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Abstract

Recognizing human facial expression and emotion
by computer is an interesting and challenging prob-
lem. In this paper we present a system for recogniz-
ing emotions through facial expressions displayed in
live video streams and video sequences. The system
is based on the Piecewise Bézier Volume Deforma-
tion tracker [18] and has been extended with a Haar
face detector to initially locate the human face au-
tomatically. Our experiments with Naive Bayes and
the Tree-Augmented-Naive Bayes (TAN) classifiers
in person-dependent and person-independent tests on
the Cohn-Kanade database [1] show that good classi-
fication results can be obtained for facial expression
recognition.

1 Introduction

Recently there has been a growing interest in improv-
ing the interaction between humans and computers.
It is argued that to achieve effective human-computer
intelligent interaction, there is a need for the com-
puter to interact naturally with the user, similar to
the way humans interact. Humans interact with each
other mostly through speech, but also through body
gestures to emphasize a certain part of speech and/or
display of emotions. Emotions are displayed by vi-
sual, vocal and other physiological means. There is
more and more evidence appearing that shows that
emotional skills are part of what is called ‘intelligence’
[8]. One of the most important ways for humans to
display emotions is through facial expressions. If we

want to achieve more effective human-computer in-
teraction, recognizing the emotional state of the hu-
man from his or her face could prove to be an invalu-
able tool.

This work describes a real-time automatic facial
expression recognition system using video or webcam
input. Our work focuses on initially detecting the hu-
man face in the video stream, on classifying the hu-
man emotion from facial features and on visualizing
the recognition results.

2 Related work

Since the early 1970s there have been extensive stud-
ies of human facial expressions. Ekman et al [4] found
evidence to support universality in facial expressions.
These ‘universal facial expressions’ are those repre-
senting happiness, sadness, anger, fear, surprise and
disgust. They studied expressions in many cultures,
including preliterate ones, and found much common-
ality in the expression and recognition of emotions
on the face. There are differences as well: Japanese,
for example, will suppress their real facial expressions
in the presence of the authorities. Babies appear to
exhibit a wide range of facial expressions without be-
ing taught; this suggests that these expressions are
innate [10].

Ekman developed a coding system for facial ex-
pressions where movements of the face are described
by a set of action units (AUs). Each AU has some re-
lated muscular basis. Many researchers were inspired
to use image and video processing to automatically
track facial features and then use them to categorize
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Figure 1: On the left the wireframe model and on the
right the facial motion units used in our face tracker.

the different expressions. Pantic and Rothkrantz [13]
provide an overview of recent research done in auto-
matic facial expression recognition. Overall the dif-
ferent approaches are similar in that they track facial
features using some model of image motion (optical
flow, DCT coefficients, etc). Based on the features a
classifier is trained. The main difference lies in the
set of features extracted from the video images and in
the classifier used (often-used classifiers are based on
Bayesian approaches or on hidden Markov models).
The classifiers used can either be ‘static’ classifiers
or dynamic ones. ‘Static’ classifiers use feature vec-
tors related to a single frame to perform classification,
while dynamic classifiers try to capture the temporal
pattern in the sequence of feature vectors related to
each frame.

The face tracking we use in our system is based
on an incomplete version of the system used in [3].
This system in turn was based on a system developed
by Tao and Huang [18] called the Piecewise Bézier
Volume Deformation (PBVD) tracker.

This face tracker constructs an explicit 3D wire-
frame model of the face. In the first frame of the
image sequence, landmark facial features such as the
eye corners and mouth corners need to be selected by
hand. The generic face model consists of 16 surface
patches embedded in Bézier volumes and is warped
to fit the selected facial features. The surface patches
are guaranteed to be continuous and smooth. Once
the model is constructed and fitted, head motion and

local deformations of the facial features such as the
eyebrows, eyelids, and mouth can be tracked. First
the 2D image motions are measured using template
matching between frames at different resolutions. Im-
age templates from the previous frame and from the
very first frame are both used for more robust track-
ing. The measured 2D image motions are modelled
as projections of the true 3D motions onto the im-
age plane. From the 2D motions of several points
on the mesh, the 3D motion can be estimated. Fig-
ure 1 shows an example of one frame with the wire-
frame model overlayed on the face being tracked. The
recovered motions are represented in terms of mag-
nitudes of some predefined motion of various facial
features. Each feature motion corresponds to a sim-
ple deformation on the face, defined in terms of the
Bézier volume control parameters. We refer to these
motions vectors as Motion-Units (MU’s). Note that
they are similar but not equivalent to the AUs of Ek-
man. The MU’s used in the face tracker are shown
in figure 1 on the right and are described in Table 1.
These MU’s are the features we use as input to our
classifiers described in later sections.

