
Accepted Manuscript

Title: Software power modeling method at architecture level
based on complex networks

Author: Deguang Li Bing Guo Yan Shen Junke Li Yanhui
Huang

PII: S2210-5379(16)30004-X
DOI: http://dx.doi.org/doi:10.1016/j.suscom.2016.08.002
Reference: SUSCOM 153

To appear in:

Received date: 19-1-2016
Revised date: 30-6-2016
Accepted date: 30-8-2016

Please cite this article as: Deguang Li, Bing Guo, Yan Shen, Junke Li,
Yanhui Huang, Software power modeling method at architecture level based
on complex networks, Sustainable Computing: Informatics and Systems
http://dx.doi.org/10.1016/j.suscom.2016.08.002

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.suscom.2016.08.002
http://dx.doi.org/10.1016/j.suscom.2016.08.002

Software power modeling method at architecture level based on complex networks

Deguang Li1, Bing Guo1,Yan Shen2, Junke Li1, Yanhui Huang1

1College of Computer Science, Sichuan University, Chengdu, 610065

2School of Control Engineering, Chengdu University of Information Technology, Chengdu, 610225

(Email:lideguang.00@163.com , guobing@scu.edu.cn)

mailto:guobing@scu.edu.cn

Highlights

 We propose our power model at architecture level based on complex networks, which can

estimate power consumption of the software with small error and meet requirements of

software power modeling at high level.

 We test our power model on real computer platforms and the results validate the rationality of

our assumption that there is a nonlinear relation between the network characteristics of

software and its power consumption and our method of measuring the network characteristics

of software is effective.

 BP neural network as a approximation tool is effectively reflecting the nonlinear relation

between the network characteristics of software and its power consumption

 Our experiment proves that software power consumption could be analyzed from high level,

which has important meaning for low-power software design.

Abstract

The architecture of software systems can be naturally represented in the form of complex

networks, especially for object-oriented software. Software as a kind of artificial complex

networks, where entities of the software are nodes and interactions between entities are edges.

These interactions are data-flows, instruction-flows and control-flows of the software, and these

flows driving hardware circuit is the internal cause of power consumption of software. In this

paper, we model software systems as complex networks at architecture level, assuming that the

relation between the network characteristics of software and its power consumption is nonlinear.

Based on this assumption, we propose a software power modeling method at architecture level.

The model first measures network characteristics of software and then fit the nonlinear relation

between the network characteristics of software and its power consumption by BP neural network.

Experimental results show that our model could accurately estimate power consumption of the

software, and the error is less than 11.2% compared to the measured value, which indicates our

assumption is reasonable and our model is effective.

Keywords: software power modeling; architecture; complex networks; BP neural network;

network characteristics of software

1. Introduction

In recent years, power dissipation and energy saving have acquired comprehensive concerns.

According to a report of Gartner entitled "Green IT: a new wave of industry impact" in 2007,

carbon emissions of ICT (Information and Communications Technology) equipment one year

accounts for about 2% of global carbon emissions, they pointed out that when we Google once,

the energy consumed is equal to that consumed by boiling half pot of water [1]. Meanwhile, the

power consumed by ICT equipment accounts for 10% of all power consumption of the United

Kingdom in 2008, and 8% for the United States. With internet of things, cloud computing and new

information technology applications developing, global ICT industry is still growing rapidly.

According to a forecast by METI in 2010[2], the power consumed by ICT equipment is forecasted

to reach about 20% of all power consumed worldwide by 2025.

Computer system is a typical system controlled by software, which directly drives the

underlying hardware. For example, different instruction execution, data access operation and other

operations of the software drive the underlying hardware circuit, which indirectly result in power

generation. Thus we can conclude that software is the consumer and manager of hardware,

software itself does not cause energy consumption, energy consumption is "by-products" of

software execution. Also we can say that software consumes energy actively and determines

energy consumption of computer system. In order to have a better understanding and improve

energy efficiency of computer system, much research has been done from different aspects. Such

as upgrade manufacturing process, change circuit structure at circuit level[3-4]; compiler

optimization, instruction transformation, instruction rearrangement, loop structure optimization

and power analysis at instruction layer [8-11]; expression changes, optimizing data representation,

program structure rearrangement, elimination of redundant computation, compressed data storage

space, algorithm selection and estimation of energy consumption and execution time at source

code level[10-15]; estimating the energy consumption of pervasive Java-based software and

distributed Java-based at component level[20-21]and fine-grained power management using

process-level profiling at process level[22-24];high-level software energy macro-modeling, system

structure selection, transformation and simplification at architecture level[24-21]; and power

management technique at system level, such as DPM, DVS, RTOS task scheduling, cooperative

game theoretical technique which presents dynamic method for voltage-scaling based task

scheduling for simultaneous optimization of performance, energy, and temperature under

dynamically varying task and system conditions [22-29].

While software power consumption measuring and estimation is the basis of software power

optimization, current software power consumption measuring and estimating method has different

levels and granularity, including hardware-based level [5-7];instruction level [8-13];source code

level [16-21];software component level [25-26] process level [27-29] and architecture level

[30-32]. Hardware-based power measuring method always leverages multimeter to sample the

current and voltage of the software and then calculates energy consumption of the software;

Instruction-level power model first measures power consumption of each assembly instruction,

and then calculates whole power consumption by summating all instructions of the program; while

source code level power model first recodes execute paths and power consumption of the software,

then calculates power consumption of each line of the code by linear regression; component level

power model which estimates energy consumption of software component by combining

construction-time estimation and runtime estimation; architecture level modeling focuses on high

level characteristics of software, finds the relation between the characteristics and its power

consumption, which can quickly analyze and forecast energy consumption of the software.

