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Abstract— In this paper, a chaos driven Discrete Artificial
Bee Algorithm is introduced. The main premise of this work is
to ascertain if using chaos maps in lieu of standard pseudoran-
dom number generators can improve the performance of the
canonical algorithm. Nine unique chaos maps are embedded in
the Discrete Artificial Bee Algorithm alongside the Mersenne
twister and evaluated on the lot-streaming flowshop scheduling
problem with setup time. Based on the obtained results, a
number of chaotic maps significantly improve the performance
of the algorithm. Additionally, the new algorithm is favourably
compared with the chaos driven Enhanced Differential Evolu-
tion algorithm for the same problem.

I. INTRODUCTION

ONE of the core premises of evolutionary algorithms
(EA’s) is their reliance on stochasticity, the ability

to generate a random event, which in turn, provides the
spark of perturbation towards the desired goal. The task
of generating this stochasticity is generally in the realm
of pseudorandom number generators (PRNG); a structured
sequence of mathematical formulation which tries to yield
a generally optimal range of distributed numbers within a
specified range.

A wide variety of such pseudorandom number generators
exist, however, the most common in usage is the Mersenne
Twister [1]. A number of its variants have been designed; for
a full listing please see [2].

This paper explores a novel approach to generating PRNG,
one with a lineage in chaos theory. The term chaos describes
the complex behaviour of simple dynamical systems. When
casually observed, this behaviour may seem erratic and
somewhat random, however, these systems are deterministic,
whose precise description of future behaviour is well known,
given by the trajectory on the map. The proposition is then to
utilise the notion of observed erratic (random) and underlying
(deterministic) part of the systems.

This aperiodic non-repeating behaviour of chaotic sys-
tems is the foundation of this research. The objective is
then to analyse different chaotic systems, and embed them
in the EA’s as Chaotic Pseudorandom Number Generators
(CPRNG’s). Generally, four branches of chaotic systems
exist, which are the dissipative systems, fractals, dissipative
and high-dimensional systems and conservative systems. The
systems of interest in this line of research are the discrete
dissipative systems. Related literature is described in section
II.
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This paper looks to expand upon this class of research and
to ascertain if chaos can improve one of the most recent and
promising algorithm, the Artificial Bee Algorithm (ABC) [3],
in particular its discrete version, the DABC[4]. The Mersenne
twister was utilised as the canonical PRNG in ABC and
compared with nine different chaotic maps.

The paper is organised as follows: section II gives a brief
overview of chaos based literature, section III introduces
the Discrete ABC (DABC) of [4] and presents the chaotic
DABC. The different chaos maps used in this work and
their mathematical descriptions are given in section IV. The
lot-streaming flowshop problem with setup time, which is
the benchmark problem used for validation, is described in
section V. The experimental results are presented in section
VI and analysis is done in section VII. Finally, the work is
concluded in section VIII.

II. RELATED RESEARCH

Many chaotic maps in the literature possess certainty,
ergodicity and the stochastic property. Recently, chaotic
sequences have been adopted instead of random sequences
with improved results. They have been used to enhance the
performance of EA’s ([5], [6]). They have also been used
together with some heuristic optimisation algorithms ([7],
[8]) to express optimisation variables. The choice of chaotic
sequences is justified theoretically by their unpredictability,
i.e. by their spread-spectrum characteristics, non-periodic,
complex temporal behaviour, and ergodic properties [9].

A mathematical description of the connection between
chaotic systems and random number generators has been
given by [10]. In this paper, a strong linkage has been
shown between the Lehmer generator [11] and the simple
chaos dynamical system of Bernoulli shift [12]. The hidden
periodicity of chaos system and its dependence on numerical
system has been shown by [13]. A chaotic piecewise-linear
one dimensional (PL1D) map has been utilised as a chaotic
random number generator in [14]. The construction of the
chaos random number system is based on the exploitation
of the double nature of chaos, deterministic in microscopic
space and by its defining equations, and random in
macroscopic space. This new system is mathematically
proven to overcome the major drawbacks of classical
random number systems, which are its reliance on the
assumed randomness of a physical process, inability to
analyse and optimise the random number generator, inability
to compute probabilities and entropy of the random number
generator, and inconclusiveness of statistical tests.

