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Abstract—We propose a new family of perfect reconstruction, 

non-redundant, and multiresolution geometrical image 

transforms using the wavelet transform in conjunction with 

modified versions of directional filter banks (DFB). In the 

proposed versions of DFB, we use either horizontal or vertical 

directional decomposition. Taking advantage of the wavelet 

transform that has efficient nonlinear approximation property, 

we add the important feature of directionality by applying the 

modified and regular DFB to the subbands of a few finest wavelet 

levels. This way we can eliminate a major portion of the artifacts 

usually introduced when DFB are used. The proposed Hybrid 

Wavelets and DFB (HWD) transform family provides visual and 

PSNR improvements over the wavelet and contourlet transforms.  

Keywords-geometrical image transforms; directional filter 

banks; wavelet transforms 

I.  INTRODUCTION 

Wavelets have been successfully applied to many image 
processing tasks such as low bit-rate compression and 
denoising [8]. However, they lack the important feature of 
directionality and hence, they are not efficient in retaining 
textures and fine details in these applications [3][4]. There 
have been several efforts towards developing geometrical 
image transforms. Directional wavelet transforms [1], steerable 
pyramids [13], complex wavelets [6], curvelets [2] and 
contourlets [3] are a few examples where all of them are 
redundant.  

For image coding, however, a non-redundant transform is 
required. Recently, some non-redundant geometrical image 
transforms based on the DFB have been introduced. The 
octave-band directional filter banks [5] represent a new family 
of the DFB that achieves radial decomposition as well. The 
CRISP-contourlet [7] is another transform, which is developed 
based on the contourlet structure, but nonseparable filter banks 
are only utilized. Non-uniform DFB [10], a modified version 
of the CRISP-contourlets, is the other non-redundant 
directional transform, which also provides multiresolution. 

Neither of the above non-redundant directional schemes 
has been used in a practical image processing application. In 
[4] we introduced Wavelet-Based Contourlet Transform 
(WBCT), where we applied the DFB to all the detail subbands 
of wavelets in a similar way that one constructs contourlets. 
The main difference is that we used wavelets instead of the 

Laplacian pyramids employed in contourlets. Therefore, the 
WBCT is non-redundant and can be adapted for some efficient 
wavelet-based image coding methods [4].  

The main disadvantage of the WBCT (and other 
contourlet-based transforms) is the occurrence of artifacts that 
are caused by setting some transform coefficients to zero for 
nonlinear approximation and also due to quantizing the 
coefficients for coding. In this paper, we introduce Hybrid 

Wavelets and Directional filter banks (HWD) as a remedy for 
this problem. Here again we employ wavelets as the subband 
multiresolution decomposition. Then we apply the DFB and 
modified versions of the DFB to some of the wavelet subbands. 
In a nonlinear approximation experiment for natural images, 
we will show that our proposed HWD scheme is capable of 
retaining textures and fine details in the results when compared 
to the wavelets, while the amount of introduced artifacts in 
smooth regions is comparable to that of wavelets. Owing to the 
similarity of the WBCT to HWD, one can consider the WBCT 
as a member of the HWD family. 

The paper is organized as follows. In Section 2, we 
develop the modified versions of the DFB. In Section 3, we 
construct the proposed HWD, and we provide the experimental 
results in Section 4. Lastly, our main conclusions are presented 
in Section 5. 

II. HORIZONTAL AND VERTICAL DIRECTIONAL  

FILTER BANKS 

Directional filter banks (DFB) [11] decompose the 
frequency space into wedge-shaped partitions as illustrated in 
Fig. 1. In this example, eight directions are used, where 
directional subbands of 1, 2, 3, and 4 represent horizontal 
directions (directions between -45˚ and +45˚) and the rest 
stand for the vertical directions (directions between 45˚ and 
135˚). The DFB is realized using iterated quincunx filter 
banks.  

For the proposed HWD family, we are required to 
decompose the input into either horizontal directions or 
vertical directions or both. Hence, we propose Vertical DFB 

(VDFB) and Horizontal DFB (HDFB), where one can achieve 
either vertical or horizontal directional decompositions, 
respectively. Fig. 2 shows the frequency space partitioned by 
the VDFB and HDFB. The implementation of these schemes is 
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straightforward when we use the iterated tree-structured filter 
banks [11] to realize the DFB. At the first level of the DFB, we 
employ a quincunx filter bank (QFB) as depicted in Fig. 3(a). 
The quincunx sampling matrix that we use is  

1 1
1 1

Q
− 

=
  

. 

