly depends on V2, V2 is 

usually a local variable, method parameter, or a call to static method. For aggregation relation, 

usually V1 contains V2, but V2 is not an integral part of V1. For composition relation, if V1 contains 

V2, which means V1 contains the global object of V2 and V2 is created at the moment when V1 is 

created. 

A()

B()

C()

D()

E()

F()

I J K
 

Figure 1 Dependency among different nodes 

In the five above directed edges, a directed edge does not accurately describe the interaction 

between two nodes. For example, as shown in figure 1, node I contains there methods (method A , 

B and C), node J has two methods (method D and E) and node K contains method F, and the 

method J and C of node I depend on the method D of node J, while in software network (2), the 

edges between node I and node J are only eij and eji, while these two edges cannot accurately 

describe the interactions between the nodes, thus in this paper we also assign different weights to 

the edges between different nodes in weighted network (3), its weight is defined as: Wij=∑Mij ,  

Mij is the method in node I depends on node J, so Wij is the total number of methods in node I 

dependent on node J, as shown in figure Wij=2 and Wji=1, so the weight of all the edges K={Wij| 

i=1,2,..,N, j=1,2,..,N, ij}, N is the number of nodes of the software network. Thus the calculation 

of number of direct edges E is presented in formula (7), ES is the edge set and K is the weight of 

all the edges. 

, 1,i j

N

ij ij

i j

E = e *W
 

                                           (7) 

4.3. Average path length  

Average path length describes the degree of separation of nodes in the network, and if average 

path length is short, which indicates the interaction between nodes is close. Recent studies show 

that although the number of nodes in many real networks is huge, average path length of the 

network is very short, which shows small world characteristics of the network. From the 

perspective of system dynamics, average path reflects the strength of the entire software coupling, 

the coupling strength directly affects the difficulty of software maintenance and change. For 



software network, small average path length means strong coupling strength between nodes, thus 

the transmission cost (such as defect and change of the nodes) is small, and vice versa. 

For software network from the power perspective, average path length reflects the average 

communication cost of message passing of the overall system. When the link is long, more paths 

are passed through when transferring message, which will incur more state transitions of hardware, 

thus more energy is consumed. So the average path length reflects the average power consumption 

of message passing of the whole system. Average path length is calculated by finding the shortest 

path between all pairs of nodes, adding them up, and then dividing by the total number of pairs. 

Defining the short path between two nodes Vi and Vj is dij, if nodes Vi and Vj are not connected, dij 

= 0. Thus the formula of average path length L of direct network is (8), N is the number of nodes 

in the network, and it has the same definition as shown in equation (2). 

1

( )
i j

ij

v v

L d
N N 1 




                                        (8) 

4.4. Clustering coefficient 

In general, clustering coefficient and average path length are often mentioned together, since 

both are two important properties of the "small world" effect; these two parameters reflect degree 

of cohesion and transitivity of the network. The greater aggregation coefficient, the better 

transmission of the network, and the communicate path is relatively small when any two nodes of 

the network for communication, thus the power consumption is relatively less. For software 

systems, clustering coefficient reflects cohesion of entities in the software system and system 

organization layering trend. 

Clustering coefficient is a measure of the "all-my-friends-know-each-other" property. More 

precisely, the clustering coefficient of a node is the ratio of existing links connecting a node's 

neighbors to each other to the maximum possible number of such links. The clustering coefficient 

for the entire network is the average of the clustering coefficients of all the nodes. A high 

clustering coefficient for a network is another indication of a small world. Suppose that node i has 

ki edges connecting to other nodes, so the clustering coefficient of node i is (9). Where Ei is the 

existing links connecting to other nodes of node i, and ki *(ki –1) is the maximum possible number 

of such links of node i. And the clustering coefficient of the whole network is the average value of 

Ci of all nodes and the formula is (10), N is the number of nodes of the network. 

i
i

i i

E
C

k (k -1)
                                              (9) 

1
i

i

C C
N

                                               (10) 

4.5. Average degree  

In terms of software system, degree distribution characterizes the connectivity of each node 

in the network and reflects the reuse degree and complexity of the node. Therefore, the 

distribution can be used to reflect heterogeneity of the system structure and qualitative analysis 

uncertainties of the software network. The degree ki of node i is defined as the number of other 



nodes connected to the node, the degree of a node in a directed network is divided into out-degree 

and in-degree, out-degree of one node is the number of edges from the node to other nodes, 

in-degree of one node is the number of edges other nodes point to the node. Intuitively, the greater 

the degree of a node means the more important of the node in the network, the average degree of 

all nodes in the network is the average degree of the network, it can be defined as <k> and shown 

in formula (11), E is the collection of direct edges of the network and N is the number of nodes of 

the network. 

E
k

N
                                                 (11) 

One node with great in-degree reflects more nodes communicating with this node, this is 

same to the node with great out-degree which reflects it depending on other more nodes, and both 

reflect the weight of one node for communication in the network. One node with great degree 

indicate more probability of communication link passing through this node in the network, then 

the frequency of the node driving hardware circuit is high, and thus generates more power 

consumption. 