A family of enhanced CPRNG’s has been developed by
[15], where the main impetus is the generation of very
long series of pseudorandom number generations. This is
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accomplished through what is called the ultra weak coupling
of chaotic systems, such as the Tent Map, which is enhanced
in order to conceal the chaotic genuine function [16].

Recently, the very notion of using PRNG’s in EA’s has
been explored by [17]. Additionally, extended case studies
on the application of chaos on different EA’s to both
continuous and combinatorial optimisation problems has
been done by [18], [19], [20], [21], [9], [22], [23] and [7]
amongst others.

III. DISCRETE ARTIFICIAL BEE ALGORITHM

The discrete variant of the ABC algorithm (DABC) has
been developed by [4] to solve the flowshop lot-streaming
problem. Subsequently, DABC has been applied to solve
the permutative flowshop scheduling problem, with total
flowtime minimisation [24], no-idle permutation flowshop
scheduling problem with the total tardiness criterion [25] and
multi-objective flexible job-shop scheduling problem with
maintenance activities [26].

The basic outline of the DABC is now presented.

A. Algorithm Structure

The basic structure of the DABC mimics the canonical
ABC. Being based on the foraging nature of honey bee
swarm, the algorithm has three phases, each representing
one class of bees: employed bees, onlookers and scouts. A
bee that is currently exploiting a food source is called an
employed bee. A bee waiting in the hive for making decision
to choose a food source is named as an onlooker. A bee
carrying out a random search for a new food source is called
a scout. Each solution to the problem under consideration
is called a food source, whereas the fitness of the solution
corresponds to the nectar amount of the associated food
resource.

B. Parameters

The initial parameters are the number of food sources
(FS) which is equal to the number of the employed bees
or onlooker bees, the number of trials after which a food
source is assumed to be abandoned (limit), probability of
local search (PL), local search iterations limit (loopmax),
and a termination criterion. In the basic DABC algorithm,
for every food source, there is only one employed bee.

C. Solution representation

The permutation based representation constitutes an easy
procedure to decode a schedule, which has been widely used
in literature for a variety of permutation flow shop scheduling
problems [27]. This representation is used for DABC, where
each permutation π = {x1, x2, .., xD}, where D is the size
of the permutation.

D. Employed bee phase

In the DABC, which has a permutation based neighbour-
hood structure, insert and swap operators are commonly used
to produce neighbouring solutions in the literature [27]. The
insert operator of a permutation π is defined by removing a
randomly selected job from π from its original position j and
inserting it into another position k such that (k ∈ {j, j − 1}).

The swap operator produces a neighbour of π by in-
terchanging two jobs from π in the different randomly
determined positions. To enrich the neighbourhood structure
and diversify the population, four neighbouring approaches
based on the insert or swap operator are separately utilised
to generate neighbouring food sources for the employed bees
as follows:

• Performing one insert operation to a sequence π.
• Performing one swap operation to a sequence π.
• Performing two insert operations to a sequence π.
• Performing two swap operations to a sequence π.

The best strategy, which is generally problem dependent, is
selected using an adaptive mechanism. In terms of selection,
new food source is always accepted if it is better than the
current food source.

E. Onlooker bee phase

A tournament selection with the size of two is used to
select a new food source. In the tournament selection, an
onlooker bee selects a food source xi in such a way that two
food sources are picked up randomly from the population,
and compared to each other, then the better one is chosen.
Onlooker bees use the same method of producing a new
neighbouring solution as employed bees. Naturally, if the
new food source improves upon the current food source, it
replaces the latter in the population.