However, research on building power model at architecture level is few. Software as a kind of

artificial complex system, especially for object-oriented software, its architecture can be naturally

represented in the form of complex networks and many studies investigate different characteristics

of the software from this perspective [27-32]. Inspired by this, we try to explore software power

model at architecture level based on complex networks in this paper.

First we model software as complex networks, analyze different network characteristics of

software and their influence on software power consumption. These network characteristics

include number of nodes, number of directed edges, average path length, clustering coefficient and

average degree of the software. Then we assume that the relation between these network

characteristics of software and its power consumption is nonlinear, and we use BP neural network

to fit the nonlinear relation. Finally we validate our model by experiments and the results show

our model can achieve 11.2% error compared to measured value, which indicates our assumption

is reasonable and our model is effective. Thus our contributions in this paper are:

(1) A software power model at architecture level is proposed in this paper, which can estimate

power consumption of the software with small error and meet requirements of high level

software power modeling.

(2) We test our power model on real computer platforms and the results validate the rationality of

our assumption and our method of measuring network characteristics of software is effective.

(3) Our experiment proves that software power consumption could be analyzed from high level,

which has important meaning for low-power software design at architecture level.

2. Related work

Many software power models have been put forward from different levels, including

hardware-based level [5-7], instruction level [8-13], source code level [16-21], software

component level [25-26], process level [27-29] and architecture level [30-32]. Now we have a

brief introduction to each model.

Hardware-based level: Hardware-based power measurements [5-7] mainly are divided into

three types, which are power measurement with meters [5], measurement with special designed

devices [6] and measurement by integrating sensors into hardware [7]. Direct power measurement

with meters is a straight forward method to understand the power dissipation of devices and the

full system, the differences of various measurement methods are which type of meters is used to

do the measurement and at which place it is done. Though direct measurement with meters is

simple, it does not supply methods to control the process of the measurement process, thus some

special designed power measurement devices are presented to measure the power in these

circumstances. The third type of approach is mainly used in high-performance servers, which are

integrated with power sensors to monitor the power consumed, and then this information is

supplied to the administrator for power management. Although we can get power information

accurately by hardware, this method requires professional knowledge and it does not easy to

operate for ordinary users.

Instruction level: Tiwari [8,9,10] first put forward the concept of software power

consumption and proposed instruction-level power model, which was shown in formula (1), total

power consumption Ep of the program p is composed of three parts:

i i, j k
()p i i i, j i, j kE B N O N E (1)

Bi is the base power cost of instruction i, Oi, j is the power consumption caused by circuit state

switch between instruction i and instruction j. Ek is the power consumption caused by other effects

between instructions (such as pipeline stalls, Cache miss, etc…), all of them are determined by

corresponding hardware circuit. Ni is execution times of the instruction i, Ni,j is the number of

occurrences in the program, all these two parameters are determined by program execution path,

path information can be obtained by dynamic analysis of the program. The model helps in

formulating instruction level power models which provides the fundamental information needed to

evaluate power cost of the entire programs, and has been applied to two commercial

microprocessors: Intel 486DX2 and Fujitsu SPARClite 934. Based on the instruction power model,

Nikolaidis[6] and Leite[7] proposed fine-grained approach for power consumption analysis and

prediction, also put forward new methods for low power applications.

 Source code level: Brandolese [16] presented a fully automatic method which combines

instruction-level simulation and static-time source characterization for estimating the execution

time and power consumption of a C program, also Julien [18] proposed functional approach for

estimating the power of an algorithm directly from the C code without compilation. Šimunić [17]

employed a profiler, which exploits a cycle-accurate energy consumption simulator to relate the

embedded system energy consumption and performance to the source code. Li [19] put forward a

power model at source code level, which is implemented by combining hardware-based power

measurements with program analysis [22] and statistical modeling. First they recorded code

execution paths and their power consumption information by hardware profiling tool as software

running, and then used linear regression to calculate the power consumption of each line by the

statistical path information and energy consumption. What’s more, they put forward software

power model at method level and byte-code level [23] based on source code power model. Based

on these power models, they found power consumption characteristics of mobile applications in

[24], for example on average mobile applications spend 61% of their energy in idle states, network

is the most energy consuming component, and only a few APIs (Application Program Interfaces)

dominate non-idle energy consumption, which is helpful for improving energy efficiency of the

applications. Hannah [21] evaluated power consumption of different algorithms and pointed out

that input size and running time are key factors affecting power consumption of the algorithm.

 Software component level: Seo [25-26] presented a framework which estimates the energy

consumption of a pervasive Java-based software system at software component level. The

estimation framework provides a novel approach that facilitates the estimation of a system’s

energy consumption during construction-time and during runtime, based on monitoring the

changes in a small number of easily tracked system parameters. The framework allows the

engineer to estimate the software system’s energy consumption at construction time and refine it at

runtime, which is well suited for a large class of today’s distributed, embedded, and pervasive

applications. In a large number of distributed application scenarios, the framework showed very

good precision on the whole, giving results that were within 5% of the actually measured power

losses incurred by executing the software.

 Process level: Thanh [27] proposed a simple and efficient process-level power profiling tool

pTop, which consists of an power profiling daemon running at the kernel space, continuously

profiling resource utilization of each application process according to their ID and track all

available system activity information, thus the model cloud provide real-time information about

the power consumed by each process in terms of different resource components. Also in [28] they

designed a group of APIs for power aware system modules to acquire real-time power information,

then the modules make power-aware decisions based on this information. The module called

EnergyGuard which can eliminate energy wasted by abnormal-behavior applications. Since pTop

is software-based, requires no additional hardware, and it is easy to apply in various platforms.