AU Description
1 vertical movement of the center of upper lip
2 vertical movement of the center of lower lip
3 horizontal movement of left mouth corner
4 vertical movement of left mouth corner
5 horizontal movement of right mouth corner
6 vertical movement of right mouth corner
7 vertical movement of right brow
8 vertical movement of left brow
9 lifting of right cheek
10 lifting of left cheek
11 blinking of right eye
12 blinking of left eye

Table 1: Motion units used in our face tracker.

3 Classifiers

Naive Bayes classifiers are popular due to their sim-
plicity and their success in past applications. The
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simplicity of a naive Bayes classifier stems from its in-
dependence assumption, which assumes that features
are uncorrelated. Thus their joint probability can be
expressed as a product of their individual probabili-
ties. As in any classification problem we would like
to assign a class label c to an observed feature vector
X with n dimensions (features). The optimal clas-
sification rule under the maximum likelihood (ML)
framework to classify an observed feature vector of
n dimensions, X ∈ Rn, to one of |C| class labels,
c ∈ {1, ..., |C|}, is given as:

ĉ = argmaxcP (X|c; Θ). (1)

where Θ is the set of parameters that need to be
learned for the classifier. Given the naive Bayes as-
sumption, the conditional probability of X given a
class label c is defined as:

P (X|c; Θ) =
n∏

i=1

P (xi|c; Θ). (2)

Having a continuous feature space - which is true
in our case - the conditional probabilities for each
feature can be modelled as probability distribution
functions. The Gaussian distribution is most com-
monly used and ML methods are used to estimate its
parameters. For a naive Bayes classifier we have to
learn a distribution for each feature, but since we are
dealing with only one dimension, the parameters for
the Gaussian distribution (mean and variance) can
easily be calculated.

However, assuming Gaussian distributions is not
always accurate and thus the Cauchy distribution was
proposed as an alternative by Sebe et al [17]. While
it can give better classification results in some cases,
its main drawback is that its parameters are much
more difficult to estimate.

Despite the seemingly weak independence assump-
tion of the naive Bayes classifier, it normally gives
surprisingly good results. Recent studies [5, 7] also
give some theoretical explanation for this success.
Nevertheless, in cases were there are dependencies
among features, the naive Bayes model certainly gives
a sub-optimal solution. In our scenario it is feasible
to assume some dependence between features due to
the anatomic structure of the face. Hence we should

attempt to also find these dependencies and model
their joint distributions. Bayesian networks are an
intuitive and efficient way to model such joint distri-
butions, and they are also suitable for classification.
In fact, the naive Bayes model is actually an extreme
case of a Bayesian network where all nodes are only
connected to the class node (i.e. there are no depen-
dencies between features modelled).

A Bayesian network consists of a directed acyclic
graph in which every node is associated with a vari-
able Xi and with a conditional distribution P (Xi|Πi),
where Πi denotes the parents of Xi in the graph. The
joint probability distribution is then defined as:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|Πi)

One of the important aspects when designing a
Bayesian network classifier is choosing the right struc-
ture for the network graph. Choosing a wrong struc-
ture can have dire effects on the classification re-
sults. When the structure of the Bayesian network
is unknown or uncertain, as it is the case here, it
is better to learn the optimal structure using ML.
However, this requires searching through all possi-
ble structures, i.e. all possible dependencies among
features, which is a NP-complete problem. Thus we
should restrict ourselves to a smaller class of struc-
tures to make the problem tractable. One such class
of structures was proposed by Friedman et al [6] and
is referred to as the Tree-Augmented-Naive Bayes
(TAN) classifier. TAN classifiers have the advantage
that there exists an efficient algorithm [2] to compute
the optimal TAN model.