F. Self adaptive strategy

Both employed bees and onlookers apply a self-adaptive
strategy to find neighbouring food sources. The self-adaptive
strategy is presented as follows. At the beginning, an initial
neighbour list (NL) with a specified length is generated by
filling the list one by one randomly from four neighbouring
approaches explained before. Then the DABC algorithm is
started. During the evolution process, whenever the neigh-
bouring food source is to be generated, one approach from
the NL is taken and applied to the food source. If the
new food source successfully replaces the current one, this
approach will enter into a winning neighbouring list (WNL).
Once the NL is empty, it is refilled as follows: 75% of the NL
is refilled from the WNL list, and then the remaining 25%
is refilled by a random selection from complete set of four
possible approaches. If the WNL is empty, the latest NL is
used again. The above process is repeated until a termination
criterion is reached. As a result, the proper neighbouring
approach can be gradually learned by the algorithm itself to
suit the particular problem and the particular phase of search
process [4].
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G. Local search
DABC contains embedded local search. In employed bee

phase, each bee may perform local search with given prob-
ability. If a random number in range [0, 1] is lesser than
this probability, fixed count of swap or insert operations
are applied to a food source generated by a bee. Local
search serves to enhance the exploitation ability of DABC
algorithm.

H. Scout bee phase
Contrary to ABC, in the DABC scout bee phase, the

exhausted food source is replaced by new solution generated
from the best solution in the population, upon which at
least three insert operations are performed. This way DABC
exploits the knowledge of best food source found so far,
rather than generating a new random one.

I. Chaos-Driven Discrete Artificial Bee Algorithm
In all the variants of ABC and DABC, very little attention

has been paid to the stochasticity of the algorithm. The basic
premise is the use of widely available PRNG’s. Using the
stock DABC algorithm of [4], the most popular Mersenne
twister [1] has been included as the default PRNG.

Alternatively, nine unique chaotic systems have been in-
cluded as CPRNG for the DABC. These new chaos em-
bedded algorithms (hereafter referred to as variants) can be
collectively labelled as CDABC. The basic premise of this
work is to ascertain if any improvement can be achieved in
DABC by using chaotic systems in place of PRNG.

The chaotic map can be utilised in two forms, the first is
to generate a large chaotic sequence from inception of the
map and use it iteratively. The second approach is to use a
random start position of the algorithm for each experiment.
The second approach has been utilised in this research, in
order to have a unique sample for each experiment, and
eliminate the need to store large values in memory. This
is similar concept to having a seed input to a PRNG. The
different chaotic systems used as CPRNG’s are given in the
following section IV.

IV. CHAOS SYSTEMS

The most interesting chaotic systems, which can be utilised
as CPRNG are discrete dissipative chaotic maps. These
maps have the general description of being a linear set
of equations, easily formulated, with a fine grain over the
solution landscape. This last attribute allows the parsing of
unique values over a period of the chaotic oscillation. In
total, nine unique chaotic systems were considered for this
experiment. The following sections describe the different
systems. All operating parameters were obtained from [28].

A. Arnold’s Cat Map
The Arnold’s cat map is a two dimensional discrete chaotic

map, which is a torus into itself. The equations are given in
(1). The parameter of k = 2.0.

Xn+1 = Xn + Yn · (mod1)
Yn+1 = Xn + k · Yn · (mod1)

(1)

B. Burgers Map

The Burgers map arose from the study of hydrodynamics,
where the discretization of coupled differential equations led
to a bifurcation effect of the system. The equation is given
in (2) and the control parameters are α = 0.75 and β = 1.75.

Xn+1 = (α ·Xn)− Y 2
n

Yn+1 = (β · Yn) + (Xn · Yn)
(2)

C. Delayed Logistic

The Delayed Logistic is a two-dimensional map which
is a phase shifted one-dimensional logistic equation. The
equation is given in (2) and the parameter α = 2.27.

Xn+1 = α ·Xn · (1− Yn)
Yn+1 = Xn

(3)

D. Dissipative Standard Map

The Dissipative Standard Map is a two-dimensional
chaotic system. The equation is given in (4) and the operating
parameters are β = 0.1 and k = 8.8.

Xn+1 = Xn + Yn−1 · (mod2π)
Yn+1 = (β · Yn) + (k · sinXn (mod2π))

(4)

E. Henon Map

The Henon map is a discrete-time dynamical system,
which was introduced as a simplified model of the Poincare
map for the Lorenz system. The equation is given in (5) and
the control parameters are α = 1.4 and β = 0.3.