Thus in our paper, we use pTop to profile power consumption of the software for comparing.

Architecture level: To the best of our knowledge, Tan [30-31] made a first step toward

considering energy saving could be done during the design of software architecture and proposed

a systematic framework for software architectural transformations to reduce power consumption,

his work demonstrates the impact of considering energy saving at architecture level, which is

consistent with our idea that software energy could be analyzed at high level. What‘s more, in

recent years, complex networks is now attracting an increasing research attention and a lot of

studies investigate software from the perspective of complex networks [27-32]. Complex networks

as an emerging theory which provides a powerful tool and a new perspective for the research of

software systems. Inspired by this, we try to explore software power consumption at architecture

level based on complex networks.

3. Our model

First we get the system class diagram of the software by reversing its source code and then

convert it into a complex network, where nodes of the network represent classes of the software,

and edges represent interactions between the classes. Thus the abstract software network can be

defined by a tuple, namely G:

(),V {s | 1,2,...,)}, { | 1,2,...,)}s s s i s jG V ,E i N E e j M (2)

Here VS is the set of classes and ES is the set of interactions between classes of the software, N is

total number of nodes and M is total number of edges. Since we know that all the edges in the

network are data-flows and control-flows of the software, and these flows driving hardware circuit

is the internal cause of power consumption of software. While for the software network G, each

class is modeled as a node, however, we know that the number of fields or methods are different

among different classes, correspondingly, power consumption contributed by these different

classes will differ, which is also the same for different edges (since the interactions between

different classes are different). So in order to accurately reflect the influence of different nodes and

different edges on energy consumption, we need to assign different weights to different edges and

nodes in order to estimate power consumption of the whole software more accurately. So we

present our new weighted software network WG based on the original software network, defined

by a four tuple and its formula is (3).

()s sWG V ,E ,H,K (3)

Vs is the set of classes of the software and Es is the set of interactions between classes, H

represents the weights of each node, and K represents the weights of each edge. The specific

weight calculation procedure is given in the next section.

For a given weighted software network, the number of nodes and directed edges describe the

size of the software, the weight of each node describes possible execution paths at run time and

the weight of each edge describes total interaction paths between two nodes. Average path length

reflects communication link costs of message transferring in the network, clustering coefficient

reflects the cohesion degree and the transmission property of the networks, and average degree

reflects weights of the node for communications cost in the software network, these three

parameters reflect communication cost of message passing and data exchange during software

running, and all these five characteristics describe the essential characteristics of the software at

architecture level. Previous studies [19,21-23,30,33] mainly use linear regression to fit the relation

between characteristics of software and its power consumption, using linear regression method has

a high speed in power analyzing, while there are many shortcomings. In theory, the assumption

that the relation between characteristics of software and its power consumption is linear, which

lacks real support; in practice, accuracy of the method is poor.

Based on above analysis, we consider that the relation between software characteristics and

its power consumption is nonlinear (linear relation can be considered as a special nonlinear

relation), by analyzing the relation between network characteristics of software and its power

consumption, we propose our software power model as follows:

() (, , , ,)s s s s sE P T f m T f V E L C K T (4)

In formula (4), Es is the total power consumption of the software in Ts period, P is the average

power consumption of the software, ms is network characteristics of software and f is the nonlinear

relation between network characteristics of software and its power consumption. V is the number

of nodes, E is the number of directed edges, L is the average path length, C is the clustering

coefficient and K is the average degree of the network. Now we present detail steps of our power

model.

(1) Assuming that there is a nonlinear relation between network characteristics of software and its

power consumption.

(2) Extract the network characteristics of software related with software power consumption at

architecture level, which are V, E, L, C, and K of the software network.

(3) Get ES and TS by running multi sets of benchmarks on the experimental platform and then

calculate average power consumption P according to formula (5).

(4) Training BP neural networks to fit the nonlinear correlation function f, input of the function f

is the five network characteristics and output is average power consumption of the above

benchmarks.

(5) Input software network characteristics to the trained neural network, and then get its power

consumption of the software.

/s sP E T (5)

In the following part, we present our detail analysis of the five characteristics affecting power

consumption of software and describe how to calculate them, and describe the calculate method of

the weight of each node and each edge.

4. Extract network characteristics of the software

4.1. Number of nodes

Software is converted into binary instructions that can be recognized by hardware after

complied, and computer performs various operations according to the instructions. In the execute

process, microprocessor completes the operations of instruction fetch, decode, operand fetch,

execution and so on. Among them, instruction fetch and operand fetch involve memory read/write

access and data transfer, decoding involves internal arithmetic operation and logic operation of the

microprocessor, which complete different operations according to the type of the instructions in

execution stage, such as memory read and write, I/O read and write, etc. These operations will

drive hardware circuit, resulting in energy consumption of the hardware.

It can be seen that the execution of binary instructions is the essence of software power

consumption. Tiwari [8,9,10] pointed that each binary instruction has a fixed power consumption

value in a specified platform. The more instructions executed, the greater power consumed. For a

specific weighted software network, the node set and the edge set determine the number of binary

instructions of the software. As for the node set, we know that possible execution paths inside each

node is different, thus in order to reflect actual impact of different node on software power

consumption, we assign the number of possible execution paths inside the node as its weight. As

we know that each node in the network is a specific class, and the number of possible execution

paths inside a class is the number of all possible execution paths for all the methods in this class,

and the number of possible execution paths for each method is the complexity cyclomatic of the

method, so the complexity cyclomatic of all the methods in the class is Weighted Methods per

Class (WMC), thus the weight of each node is WMC of the class, which we can get by metrics

plugin 1.3.6 [50] in the reversing process, so the weight of all the nodes H={WMCi |i=1,2,..,N}, N

is the number of nodes of the software network. In this paper, the node set is the specific entity

classes of the software, and the abstract classes and interfaces are not included since all of them

are just containers of specific classes, which does not drive hardware circuit, thus the calculation

of number of nodes V is presented in formula (6), Vi is node i and its initial value is 1, WMCi is the

WMC value of class i and VS is the node set.