TAN classifiers are a subclass of Bayesian network
classifiers where the class node has no parents and
each feature has a parent the class node and at most
one other feature. To learn its exact structure, a
modified Chow-Liu algorithm [2] for constructing tree
augmented Bayesian networks [6] is used.

Essentially the algorithm builds a maximum
weighted spanning tree between the feature nodes.
As weights of the arcs the pairwise class-conditional
mutual information among the features is used. The
resultant graph of the algorithm is a tree including all
feature pairs that maximizes the sum of the weights
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of the arcs. To make the undirected tree a directed
graph, a root node is chosen and all edges are made
to point away from the root node. Then the class
node is made parent node of all features to construct
the final TAN. The detailed algorithm and the algo-
rithm used to compute the maximum spanning tree
can be found in [3].

The last step is to compute the joint distributions
of the nodes. Again Gaussian distributions are used
and estimated using ML techniques. This is essen-
tially the same as for the naive Bayes classifier, only
that now we need to compute additional covariance
parameters.

Our project aims to design a dynamic classifier for
facial expressions, which means also taking tempo-
ral patterns into account. To classify an emotion not
only the current video frame is used, but also past
video frames. While [3] proposes a multi-level Hid-
den Markov Model based classifier, the current imple-
mentation only takes temporal patterns into account
by averaging classification results over a set number
of past frames. We do not discuss dynamic classifiers
and the proposed Hidden Markov Model further, be-
cause we did not work on extending the system in
this direction.

4 Face detection

As we described in section 2, the existing system re-
quired placing all marker points on landmark facial
features manually. To automate this, we want to de-
tect the initial location of the human face automat-
ically and use this information to place the marker
points near their landmark features. We do this by
placing a scaled version of the landmark model of the
face on the detected face location.

As our face detector, we chose a fast and robust
classifier proposed by Viola and Jones [19] and im-
proved by Lienhart et al [11, 12]. Their algorithm
makes three main contributions:

• The use of integral images.

• A selection of features through a boosting algo-
rithm (Adaboost)

Figure 2: Haar features.

• A method to combine simple classifiers in a cas-
cade structure

4.1 Integral Images

Analyzing images is not an easy task. Using just the
pixel information can be useful in some fields (i.e.
movement detection) but is in general not enough to
recognize a known object. In 1998, Papageorgiou et
al [14] proposed a method to analyze image features
using a subgroup of Haar-like features, derived from
the Haar transforms. This subgroup was extended
later by Lienhart et al [11] to also detect small ro-
tations of the sought-after object. The basic classi-
fiers are decision-tree classifiers with at least 2 leaves.
Haar-like features are the input to the basic classifiers
and are calculated as described below. The algorithm
we are describing uses the Haar-like features shown
in figure 2.

The feature used in a particular classifier is spec-
ified by its shape (1a, 2b, etc), position within the
region of interest and the scale (this scale is not the
same as the scale used at the detection stage, though
these two scales are multiplied). For example, in case
of the third line feature (2c) the response is calculated
as the difference between the sum of image pixels un-
der the rectangle covering the whole feature (includ-
ing the two white stripes and the black stripe in the
middle) and the sum of the image pixels under the
black stripe multiplied by 3 in order to compensate
for the differences in the size of areas. Calculating
sums of pixels over rectangular regions can be very
expensive in computational terms, but this problem
can be solved by using an intermediate representation
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Figure 3: Calculation of the rectangular regions.

of the images, namely integral images.
Those intermediate images are easily generated by

the cumulative sums of the original image’s pixels:
every pixel of the integral image ii(x, y) corresponds
to the sum of all the pixels in the original image i
from i(0, 0) to i(x′, y′).

ii(x, y) =
∑

x′≤x,y′≤y i(x′, y′)

Using recursive formulas, it is possible to gener-
ate an integral image from an original with a single
computational step:

s(x, y) = s(x, y − 1) + i(x, y)

ii(x, y) = ii(x − 1, y) + s(x, y)

where s(x, y) is the cumulative sum of the row.
Once an integral image is generated, it is rather

easy to calculate the sum of pixels under an arbitrary
rectangular region D using the values of points 1, 2,
3 and 4. This is illustrated in figure 3.