Xn+1 = α−X2
n + (β · Yn)

Yn+1 = Xn
(5)

F. Ikeda Map

The Ikeda map is a discrete-time dynamical system derived
as a model of light going around across a nonlinear optical
resonator. A 2D real example of the Ikeda map is given in
equation (6). The operating parameters are α = 0.75, β =
1.75, γ = 1 and µ = 0.9.

Xn+1 = γ + µ · ((Xn · cosφ)− (Yn · sinφ))
Yn+1 = µ · ((Xn · sinφ) + (Yn · cosφ))
φ = β − α

(1+X2
n+Y

2
n )

(6)

G. Lozi Map

The Lozi map is a simple discrete two-dimensional chaotic
map. The equation is given in (7) and the control parameters
are α = 1.7 and β = 0.5.

Xn+1 = 1− (α · |Xn|) + (β · Yn)
Yn+1 = Xn

(7)

H. Sinai Map

The Sinai map is a simple two-dimensional discrete system
similar to the Arnolds Cat map. The equation is given in (8)
and the control parameter is δ = 0.1.

Xn+1 = Xn + Yn + (δ · cos 2π · Yn · (mod1))
Yn+1 = Xn + 2 · Yn · (mod1)

(8)
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I. Tinkerbell Map

The Tinkerbell map is a two-dimensional complex
discrete-time dynamical system. The equation is given in (9)
and the operating parameters are α = 0.9, β = -0.6, ρ = 2
and υ = 0.5.

Xn+1 = X2
n − Y 2

n + (α ·Xn) + (β · Yn)
Yn+1 = (2 ·Xn · Yn) + (ρ ·Xn) + (υ · Yn)

(9)

V. LOT STREAMING PROBLEM

The lot-steaming problem with setup time considered in
this paper is a subset of the generic flowshop scheduling
problem. Whereas, in the permutative flowshop problem,
each job n is processed by a single machine m, in a lot-
streaming variant, each job is divided into smaller tasks
called lots (l) [29]. Once the processing of a sub-lot on its
preceding machine is completed, it can be transferred to the
downstream machine immediately. However, all l(j) sub-lots
of job j should be processed continuously as no intermingling
or exchanging is allowed. A separable sequence-dependent
setup time is necessary for the first sub-lot of each job j
before it can be processed on any machine k [30].

Two different cases of the problem are available; the idling
and the non-idling case. The idling case is the simpler variant
of the problem, where only the schedule of the lots is taken
into consideration. A non-idling case on the other hand is
more practical. A non-idle case arises when the machine
is not allowed to be idle. This is beneficial, especially in
the case when a number of machines are in operation, and
resources, such as electricity, are wasted. Another practical
example is when expensive machinery is employed. Idling of
such expensive equipment is often not desired. In this paper,
only the non-idling case is considered.

For a detailed description of the lot-streaming problem
please refer to [31].

A. Non-Idling Case

The constraint in this case is that at any given time a
machine can process only one sub-lot, and each sub-lot can
only be assessed individually. Let the processing time of each
sub-lot of job j on machine m be P (m, j), and the setup
time of job j on machine m, after having processed job
j is s(m, j, j), which can also represent the setup time of
job j if it is the first job to be proceeded on the machine.
The objective is to find a sequence with the optimal sub-lot
starting and completion times to minimise the makespan.

The permissible job permutation can be presented as π =
{π1, π2, . . . , πn}, and the earliest start and completion time
as S (m, j, r) and C (m, j, r), where r represents the specific
sub-lot on job j being processed on machine m.

For the non-idling case, the earliest start time for the first
sub-lot is given in equations (10) and (11), where the start
time is the maximum of the setup time of the job in the
current machine, the completion time of the first sub-lot
on the previous machine, and the difference between the
completion time of the whole job on the previous machine

and the total processing time of the whole job on the
preceding machine except the last sub-lot. This ensures that
there is no idling time between two adjacent sub-lots. The
last two directives of these equations calculate the completion
time for the first job.

The subsequent processing times of the following job
sequence are given in equations (12) and (13).