1

*
N

i i

i

V V WMC

 (6)

4.2. Number of direct edges

Every edge in the network represents interaction between different nodes of the software,

general type of the interactions are message passing, data exchange, and program calls. Message

passing is usually unidirectional, and data exchange is bidirectional, the essence of program call is

also data exchange, since data and program have the same expression. Message passing and data

exchange will drive state switch of the corresponding hardware, thus result in power consumption

indirectly.

Table 1 Classification of the directed edge

Relation between classes edge direction Edge collection

Generalization <Vi ,Vj>

Dependency <Vi ,Vj>

Association <Vi,Vj> <Vj ,Vi>

Aggregation <Vj ,Vi>

Composition <Vj ,Vi>

In a weighted software network, when one of the following five kinds of relation (shown in

Table 1) exists between two nodes, we say that V1 and V2 are related, and this relation will be

included in the set of directed edges. For generalization relation, we only calculate the relation

between two classes. For dependency and association relation, V1 mainly depends on V2, V2 is

usually a local variable, method parameter, or a call to static method. For aggregation relation,

usually V1 contains V2, but V2 is not an integral part of V1. For composition relation, if V1 contains

V2, which means V1 contains the global object of V2 and V2 is created at the moment when V1 is

created.

A()

B()

C()

D()

E()

F()

I J K

Figure 1 Dependency among different nodes

In the five above directed edges, a directed edge does not accurately describe the interaction

between two nodes. For example, as shown in figure 1, node I contains there methods (method A ,

B and C), node J has two methods (method D and E) and node K contains method F, and the

method J and C of node I depend on the method D of node J, while in software network (2), the

edges between node I and node J are only eij and eji, while these two edges cannot accurately

describe the interactions between the nodes, thus in this paper we also assign different weights to

the edges between different nodes in weighted network (3), its weight is defined as: Wij=∑Mij ,

Mij is the method in node I depends on node J, so Wij is the total number of methods in node I

dependent on node J, as shown in figure Wij=2 and Wji=1, so the weight of all the edges K={Wij|

i=1,2,..,N, j=1,2,..,N, ij}, N is the number of nodes of the software network. Thus the calculation

of number of direct edges E is presented in formula (7), ES is the edge set and K is the weight of

all the edges.

, 1,i j

N

ij ij

i j

E = e *W

 (7)

4.3. Average path length

Average path length describes the degree of separation of nodes in the network, and if average

path length is short, which indicates the interaction between nodes is close. Recent studies show

that although the number of nodes in many real networks is huge, average path length of the

network is very short, which shows small world characteristics of the network. From the

perspective of system dynamics, average path reflects the strength of the entire software coupling,

the coupling strength directly affects the difficulty of software maintenance and change. For

software network, small average path length means strong coupling strength between nodes, thus

the transmission cost (such as defect and change of the nodes) is small, and vice versa.

For software network from the power perspective, average path length reflects the average

communication cost of message passing of the overall system. When the link is long, more paths

are passed through when transferring message, which will incur more state transitions of hardware,

thus more energy is consumed. So the average path length reflects the average power consumption

of message passing of the whole system. Average path length is calculated by finding the shortest

path between all pairs of nodes, adding them up, and then dividing by the total number of pairs.

Defining the short path between two nodes Vi and Vj is dij, if nodes Vi and Vj are not connected, dij

= 0. Thus the formula of average path length L of direct network is (8), N is the number of nodes

in the network, and it has the same definition as shown in equation (2).

1

()
i j

ij

v v

L d
N N 1

 (8)

4.4. Clustering coefficient

In general, clustering coefficient and average path length are often mentioned together, since

both are two important properties of the "small world" effect; these two parameters reflect degree

of cohesion and transitivity of the network. The greater aggregation coefficient, the better

transmission of the network, and the communicate path is relatively small when any two nodes of

the network for communication, thus the power consumption is relatively less. For software

systems, clustering coefficient reflects cohesion of entities in the software system and system

organization layering trend.

Clustering coefficient is a measure of the "all-my-friends-know-each-other" property. More

precisely, the clustering coefficient of a node is the ratio of existing links connecting a node's

neighbors to each other to the maximum possible number of such links. The clustering coefficient

for the entire network is the average of the clustering coefficients of all the nodes. A high

clustering coefficient for a network is another indication of a small world. Suppose that node i has

ki edges connecting to other nodes, so the clustering coefficient of node i is (9). Where Ei is the

existing links connecting to other nodes of node i, and ki *(ki –1) is the maximum possible number

of such links of node i. And the clustering coefficient of the whole network is the average value of

Ci of all nodes and the formula is (10), N is the number of nodes of the network.

i
i

i i

E
C

k (k -1)
 (9)

1
i

i

C C
N

 (10)

4.5. Average degree

In terms of software system, degree distribution characterizes the connectivity of each node

in the network and reflects the reuse degree and complexity of the node. Therefore, the

distribution can be used to reflect heterogeneity of the system structure and qualitative analysis

uncertainties of the software network. The degree ki of node i is defined as the number of other

nodes connected to the node, the degree of a node in a directed network is divided into out-degree

and in-degree, out-degree of one node is the number of edges from the node to other nodes,

in-degree of one node is the number of edges other nodes point to the node. Intuitively, the greater

the degree of a node means the more important of the node in the network, the average degree of

all nodes in the network is the average degree of the network, it can be defined as <k> and shown

in formula (11), E is the collection of direct edges of the network and N is the number of nodes of

the network.