5. Nonlinear fitting of BP neural network  

In order to describe the nonlinear relation between network characteristics of the software 

and its power consumption accurately, it is necessary to choose a reasonable and effective 

numerical approximation method. BP neural network [48] as a numerical approximation method 

can approximate any nonlinear relation and has a high degree of fitting, therefore we use BP 

neural network to fit the relation in this paper. 

5.1. Nonlinear function fitting procedure of BP neural network  

Steps of using BP neural network to realize nonlinear fitting are as follows: 

(1) Get network characteristics of the sample programs. First we select 112 java open-source 

programs from github and sourceforge as our dataset, the programs are general programs for 

ordinary users, which mainly are games, media player, office and general use programs.  

Among them, we randomly choose one hundred programs as the training set, twelve programs 

as the test set. Then for each program, we write scripts to get network characteristics by 

reversing its source code and calculate different characteristic values according to the 

definition in section 4. Next, we normalize these characteristics values and use these values as 

the inputs of BP neural network. 

(2) Get average power consumption of the training set. For each program, we take the same steps 

to get its average power consumption, detail experiment configuration and steps are described 

in section 6. Then normalize power values of the programs and use them as the outputs of BP 

neural network. 

(3) Design the structure of BP neural network. The important factors include the number of 

hidden layers, hidden layer nodes, hidden layer transfer function and output transfer function, 

detail design processes are presented in section 5.2. 

(4) Traini BP neural network to get the optimal network. Input network characteristic and average 

power consumption values of the training set to train BP neural network, get best optimal 

weights and thresholds of the hidden layer under a predetermined mean square error. 



(5) Input characteristics of test programs to the trained BP neural network and get the forecast 

power consumption values, and then compare with actual values to verify our software power 

model. 

5.2. Design the structure of BP neural network 

Designing a reasonable structure of BP neural network is important to achieve best fitting 

effect, and the key parameters include the number of hidden-layers, the number of hidden nodes 

and transfer function of each layer. What’s more, neural network learning rate, approximation 

error, convergence speed and memory usage are also important factors that need to be considered 

in the training process. Now we list key parameters of our BP neural network. 

(1) Determine the number of hidden-layers. The number of hidden layers determines the network 

error, but too many hidden layers will increase the complexity of the network, also increase 

the training time of the network and lead the over fitting tendency. In literature [48], which 

noticed that a single layer BP neural network can approximate any continuous function in a 

closed interval, and three layers BP network can complete any mapping of n dimension to m 

dimension, so we use one hidden layer in our paper. 

(2) Determine the number of hidden nodes. In BP neural network, the number of hidden layer 

nodes has a great influence on the performance of BP network, while there is still a lack of 

scientific and general methods to determine the number of nodes in the hidden layer in theory, 

and the number of hidden nodes (n1) is always determined by the following empirical 

formula (10). 

1n n m a                                             (12) 

In the formula, n is the number of nodes in input layer, m is the number of nodes in output 

layer, and a is a constant number between 1~10. In our power model, there are five inputs 

(number of nodes, number of directed edges, average path length, clustering coefficient and 

average degree) in the input layer and one output (average power consumption) in the output 

layer, thus the scope of n1 is 3~12. In our training process, we find that when the number of 

nodes in the hidden layer is 11, approximation error and convergence speed can achieve 

satisfactory results, thus 11 is assigned to n1 in our work. 

(3) Determine transfer function of each layer. Different transfer functions have different accuracy 

and learning rate for the network, and there are various options for choosing the transfer 

function of hidden layer and output layer, such as tansig, hardlim, purelin, hardlims, logsig, 

etc. Through multiple sets of experiments, we find using the tansig as hidden layer transfer 

function and purelin as output layer transfer function can achieve satisfactory results. 

Therefore, we use the tansig and purelin as the transfer function for hidden layer and output 

layer in the trained BP neural network. 

After the structure of BP neural network is determined, we start training our BP neural 

network. The scope of initial weight value is [-1,1], learning rateη=0.7 and momentum factorα=, 

0.01, minimum mean square error of the training is set to 0.0001, the maximum number of 

iterations is 10000. Then input normalized characteristic values and normalized power 

consumption values of the training set to the network. Figure 3(a) presents the training error of our 

BP network in the training process, from the figure we can see that minimum mean square error of 

the training reaches the required accuracy after 86 iterations. After training, input the test set to the 



trained BP neural network and get the predicted power consumption of test set. Here we get the 

optimal weights (W1,W2) of the BP neural network and the threshold values of B2 and B1, as shown 

in Figure 2. 
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Figure 2 Weight and threshold value of BP neural network 

6. Experiment validation and experiment analysis 

In order to verify the accuracy of our software power model, we use test set to validate the 

model. The test programs contain open-source games, media player and general use software. Five 

characteristics of the test set are shown in Table 3, we evaluate our power model on Ubuntu 

14.04.3 platform, which is a normal desktop computer and its configuration shown in Table 2, and 

using KA3005P DC power supply to provide stable and controllable voltage for the computer, and 

then we leverage HOIKI 3334 multi-function power measuring instrument to measure 

instantaneous power consumption and cumulative power consumption of the software.  