S (1, π1, 1) = s (1, πi, πi)
C (1, π1, l (π1)) = S (1, π1, 1) + l (π1)× P (1, π1)

(10)

S (w, π1, 1) = max


s (w, π1, π1) , S (w − 1, π1, 1) +

p (w − 1, π1) ,
C (k − 1, π1, l (π1))−

(l (π1)− 1)× P (1, π1)

 ,

C (w, π1, l (π1)) = S (w, π1, 1) + l (π1)× P (w, πi) ,
w = 2, 3, . . . ,m

(11)

S (1, π1, 1) = C (1, πi−1, l (πi−1)) + s (1, πi−1, πi) ,
C (1, π1, l (π1)) = S (1, π1, 1) + l (π1)× P (1, π1) ,

i = 2, 3, . . . , n
(12)

S (w, π1, 1) = max


S (w − 1, πi, 1) + P (w − 1, π1) ,
C (w − 1, π1, l (π1))−

(l (π1)− 1)× P (1, π1) ,
C (w − 1, πi−1, l (πi−1)) +

s (1, πi−1, πi)

 ,

i = 2, 3, . . . , n, w = 2, 3, . . . ,m
C (w, π1, l (π1)) = S (w, π1, 1) + l (π1)× P (w, πi) ,

i = 2, 3, . . . , n, w = 2, 3, . . . ,m
(13)

The makespan for the non-idling case can be then calcu-
lated as equation (14).

Cmax (π) = CT (m,πn, l (πn)) (14)

The objective of the lot-streaming flow shop scheduling
problem with makespan criterion is to find a permutation π∗

in the set of all permutations
∏

. It can be given as in the
equation (15) [30].

Cmax (π∗) ≤ Cmax (π) ,∀π ∈ Π (15)

VI. EXPERIMENTATION

In keeping with the theme of utilising the chaotic maps
in lieu of PRNG, the data sets have been generated using
two unique chaotic maps; the Lozi and the Dissipative map.
Five unique sizes of data sets have been generated. They
are from 10 jobs x 5 machines, 20 jobs x 10 machines, 50
jobs x 25 machines, 75 jobs x 30 machines and 100 jobs x
50 machines. There are 5 instances for each data set size,
therefore, in total 25 data set instances for each of the Lozi
and Dissipative data sets.

In order to have unique data sets, each instance was
initialised from a unique start position of the respective
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TABLE I
DABC OPERATING PARAMETERS

Parameter Value
Food Source (FS) 30
Limit (food source) 50
Loopmax (Local Search) 200
Local search probability (PL) 0.2
Neighbourhood List (NL) 20
Winning Neighbourhood List (WNL) 0.75 x NL
Iterations 100

chaotic system. Additionally, the map was not allowed to
be reinitialised. Two different maps were used in order to
gain more diversity, due to their different maps in the data
sets, and to remove any particular bias when using any one
system.

The datasets are available at [32] for download.
The operating parameters of CDABC are given in Table

I. All parameters were kept constant for all the experimenta-
tion, in order not to introduce a bias. All experiments were
conducted on the machine having Intel i7-3610QM CPU
processor running at 2.3GHz with 8GB of RAM. All codes
were written in the C programming language, compiled with
the gcc 4.6.2.

For each instance, fifteen (15) repeated experimentations
were conducted in order to obtain statistical variance. There-
fore, 375 individual experiments were conducted on the Lozi
and Dissipative data sets, a total of 750 experimentations.

The average results obtained by the fifteen experiments
are given in Table II for the Lozi data sets and Table III for
the Dissipative data sets.

From the average results for the Lozi data sets, Tinkerbell
has the lowest average values for 18 data instances. It also
has the lowest collective average value of 10241.89. The
second best performing variant is the Delayed Logistic with
10252.36 for the collective average value. Mersenne twister
is the fifth best performing variant with 10359.71.

As in the Lozi case, Tinkerbell and Delayed Logistic are
the two best performing variants in the Dissipative data sets.
Tinkerbell obtains 12 best results, whereas Delayed Logistic
obtains seven. For the collective average results, Tinkerbell
has 14058.66 compared to 14067.54 for the Delayed Logis-
tic. Once again Mersenne Twister is the fifth best performing
variant with the average of 14184.32.