E
k

N
 (11)

One node with great in-degree reflects more nodes communicating with this node, this is

same to the node with great out-degree which reflects it depending on other more nodes, and both

reflect the weight of one node for communication in the network. One node with great degree

indicate more probability of communication link passing through this node in the network, then

the frequency of the node driving hardware circuit is high, and thus generates more power

consumption.

5. Nonlinear fitting of BP neural network

In order to describe the nonlinear relation between network characteristics of the software

and its power consumption accurately, it is necessary to choose a reasonable and effective

numerical approximation method. BP neural network [48] as a numerical approximation method

can approximate any nonlinear relation and has a high degree of fitting, therefore we use BP

neural network to fit the relation in this paper.

5.1. Nonlinear function fitting procedure of BP neural network

Steps of using BP neural network to realize nonlinear fitting are as follows:

(1) Get network characteristics of the sample programs. First we select 112 java open-source

programs from github and sourceforge as our dataset, the programs are general programs for

ordinary users, which mainly are games, media player, office and general use programs.

Among them, we randomly choose one hundred programs as the training set, twelve programs

as the test set. Then for each program, we write scripts to get network characteristics by

reversing its source code and calculate different characteristic values according to the

definition in section 4. Next, we normalize these characteristics values and use these values as

the inputs of BP neural network.

(2) Get average power consumption of the training set. For each program, we take the same steps

to get its average power consumption, detail experiment configuration and steps are described

in section 6. Then normalize power values of the programs and use them as the outputs of BP

neural network.

(3) Design the structure of BP neural network. The important factors include the number of

hidden layers, hidden layer nodes, hidden layer transfer function and output transfer function,

detail design processes are presented in section 5.2.

(4) Traini BP neural network to get the optimal network. Input network characteristic and average

power consumption values of the training set to train BP neural network, get best optimal

weights and thresholds of the hidden layer under a predetermined mean square error.

(5) Input characteristics of test programs to the trained BP neural network and get the forecast

power consumption values, and then compare with actual values to verify our software power

model.

5.2. Design the structure of BP neural network

Designing a reasonable structure of BP neural network is important to achieve best fitting

effect, and the key parameters include the number of hidden-layers, the number of hidden nodes

and transfer function of each layer. What’s more, neural network learning rate, approximation

error, convergence speed and memory usage are also important factors that need to be considered

in the training process. Now we list key parameters of our BP neural network.

(1) Determine the number of hidden-layers. The number of hidden layers determines the network

error, but too many hidden layers will increase the complexity of the network, also increase

the training time of the network and lead the over fitting tendency. In literature [48], which

noticed that a single layer BP neural network can approximate any continuous function in a

closed interval, and three layers BP network can complete any mapping of n dimension to m

dimension, so we use one hidden layer in our paper.

(2) Determine the number of hidden nodes. In BP neural network, the number of hidden layer

nodes has a great influence on the performance of BP network, while there is still a lack of

scientific and general methods to determine the number of nodes in the hidden layer in theory,

and the number of hidden nodes (n1) is always determined by the following empirical

formula (10).

1n n m a (12)

In the formula, n is the number of nodes in input layer, m is the number of nodes in output

layer, and a is a constant number between 1~10. In our power model, there are five inputs

(number of nodes, number of directed edges, average path length, clustering coefficient and

average degree) in the input layer and one output (average power consumption) in the output

layer, thus the scope of n1 is 3~12. In our training process, we find that when the number of

nodes in the hidden layer is 11, approximation error and convergence speed can achieve

satisfactory results, thus 11 is assigned to n1 in our work.

(3) Determine transfer function of each layer. Different transfer functions have different accuracy

and learning rate for the network, and there are various options for choosing the transfer

function of hidden layer and output layer, such as tansig, hardlim, purelin, hardlims, logsig,

etc. Through multiple sets of experiments, we find using the tansig as hidden layer transfer

function and purelin as output layer transfer function can achieve satisfactory results.

Therefore, we use the tansig and purelin as the transfer function for hidden layer and output

layer in the trained BP neural network.

After the structure of BP neural network is determined, we start training our BP neural

network. The scope of initial weight value is [-1,1], learning rateη=0.7 and momentum factorα=,

0.01, minimum mean square error of the training is set to 0.0001, the maximum number of

iterations is 10000. Then input normalized characteristic values and normalized power

consumption values of the training set to the network. Figure 3(a) presents the training error of our

BP network in the training process, from the figure we can see that minimum mean square error of

the training reaches the required accuracy after 86 iterations. After training, input the test set to the

trained BP neural network and get the predicted power consumption of test set. Here we get the

optimal weights (W1,W2) of the BP neural network and the threshold values of B2 and B1, as shown

in Figure 2.