Fig. 3(b) shows how downsampling by Q affects the input 
image. The image is rotated +45˚ clockwise. So in the DFB, 
since this is not a rectangular output, we decompose the image 
further by using two other QFBs at the outputs 0y  and 1y . As 
a result, we obtain four outputs corresponding to the four 
directions of the DFB. At level three and higher we employ 
QFBs in conjunction with some resampling matrices to further 
decompose the DFB [11]. In the proposed VDFB (HDFB), 
however, we stop at 1y  ( 0y ) and just decompose the other 
channel ( 0y  in VDFB and 1y  in HDFB) in a similar manner as 
we decompose the DFB. Therefore, since we keep 1y  or 0y , 
we have to find a way to represent these outputs in a 
rectangular form.  

Assume one uses periodic filters; one can select a 
rectangular strip of these outputs (Fig. 3(c)). However, for 
better visualization and possible further processing of the 
coefficients in image processing applications such as coding, 
we need a better representation. A solution to this issue is the 
use of a resampling matrix. During resampling, the sampling 
rate of the input image does not change and the samples are 
merely reordered. In particular, we find resampling matrices to 
reorder the samples of 1y  or 0y  from a diamond shape to a 
shape of parallelogram. Remarkably, there exists no 
resampling matrix with integer elements to change those 
outputs to a rectangular form. We propose using the following 
resampling matrices: 

1 1
0 1hR  

=
  

 and 
1 0
1 1vR  

=
−  

. 

Applying these resampling operations to the outputs of the 
QFB, we obtain parallelogram-shaped outputs as illustrated in 
Fig. 4. Now we simply shift the resulting coefficients (column-
wise in the case of hR  and row-wise in the case of vR ) to 
obtain rectangular outputs. Thus, the resulting overall sampling 
matrix for representing 1y  and 0y  is h hQ QR= , or v vQ QR= , 
where hQ  ( vQ ) in conjunction with a shifting operation results 
in a horizontal (vertical) rectangular output. 

III. HYBRID WAVELETS AND DIRECTIONAL FILTER BANKS 

(HWD) 

Here we develop the image transform family of Hybrid 

Wavelets and Directional filter banks (HWD). For HWD, 
similar to the WBCT, we consider the wavelet transform as the 
multiresolution subband decomposition. The rationale for this 
is as follows: 1) wavelets have already shown their good 
nonlinear approximation property for piece-wise smooth 
signals [8]; thus, we expect that by adding the feature of 
directionality in an appropriate manner we could improve the 
nonlinear approximation results yielded from wavelets, 2) 
there are efficient algorithms developed for image processing 
applications such as image coding; therefore, one could 
properly adapt these algorithm to HWD, 3) similar adaptive 
schemes such as those used for wavelet packets can be 
developed for this new family. 

Fig. 1. Directional filter bank frequency partitioning using 8 directions. 
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Fig. 2. (a) An example of the vertical directional filter banks. 

(b) An example of the horizontal directional filter banks. 

Fig. 3. (a) Quincunx filter bank. 0H  and 1H  are fan filters and Q is the 

sampling matrix. Pass bands are shown by white color 

 in the fan filters. (b) An image downsampled by Q.  

(c) A horizontal or vertical strip of the downsampled image. 
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Fig. 4. Applying resampling operations hR  and vR  to an image 

downsampled by Q. The right side images show the resulting outputs 

after shifting the coefficients into a rectangular box. 
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For the WBCT scheme, we apply the DFB to all wavelet 
detail subbands in such a way to comply the anisotropy scaling 
law [4]. Because the WBCT coding scheme introduces visible 
artifacts in the smooth regions of images, we merely used it for 
pure texture images. Texture areas, in fact, could hide the 
pseudo-Gibbs phenomena artifacts; consequently, we achieved 
better results when compared with the wavelet coder [4]. 
These artifacts are mainly introduced by the DFB when we set 
some transform coefficients to zero. Regarding the human 
visual system, eyes are more sensitive to low-frequency 
portions of an image. To reduce artifacts, therefore, we just 

apply the (modified) DFB to m
d

, ( m L<
d

, L is the number of 

wavelet levels) finest scales of the wavelet subbands. We 
propose the following two types of the HWD family basis 
functions: 

 

1. HWD type 1   

 

a. apply the DFB to the m
d

 finest diagonal wavelet 

subbands ( , (1 )iHH i m≤ ≤
d

),  

 

b. apply the VDFB to the m
d

 finest vertical wavelet 

subbands ( , (1 )iHL i m≤ ≤
d

), 

 

c. apply the HDFB to the m
d

 finest horizontal wavelet 

subbands ( , (1 )iLH i m≤ ≤
d

). 
 