Table 2 Configuration of experiment platform 

Computer   Power meter Power supply 

Lenovo E47 

Intel Core i3-2310M  2.10 GHz 2 core 

512 kb L2 Cache     64 kb L1 Cache 

DDR 2GB×2       Frequency 1333MHz 

Cycle time 6 clocks 

HOIKI 3334  

Sampling Frequency    74.4kHz 

Measurement accuracy  ±0.5% rdg 

Measurement Range 1.5000W-9.000kW 

KA3005P DC 

Voltage Range  0V-30V 

Current Range   0A-5A  

Setup Accuracy  Voltage: ≤0.5%+20mV    

Current: ≤0.5%+10mA 
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Figure 3 Training error of BP Neural network and Prediction error the test set 
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Figure 4 Estimate power value and measured power value of the test set 
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Figure 5 Instantaneous power consumption of Italc,UniversalMediaServer and Jabref. 

Table 3 software network characteristic values of the test  

 Ita Unm Jab Dof YOP Trp jBB JIE Upm Fts FCL Jak 

V 91 2784 5140 4290 2674 7266 222 1080 382 2028 185 4428 

E 60 1980 4070 2884 3153 14196 159 819 201 1822 159 2267 

L 3 10 17 8 9 13 5 7 5 8 5 13 

C 0.104 0.254 0.198 0.205 0.5 0.397 0.295 0.227 0.163 0.294 0.295 0.194 

<K> 1.429 3.492 3.84 2.931 3.134 3.876 1.632 3.112 1.712 3.562 1.632 3.612 

In order to get accurate value for each program, we write automated test scripts interacting 

with the program being measured based on autorunner [49],which is simulated the scenario of 

normal user running the software. Also we set the test cycle to be 2 hours for each program to get 

its cumulative power consumption, and then calculate average power consumption of the program. 

In order to draw Figure 4, Figure 5 and Table 4 conveniently, we use a list of abbreviations (Ita, 

Unm, Jab, Dof, YOP, Trp, jBB, JIE, Upm, Fts, FCL and Jak) to replace the name of each test 

program (Italc,UniversalMediaServer, Jabref, Docfetcher, YOYOPlayer, TripleA, jBubbleBreaker, 

JIExplorer, Universal password manager, Ftpserver, FreeCell and Jajuk). Figure 3(b) present the 

prediction error between estimated power value and measured power value of the test set. Figure 4 

shows the predicted value obtained by the trained BP network and measured value obtained by 

HOIKI of the test set and Figure 5 presents the instantaneous power consumption of 



Italc,UniversalMediaServer and Jabref in first 100s sampling period. 

For the test set, from Figure 3(b) and Figure 4 we find that the maximum error between 

predicted power value and the measured power value is 16.01%, minimum error is 4.1%, and 

average error is 11.2%, which is enough to meet the requirements of high level software power 

modeling. And the scope of average power consumption of common desktop applications is 

usually about 3W-12W, from Figure 4 we find that average power consumption of Unm is about 

9W, which is the highest power consumption of the test set, and its instantaneous power 

consumption is presented in Figure 5, we can see that the power consumption is in the scope of 

3.8W-13.6. In our training set, there are some applications with higher power consumption, thus 

our power model can also accurately predict higher power consumption. By observing the data in 

Table 3 and Figure 4, we can see that there is a certain correlation between power consumption 

and network characteristics of software, the most obvious characteristic is number of direct edges, 

in Table 3 programs with large E, generally their power consumption value is big, such as the 

points with large value in Figure 4, but there are also exceptions. Power consumption is not only 

related to E, but also influenced by other characteristic, that is the reason why the exception occurs, 

while the relation between other characteristics and power consumption cannot be easily seen 

from Figure 4. Thus we can conclude that there is big difference of each characteristic in the 

impact on software power consumption. 

Through analysis of the experimental data, we can draw the following conclusions: 

(1) Our software power model at architecture level based on complex networks is effective, 

through comparison of the test set, average error of our model is maintained in the range of 

11.2%, which is within the acceptable range. 

(2) It is proved that the rationality of our assumption that there is a nonlinear relation between 

the network characteristics of software and its power consumption and our method of 

measuring the network characteristics of software is effective. 

(3) BP neural network as an approximation tool is effectively reflecting the nonlinear relation. 

(4) There is a certain correlation between each characteristic and software power consumption, 

each characteristic has different impact on software power consumption. 

7. Conclusion

In this paper, we model software systems as complex networks at architecture level, 

assuming that there is a nonlinear relation between network characteristics of the software and its 

power consumption. Based on this assumption, we extract five network characteristics of the 

software, analyze the impact of each characteristic on power consumption and put forward 

measurement method of each characteristic, and then we propose our software power model. Next 

we evaluate the validity of our model and the rationality of our assumption by experiments. 

Currently, we are doing some research in optimization methods at architecture level through node 

consolidation, node split, node replacement, architecture change and combination of these 

methods to reduce the power consumption of software. 
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