VII. ANALYSIS

A. T-test analysis

From the experimentations, the top four performing
chaotic systems Tinkerbell, Delayed Logistics, Burgers and
Lozi together with the Mersenne Twister are compared
pairwise for their performance. From the results it is obvious
that the significant divergence of the results occurs from the
medium to large data sets, therefore a comprehensive t-test
analysis is conducted from the results of data set of instance
11 to instance 25. As mentioned, 15 experiments have been
conducted for each instance by each variant of the algorithm.

TABLE IV
LOZI T-TEST RESULTS

Tinkerbell DL Burgers Lozi
t p t p t p t p

DL 2.15 0.032 - - - - - -
Burgers 7.21 0.00 5.07 0.00 - - - -

Lozi 16.85 0.00 15.42 0.00 12.9 0.00 - -
MT 14.38 0.00 13.98 0.00 11.87 0.00 1.47 0.141

TABLE V
DISSIPATIVE T-TEST RESULTS

Tinkerbell DL Burgers Lozi
t p t p t p t p

DL 2.02 0.044 - - - - - -
Burgers 21.76 0.00 6.64 0.00 - - - -

Lozi 8.71 0.00 20.67 0.00 15.14 0.00 - -
MT 22.77 0.00 21.69 0.00 17.14 0.00 1.41 0.157

The t-test experiments takes all the 15 results for each
problem instance by the selected variant and conducts a
pairwise comparison. The t and p values for the paired t-
test are given in Table IV for the Lozi test instances and
Table V for the Dissipative test instances.

The t-tests were conducted at a 95% confidence level, so
all pairwise compared variants, which have a value of p of
less than 0.05 can be interpreted as being significantly differ-
ent from each other. From the obtained t-test results (Table
VI) all the variants are significantly different from each
other apart from Mersenne Twister and Lozi Map. Based on
these results, it can be inferred that the hierarchy of the five
best performing variants based on average performance are
Tinkerbell, Delayed Logistic, Burgers, Lozi and Mersenne
Twister for the Lozi data sets. For the Dissipative data sets
the best five variants are Tinkerbell, Delayed Logistic, Lozi,
Burgers and Mersenne Twister.

The basic premise of this research is therefore achieved as
it has been shown that a number of different chaotic systems
improves DABC, under the same operating parameters.

B. Comparison with Enhanced Differential Evolution

An algorithm comparison is done with the chaos driven
Enhanced Differential Evolution (EDEC) algorithm of [33].
EDE algorithm is an extension of the canonical DE algo-
rithm, with backward/forward transformation structure and
embedded local search. EDEC has been shown to signifi-
cantly improve upon EDE. The comparison between EDEC
and CDABC for the Lozi data sets is given in Table VII.
In this case, the Tinkerbell variant of CDABC (CDABCT) is
chosen as it is the best performing.

TABLE VI
COMBINED T-TEST RESULTS

Tinkerbell DL Burgers Lozi
D L D L D L D L

DL 6= 6= - - - - - -
Burgers 6= 6= 6= 6= - - - -

Lozi 6= 6= 6= 6= 6= 6= - -
MT 6= 6= 6= 6= 6= 6= = =

D = Dissipative data sets
L = Lozi data sets
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TABLE II
LOZI DATA SETS

MT Arnold Cat Burgers Delayed Logistic Dissipative Henon Ikeda Lozi Sinai Tinkerbell
∆avg ∆avg ∆avg ∆avg ∆avg ∆avg ∆avg ∆avg ∆avg ∆avg

1 541 541 541 541 541 541 541 541 541 541
2 430 430 430 430 430 430 430 430 430 430
3 502 502 502 502 502 502 502 502 502 502
4 551 551 551 551 551 551 551 551 551 551
5 531 531 531 531 531 531 531 531 531 531
6 1985.8 1997.067 1983.733 1983.2 1994.667 2000.6 1986.933 1986.333 1999.333 1983.333
7 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210
8 2105.2 2110.133 2104.533 2103.6 2108.467 2113.667 2105.667 2105.067 2111.133 2103.333
9 2174.267 2184.133 2168.2 2165.867 2179.2 2184.067 2172.067 2168.867 2185 2164.067