2. HWD type 2   
 

a. apply the DFB to the m
d

 finest diagonal wavelet 

subbands ( , (1 )iHH i m≤ ≤
d

),  

 

b. apply the VDFB to the m
d

 finest horizontal wavelet 

subbands ( , (1 )iLH i m≤ ≤
d

), 

 

c. apply the HDFB to the m
d

 finest vertical wavelet 

subbands ( , (1 )iHL i m≤ ≤
d

). 
 

In HWD1, we further directionally decompose the vertical 
and horizontal coefficients already obtained through wavelet 
filtering. We use the proposed modified versions of the DFB to 
lower the complexity and to further reduce the artifacts. In 
HWD2, however, we decompose the horizontal subbands 
vertically and the vertical subbands horizontally. Indeed, there 
are still horizontal (vertical) coefficients with low magnitude in 
the vertical (horizontal) subbands. One can boost these 
coefficients by applying the HDFB (VDFB) to these subbands 
and improve the directionality of wavelets. Since we apply the 
HDFB or VDFB to the coefficients with low magnitude, we 
expect fewer artifacts during nonlinear approximation. In both 

HWD1 and HWD2 we use DFB with D ( / 2d D=  for VDFB 

and HDFB) directions at 1i = , then we decrement the number 

of directions at every other levels.  

Fig. 5 shows some basis functions of the HWD family as 
well as the wavelet transform and the WBCT. As seen, the 
wavelet basis functions are point-wise while those of the HWD 
family are both directional and point-wise. Note that the non-

directional basis functions of HWD2 (that happen at 0y  or 

1y -the two at the lower left corner) are more similar to those 
of wavelets when compared with the HWD1 (the two at the 
upper right corner). In the WBCT all basis functions are 
directional. The center basis function in these schemes is an 
instance from coarser scales, which is the same for wavelets 
and also HWD type 1 and 2. In contrast, for the WBCT it 
appears as a scattered directional basis function, which is a 
source of artifacts in this type. 

Fig. 6 illustrates an example of the HWD1 transform of the 
Barbara image. At the finest wavelet level, the upper right 

(lower left) subband is 1HL  ( 1LH ), which is decomposed into 

16/2 vertical (horizontal) directions, and the lower right 

subband is 1HH  decomposed into 16 directions.  

IV. NONLINEAR APPROXIMATION 

To evaluate our proposed HWD transform, we performed a 
nonlinear approximation experiment in which one keeps some 
transform coefficients with the largest magnitudes and set the 
rest to zero and then reconstruct the image. We also compared 
our scheme with wavelets, WBCT, and contourlets. For the 
experiment, we used 6L =  wavelet levels, 2m =

d
 and 

16D =  for both directional levels at HWD1 and 2. The 
WBCT and contourlet transforms are the same as those in [4]. 
The fan filters designed in [12] are used for the directional 
filters. Fig. 7 demonstrates the visual results as well as the 
PSNR values1 for the Barbara image when 4096 coefficients 
are retained. As seen, the contourlet and WBCT results show a 
lot of artifacts in the smooth regions. That is because the DFB 
is applied to the low-frequency scales of these schemes as 

                                                           
1 The result of the contourlet transform is also justified using the software 

provided at http://www.ifp.uiuc.edu/~minhdo/software/  

Fig. 5. Some basis functions of the wavelets and HWD family.  

From left to right, top to bottom: Wavelets, HWD1, HWD2, and WBCT. 



well. The artifacts, however, are significantly reduced in the 
HWD type 1 and 2 results while they still provide better 
recovering of textures and fine details and better PSNR values 
when compared with the wavelet scheme. Comparing the 
HWD1 with the HWD2 results, we see that textures are better 
retrieved in HWD1 at the expense of introducing more 
artifacts. Despite the many artifacts introduced by the WBCT, 
we showed its potential in coding of pure texture images [4].  

V. CONCLUSIONS 

In this paper we proposed a new family of non-redundant 
directional image transforms where we applied the DFB and 
modified versions of the DFB to the subbands of a few finest 
levels of wavelets. This way we could significantly reduce the 
artifacts introduced in nonlinear approximation. As a result, we 
expect a good coding performance when we use this family. In 
a later work, we will explain the application of the proposed 
schemes in image coding. 
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Fig. 6. HWD1 transform of the Barbara image. Here 3L = ,  2m =
d

 and 

D = 16 directions for both levels are used. Detail coefficients are clipped 

for better visualization. 

Fig. 7. Nonlinear approximation results of the Barbara image using 4096 

coefficients. Part of the image is shown. 

          Wavelet – PSNR = 24.64     Contourlet – PSNR = 25.07 

          HWD1 – PSNR = 25.38                     HWD2 – PSNR = 25.23 

                        WBCT – PSNR = 25.04 