1

0.36493 0.58707 0.1003 1.035724 1.855533 0.41245

1.20467 0.78416 1.065832 0.61765 0.764129 0.602211

0.12742 0.51417 0.40698 1.73954 2.02058 0.531697

0.802849 1.218968 0.15769 0.978275 0.51417 0.91123

0.1142

W

58 0.26563 0.88062 0.94464 1.173781 0.23418

0.23331 1.22303 1.42125 0.575745 0.02367 0.086923

1.0424 0.99477 0.406443 0.84588 0.4762 0.89998

1.20386 1.37115 0.60392 0.7068 0.397846 0.067678

1.284278 0.607484 0

2

0.645321

0.85821

0.42707

0.311938

1.030

.5369 1.04817 0.114137 0.324494

1.187568 1.702296 1.4756 0.76927 0.102407 0.13686

1.08965 0.853758 1.24692 0.521057 0.96292 0.5

,

4297

W

1

1.940801

1.801807

1.16769

0.94284

65 0.84151

0.111164 0.151878

0.05828 0.44778

0.05678 0.85067

0.5120

,

42 1.560673

1.193173 1.750395

0.07466 1.91844

B

2 0.76, 784B

Figure 2 Weight and threshold value of BP neural network

6. Experiment validation and experiment analysis

In order to verify the accuracy of our software power model, we use test set to validate the

model. The test programs contain open-source games, media player and general use software. Five

characteristics of the test set are shown in Table 3, we evaluate our power model on Ubuntu

14.04.3 platform, which is a normal desktop computer and its configuration shown in Table 2, and

using KA3005P DC power supply to provide stable and controllable voltage for the computer, and

then we leverage HOIKI 3334 multi-function power measuring instrument to measure

instantaneous power consumption and cumulative power consumption of the software.

Table 2 Configuration of experiment platform

Computer Power meter Power supply

Lenovo E47

Intel Core i3-2310M 2.10 GHz 2 core

512 kb L2 Cache 64 kb L1 Cache

DDR 2GB×2 Frequency 1333MHz

Cycle time 6 clocks

HOIKI 3334

Sampling Frequency 74.4kHz

Measurement accuracy ±0.5% rdg

Measurement Range 1.5000W-9.000kW

KA3005P DC

Voltage Range 0V-30V

Current Range 0A-5A

Setup Accuracy Voltage: ≤0.5%+20mV

Current: ≤0.5%+10mA

0 20 40 60 80 100

0.02

0.04

0.06

0.08

0.10

E
rr

o
r

Iteration
0 2 4 6 8 10 12

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

E
rr

o
r

Test set

(a) Training error curve of BP neural network (b) Prediction error of the test set

Figure 3 Training error of BP Neural network and Prediction error the test set

It
a

U
n
m

J
a
b

D
o
f

Y
O

P

T
rp

jB
B

J
IE

U
p
m

F
ts

F
C

L

J
a
k

0

1

2

3

4

5

6

7

8

9

A
v
e
ra

g
e
 P

o
w

e
r

(W
)

 Estimated

 Measured

Figure 4 Estimate power value and measured power value of the test set

0 20 40 60 80 100
0

2

4

6

8

10

12

14

P
o
w

e
r(

W
)

Time(s)

 Ita

 Unm

 Jab

Figure 5 Instantaneous power consumption of Italc,UniversalMediaServer and Jabref.

Table 3 software network characteristic values of the test

 Ita Unm Jab Dof YOP Trp jBB JIE Upm Fts FCL Jak

V 91 2784 5140 4290 2674 7266 222 1080 382 2028 185 4428

E 60 1980 4070 2884 3153 14196 159 819 201 1822 159 2267

L 3 10 17 8 9 13 5 7 5 8 5 13

C 0.104 0.254 0.198 0.205 0.5 0.397 0.295 0.227 0.163 0.294 0.295 0.194

<K> 1.429 3.492 3.84 2.931 3.134 3.876 1.632 3.112 1.712 3.562 1.632 3.612

In order to get accurate value for each program, we write automated test scripts interacting

with the program being measured based on autorunner [49],which is simulated the scenario of

normal user running the software. Also we set the test cycle to be 2 hours for each program to get

its cumulative power consumption, and then calculate average power consumption of the program.

In order to draw Figure 4, Figure 5 and Table 4 conveniently, we use a list of abbreviations (Ita,

Unm, Jab, Dof, YOP, Trp, jBB, JIE, Upm, Fts, FCL and Jak) to replace the name of each test

program (Italc,UniversalMediaServer, Jabref, Docfetcher, YOYOPlayer, TripleA, jBubbleBreaker,

JIExplorer, Universal password manager, Ftpserver, FreeCell and Jajuk). Figure 3(b) present the

prediction error between estimated power value and measured power value of the test set. Figure 4

shows the predicted value obtained by the trained BP network and measured value obtained by

HOIKI of the test set and Figure 5 presents the instantaneous power consumption of

Italc,UniversalMediaServer and Jabref in first 100s sampling period.

For the test set, from Figure 3(b) and Figure 4 we find that the maximum error between

predicted power value and the measured power value is 16.01%, minimum error is 4.1%, and

average error is 11.2%, which is enough to meet the requirements of high level software power

modeling. And the scope of average power consumption of common desktop applications is

usually about 3W-12W, from Figure 4 we find that average power consumption of Unm is about

9W, which is the highest power consumption of the test set, and its instantaneous power

consumption is presented in Figure 5, we can see that the power consumption is in the scope of

3.8W-13.6. In our training set, there are some applications with higher power consumption, thus

our power model can also accurately predict higher power consumption. By observing the data in

Table 3 and Figure 4, we can see that there is a certain correlation between power consumption

and network characteristics of software, the most obvious characteristic is number of direct edges,

in Table 3 programs with large E, generally their power consumption value is big, such as the

points with large value in Figure 4, but there are also exceptions. Power consumption is not only

related to E, but also influenced by other characteristic, that is the reason why the exception occurs,

while the relation between other characteristics and power consumption cannot be easily seen

from Figure 4. Thus we can conclude that there is big difference of each characteristic in the

impact on software power consumption.

Through analysis of the experimental data, we can draw the following conclusions:

(1) Our software power model at architecture level based on complex networks is effective,

through comparison of the test set, average error of our model is maintained in the range of

11.2%, which is within the acceptable range.