10 2043.667 2048.4 2042.6 2042.467 2047.8 2053.667 2044.6 2043.8 2049.667 2042.4
11 28976.867 29239.801 28701.334 28579.133 29114 29248 28977 28954.934 29273 28611.467
12 27658.133 27986.533 27440.467 27411.199 27951.199 28036.801 27639.801 27649.199 28109.867 27333.334
13 27985 28217.4 27846.268 27755.801 28144.867 28298.666 27999.801 27967.133 28302.268 27722.4
14 28839.801 29036.732 28418.732 28443.801 28997 29241.934 28751.801 28735.867 29135.732 28380.732
15 28803.801 29060.801 28564.867 28469.4 29039.467 29175.6 28799.732 28696.066 29198.934 28453.467
16 8409.134 8556.4 8372.533 8341.667 8541.333 8560.333 8462.066 8430.4 8567.134 8329.4
17 8301.733 8393.934 8226.667 8198.6 8362.267 8435.6 8292.866 8295.6 8416.6 8175.933
18 8446.733 8522.533 8391.533 8363.934 8521.134 8551.2 8471.467 8435.667 8568.2 8378.333
19 8176.933 8287.866 8118.933 8097.333 8261.533 8291 8212.2 8212.6 8286.467 8093.733
20 8045 8102.2 7954.267 7933.533 8085 8138.733 8035.4 8012.4 8116.8 7938.067
21 12225.733 12370.066 12115.934 12107.333 12307.4 12391.8 12218.066 12198.667 12408.267 12092.733
22 12306.533 12466 12234.934 12194.934 12415 12428.333 12335.134 12300.733 12486.6 12194.4
23 12364.4 12493.2 12244 12201.333 12470.733 12552.333 12356.467 12361.134 12520.066 12192.533
24 12319.6 12500.8 12240 12206.6 12436.6 12537.733 12383.934 12337 12518.733 12186.2
25 13059.533 13186.533 12971.066 12944.267 13154.467 13204.8 13105.866 13077.066 13239.934 12906.467

Average 10359.71 10461.02 10276.22 10252.36 10435.89 10488.39 10364.63 10349.34 10490.35 10241.89

TABLE III
DISSIPATIVE DATA SETS

MT Arnold Cat Burgers Delayed Logistic Dissipative Henon Ikeda Lozi Sinai Tinkerbell
∆avg ∆avg ∆avg ∆avg ∆avg ∆avg ∆avg ∆avg ∆avg ∆avg

1 701 701 701 701 701 701 701 701 701 701
2 621 621 621 621 621 621 621 621 621 621
3 769 769 769 769 769 769 769 769 769 769
4 743 743 743 743 743 743 743 743 743 743
5 691 691 691 691 691 691 691 691 691 691
6 2230 2230 2230 2230 2230 2230 2230 2230 2230 2230
7 2189.66 2212.93 2188.87 2189.73 2209.67 2217.07 2201.13 2199.93 2216.07 2188.73
8 2130.733 2133.467 2129.533 2128.667 2132.667 2134.467 2130.867 2130 2130 2128.867
9 2204.2 2215.533 2202.067 2200.067 2210.6 2224.667 2205 2205.6 2220.133 2200.2