(2) It is proved that the rationality of our assumption that there is a nonlinear relation between

the network characteristics of software and its power consumption and our method of

measuring the network characteristics of software is effective.

(3) BP neural network as an approximation tool is effectively reflecting the nonlinear relation.

(4) There is a certain correlation between each characteristic and software power consumption,

each characteristic has different impact on software power consumption.

7. Conclusion

In this paper, we model software systems as complex networks at architecture level,

assuming that there is a nonlinear relation between network characteristics of the software and its

power consumption. Based on this assumption, we extract five network characteristics of the

software, analyze the impact of each characteristic on power consumption and put forward

measurement method of each characteristic, and then we propose our software power model. Next

we evaluate the validity of our model and the rationality of our assumption by experiments.

Currently, we are doing some research in optimization methods at architecture level through node

consolidation, node split, node replacement, architecture change and combination of these

methods to reduce the power consumption of software.

Acknowledgments

This work was supported in part by the State Key Program of National Natural Science

Foundation of China under Grant No.61332001；The National Natural Science Foundation of

China under Grant No. 61272104 and 61472050; the Science and Technology Planning Project of

Sichuan Province under Grant No. 2014JY0257, 2015GZ0103 and 2014-HM01-00326-SF.

References

[1] Mingay, Simon. "Green IT: the new industry shock wave." Gartner RAS Research Note G

153703 (2007): 2007.

[2] Kumon, Kouichi. "Overview of Next-Generation Green Data Center." Fujitsu Sci. Tech. J

48.2 (2012): 177-183.

[3] Roy, Kaushik, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. "Leakage current

mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits."

Proceedings of the IEEE 91.2 (2003): 305-327.

[4] Wei, Liqiong, et al. "Design and optimization of low voltage high performance dual

threshold CMOS circuits." Proceedings of the 35th annual Design Automation Conference.

ACM, 1998.

[5] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W.

Cameron. Powerpack: Energy profiling and analysis of high performance systems and

applications. IEEE Trans. Parallel Distrib. Syst., 21(5):658–671, 2010.

[6] Russ Joseph, David Brooks, and Margaret Martonosi. Live, runtime power measurements as

a foundation for evaluating power/performance tradeoffs. In In Workshop on Complexity

Effectice Design WCED, held in conjunction with ISCA-28. Jun 2001, June 2001.

[7] Shoaib Kamil, John Shalf, and Erich Strohmaier. Power efficiency in high performance

computing. In Parallel and Distributed Processing, 2008.IPDPS 2008. IEEE International

Symposium on, pages 1 –8, Apr. 2008

[8] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded Software: A First Step

towards Software Power Minimization. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 2(4):437–445, 1994.

[9] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee. Instruction Level Power Analysis and

Optimization of Software. The Journal of VLSI Signal Processing,13(2):223–238, 1996.

[10] M Lee, V Tiwari , S Malik et al. Power Analysis and Minimization Techniques for Embedded

DSP Software[J].IEEE Transactions on VLSI Systems, 1997; 5(1) : 123～135

[11] Nikolaidis, S., and Th Laopoulos. "Instruction-level power consumption estimation of

embedded processors for low-power applications." Computer Standards & Interfaces 24.2

(2002): 133-137.

[12] Leite, Alessandro, et al. "A Fine-grained Approach for Power Consumption Analysis and

Prediction." Procedia Computer Science 29 (2014): 2260-2271

[13] Blume, Holger, et al. "Hybrid functional-and instruction-level power modeling for embedded

and heterogeneous processor architectures." Journal of Systems Architecture 53.10 (2007):

689-702.

[14] Lovic Gauthier, Tohru Ishihara. Processor energy characterization for compiler-assisted

software energy reduction. Journal of Electrical and Computer Engineering, 2012, 10(8):

1~13.

[15] Su, Ching-Long, Chi-Ying Tsui, and Alvin M. Despain. "Low power architecture design and

compilation techniques for high-performance processors." Compcon Spring'94, Digest of

Papers.. IEEE, 1994

[16] Brandolese, Carlo. "Source-level estimation of energy consumption and execution time of

embedded software." Digital System Design Architectures, Methods and Tools, 2008.

DSD'08. 11th EUROMICRO Conference on. IEEE, 2008.

[17] Šimunić, Tajana, et al. "Source code optimization and profiling of energy consumption in

embedded systems." Proceedings of the 13th international symposium on System synthesis.

IEEE Computer Society, 2000.

[18] Julien, Nathalie, et al. "Power consumption estimation of a C-algorithm: a new perspective

for software design." LCR. ACM, 2002.

[19] Li, D. and S. Hao, et al. (2013). Calculating source line level energy information for Android

applications. ISSTA, ACM: 78 - 89.

[20] Potkonjak, Miodrag, and Jan M. Rabaey. "Power minimization in DSP application specific

systems using algorithm selection." Acoustics, Speech, and Signal Processing, 1995.

ICASSP-95., 1995 International Conference on. Vol. 4. IEEE, 1995.

[21] Hannah Bayer. Evaluating Algorithms according to their Energy Consumption

http://wwwagak.cs.uni-kl.de/downloads/papers/Evaluating_Algorithms_according_to_their_

Energy_Consumption.pdf

[22] Hao, S. and D. Li, et al. (2013). Estimating mobile application energy consumption using

program analysis. ICSE, IEEE Press: 92 - 101.

[23] Estimating Android Applications' CPU Energy Usage via Bytecode Profiling Shuai Hao,

Ding Li, William G.J. Halfond, Ramesh Govindan ICSE-Greens 201

[24] An Empirical Study of the Energy Consumption of Android Applications .Ding Li, Shuai Hao,

Jiaping Gui, William Gj Halfond

[25] Seo, Chiyoung, Sam Malek, and Nenad Medvidovic. "An energy consumption framework

for distributed Java-based software systems." Submitted to ACM SIGSOFT (2006).

[26] Seo, Chiyoung, Sam Malek, and Nenad Medvidovic. "Estimating the energy consumption in

pervasive java-based systems." Pervasive Computing and Communications, 2008. PerCom

2008. Sixth Annual IEEE International Conference on. IEEE, 2008.

[27] Do, Thanh, Suhib Rawshdeh, and Weisong Shi. "pTop : A process-level power profiling

tool." Proceedings of the 2nd workshop on power aware computing and systems

(HotPower’09). 2009.

[28] Chen, Hui, Youhuizi Li, and Weisong Shi. "Fine-grained power management using

process-level profiling." Sustainable Computing: Informatics and Systems 2.1 (2012): 33-42.

http://wwwagak.cs.uni-kl.de/downloads/papers/Evaluating_Algorithms_according_to_their_Energy_Consumption.pdf
http://wwwagak.cs.uni-kl.de/downloads/papers/Evaluating_Algorithms_according_to_their_Energy_Consumption.pdf

[29] Merkel, Andreas, and Frank Bellosa. "Balancing power consumption in multiprocessor

systems." ACM SIGOPS Operating Systems Review. Vol. 40. No. 4. ACM, 2006.

[30] Tan TK, Raghunathan AK, Lakishminarayana G, Jha NK. High-Level software energy

macro-

[doi: 10.1109/DAC.2001.156211]

[31] Tan TK, Raghunathan AK, Jha NK. Software architectural transformations: A new approach

to low energy embedded software. In:Proc. of the Design Automation Test in Europe. 2003.

1046~1051

[32] Li, Ye, Bertan Bakkaloglu, and Chaitali Chakrabarti. "A system level energy model and

energy-quality evaluation for integrated transceiver front-ends." IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 15.1 (2007): 90-103.

[33] A. Muttreja, A. Raghunathan, S. Ravi, N. K. Jha. Automated energy/performance

macromodeling of embedded software. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2007, 26(3): 542~552.

[34] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, T. Laopoulos. Energy consumption

estimation in embedded systems. IEEE Transactions on Instrumentation and Measurement,

2008, 57(4): 797~804.

[35] C. J. Xian, L. Cai, Y.H. Lu. Power measurement of software programs on computers with

multiple I/O components. IEEE Transactions on Instrumentation and Measurement, 2007,

56(5): 2079~2086.

[36] E. Saxe. Power-Efficient Software. Communication of ACM, 2010, 53(2): 44~48

[37] Seungyong Oh, Jungsoo Kim, Seonpil Kim, Chong-Min Kyung. Task partitioning algorithm

for intra-task dynamic voltage scaling. In Proc. of the IEEE International Symposium on

Circuits and Systems (ISCAS'2008), Seattle, 2008: 1228~1231.

[38] M. E. Salehi, M. Samadi, M. Najibi, et al. Dynamic Voltage and Frequency Scheduling for

Embedded Processors Considering Power/Performance Tradeoffs. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 2011, 19(10): 1931~1935.

[39] Sheikh, Hafiz Fahad, and Ishtiaq Ahmad. "Dynamic task graph scheduling on multicore

processors for performance, energy, and temperature optimization." Green Computing

Conference (IGCC), 2013 International. IEEE, 2013.

[40] Khan, Samee Ullah, and Ishfaq Ahmad. "A cooperative game theoretical technique for joint

optimization of energy consumption and response time in computational grids." Parallel and

Distributed Systems, IEEE Transactions on 20.3 (2009): 346-360.

[41] Sheikh H F, Tan H, Ahmad I, et al. Energy-and performance-aware scheduling of tasks on

parallel and distributed systems. ACM Journal on Emerging Technologies in Computing

Systems (JETC), 2012, 8(4): 32.

[42] Šubelj, Lovro, and Marko Bajec. "Software systems through complex networks science:

Review, analysis and applications." Proceedings of the First International Workshop on

Software Mining. ACM, 2012.

[43] Chatzigeorgiou, Alexander, and George Melas. "Trends in object-oriented software

evolution: Investigating network properties." Software Engineering (ICSE), 2012 34th

International Conference on. IEEE, 2012.

[44] Jenkins, Samantha, and Steven R. Kirk. "Software architecture graphs as complex networks:

A novel partitioning scheme to measure stability and evolution." Information Sciences 177.12

(2007): 2587-2601.

[45] Chaikalis, Theodore, and Alexander Chatzigeorgiou. "Forecasting Java Software Evolution

Trends employing Network Models." IEEE Transactions on Software Engineering 41.6

(2015): 582-602.

[46] Chaikalis, Theodore, et al. "SEAgle: Effortless Software Evolution Analysis." Software

Maintenance and Evolution (ICSME), 2014 IEEE International Conference on. IEEE, 2014.

[47] Jenkins S, Kirk S R. Software architecture graphs as complex networks: A novel

partitioning scheme to measure stability and evolution. Information Sciences. 2007, 177(12):

2587-2601.

[48] Jin, Wen, et al. "The improvements of BP neural network learning algorithm." Signal

Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Conference on. Vol. 3.

IEEE, 2000.

[49] AutoRunner. http://www.spasvo.com/news/zhuanti/20131118/

[50] Eclipse Metrics Plugin. Available from: http://metrics.sourceforge.net/

http://www.spasvo.com/news/zhuanti/20131118/