10 2426.6 2439.73 2418.33 2416 2441.533 2447.333 2426.8 242.467 2441.6 2412.8
11 14677.333 14820.934 14601.4 14574.4 14799.467 14856.467 14703.934 14700.333 14839.8 14547.4
12 15626.2 15810.267 15569.134 15491.467 15762.733 15807.4 15679 15668.134 15806.667 15509.066
13 15115.533 15249.134 15055.134 15057.6 15209.866 15284.8 15158.134 15139.667 15268.733 15033.267
14 13565.934 13696.934 13472.533 13473.733 13656.134 13736.066 13578.467 13572.934 13710.2 13441.134
15 12959.6 13096.6 12914.866 12863.934 13068.866 13137.733 12998.467 13004.8 13123.467 12879
16 21409.934 21560.533 21255.268 21219.666 21512.334 21628.133 21420.666 21375.934 21612.334 21174.867
17 20869.666 21028.467 20723.934 20668.199 21009.467 21042 20895.6 20840.666 21091.867 20678.801
18 20698.801 20892.801 20542.934 20507.334 20775 20933.268 20696.4 20663.801 20886 20505.133
19 21009 21256.334 20875.934 20870.666 21195.867 21298.666 21056.934 21034.666 21335.066 20832.4
20 21074.467 21210.533 20917.334 20863.801 21198.666 21286.934 21062.732 21032.801 21276 20864
21 31887.133 32214.066 31735.533 31610.133 32144.066 32263 31937.934 31915.867 32257.268 31697.533
22 32409 32647.467 32193.467 32130.6 32610.268 32717.533 32418.6 32414.066 32743.334 32079.801
23 33096 33305.535 32833.867 32793.133 33255.066 33376.801 33100.266 33049.332 33446.934 32735.467
24 33999.734 34190.934 33798.602 33637.668 34253.066 34314.332 33996.801 33951.266 34318.734 33657.535
25 31503.334 31811 31282 31236.732 31719.334 31894 31550.334 31509.4 31842.4 31145.666

Average 14184.315 14301.928 14098.629 14067.542 14276.787 14334.227 14198.923 14096.266 14332.864 14058.666
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Four different parameters are presented; minimum, max-
imum, average and execution time for each instance class.
The instance class here refers to the grouping of the problems
according to size; 10 x 5, 20 x 10, 50 x 25, 75 x 30 and 100
x 50.

The parameter of most interest is the average, as it presents
the overall performance of the algorithm. CDABCT has three
better class averages of size 20 x 10, 50 x 25 and 100 x 50,
whereas EDEC performs better for the 10 x 5 and 75 x 30.
Also, EDEC has the better cumulative average of 10435.73
compared to 10917.93. However, it is quite obvious that the
bias of the 75 x 30 (8297.76 against 11561.49) data class
greatly influences the cumulative average in EDEC favour.

The comparison results between EDEC and CDABCT for
the Dissipative data sets are given in Table VIII. Apart from
the 10 x 5 data class, CDABCT obtains better results for
all the remaining data classes, in addition to the cumulative
average value of 14058.74 against 14152.97.

Therefore, it can be stated that CDABCT is a better
performing algorithm compared to EDEC for the non-idling
problem.

VIII. CONCLUSION

The main premise of this research is the application and
validation of chaos induced Discrete Artificial Bee Colony
algorithm. To this effect, nine unique chaotic systems have
been embedded in DABC and compared with the Mersenne
twister. The lot-streaming flowshop scheduling problem with
setup time has been used as the stock problem for this
validation process.

From the obtained results, the Tinkerbell variant has been
shown to be the best performing for both the Lozi and
Dissipative data sets. For the individual data instances, the
Tinkerbell variant obtains 18 better average results for the
Lozi data set and 12 for the Dissipative data set.

In terms of comparison between Tinkerbell and Mersenne
Twister, the twosided t-test pairwise comparison shows that
the two variants are significantly different with a 95% confi-
dence level. In fact, the top three performing algorithms are
significantly different from each other and Mersenne twister.

These obtained results lend weight to the argument that
using chaos maps as CPRNG’s in DABC significantly im-
proves its performance. This is in line with what has been
reported for other algorithms in recent literature.

Moreover, CDABCT has been compared with EDEC for
the non-idling lot streaming problem, and from the obtained
results, has shown to be better performing on the majority
of the data classes.

Therefore, it can be concluded that chaos variant of DABC
is a significant improvement of the canonical DABC of [4],
and has comparable performance with other algorithms in the
lot-streaming flowshop scheduling problem with setup time.

A future direction could be the application of parallel
processing of the bee hive, either using multi-core or GPU
based approach. The application of different chaos map in
different computing cores operating in parallel could provide

a better application for the CDABCT for different problem
classes.
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