In fact, the value of point 1 is the cumulative sum
of A, point 2 is the cumulative sum of A+B, point 3
is A + C and point 4 is A + B + C + D. Since we are
looking for the value of D, we should subtract from
the value of point 4 the value of point 3 and the value
of point 2, and add the value of point 1 since it was
subtracted twice during the previous operation.

4.2 Feature selection using Adaboost

Proposed by Schapire [15, 16], the Adaboost algo-
rithm is used to ‘boost’ the performance of a learning
algorithm. In this case, the algorithm is used both to
train the classifiers and to analyze the input image.

Figure 4: First two iterations of Adaboost.

In a 24x24 pixel image, there are over 180.000 Haar-
like features that can be detected, a lot more than the
number of pixel in the image (576). In case we are
dealing with a bigger image, the number should be
multiplied for all the sub-windows of 24 pixels in the
image. The computational cost of this operation is
clearly prohibitive. Instead, Adaboost is used to se-
lect which of the features are actually relevant for the
sought-after object, drastically reducing the number
of features to be analyzed. In every iteration, Ad-
aboost chooses the most characterizing feature in the
entire training set from the 180.000 features possible
in every image.

The first two selected feature are displayed in figure
4: it is clear that the most discriminative feature is
the difference between the line of the eyes and the
surrounding; for a face the surroundings are lighter
than the eyes themselves. The second feature selected
is the difference in tonality between the eyes and the
nose; the nose is also lighter when compared to the
area of the eyes. The algorithm will continue to select
good features that can be combined in a classifier.

4.3 Cascade of classifiers

Every step, a simple classifier (also called weak be-
cause of their low discriminative power) is built. The
combination of all the weak classifiers will form a
strong classifier that can recognize any kind of ob-
ject it was trained with. The problem is to search
for this particular sized window over the full pic-
ture, applying the sequence of weak classifiers on ev-
ery sub-window of the picture. Viola and Jones [19]
used a cascade of classifiers (see figure 5) to tackle
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Figure 5: Cascade of classifiers.

this problem: the first classifier (the most discrimi-
native) is applied to all the sub-windows of the im-
age, and at different scale. The second classifier will
be applied only to the sub-windows in which the first
classifier succeeded. The cascade continues, applying
all the weak classifiers and discarding the negative
sub-windows, concentrating the computational power
only on the promising areas.

5 Implementation

When studying the incomplete existing implementa-
tion we received, we decided to remove the outdated
parts and to change the program structure to be able
to create a distributable package, executable by a
normal user without Visual C++ and the required
libraries installed. Minor code cleaning and bugfix-
ing was performed all over the source code.

Another big change was in the source of the input
videos, which supported only AVI movies and Ma-
trox cameras. We implemented a new class based
on the OpenCV library [9] which uses the same code
to read from any kind of movie file and virtually all
cameras supporting computer attachment. It is now
possible to select the camera’s options directly and
record the video stream directly from the emotion
fitting program. On the interface, new buttons were
added to control the new options, while the old ones
were debugged and restyled in a modern look.

As stated in the introduction, our main contribu-
tion is the inclusion of a face detector through the

Figure 6: Bars visualization of the probabilities for
each emotion.

OpenCV library: we used it to snap the position and
the scale of the markers to the position and scale of
the user’s face, and most importantly to reinitialize
the position of the mesh when the face was lost during
the emotion fitting. This contribution made the pro-
gram more usable and robust, introducing brief errors
only in some cases of occlusion or fast movements of
the user. Furthermore, the communication between
the video program and the classifier program was re-
implemented to reduce the delay that were previously
introduced by establishing a new connection for every
image frame.

5.1 Visualization

For the visualization of the emotions we chose two dif-
ferent forms. The first uses the sizes of bars to display
the emotion and the second uses a circle. Every emo-
tion has a different color. For example happy has the
color green due to the fact that green is generally con-
sidered a ‘positive color’ and angry has the color red
because red is generally considered a ‘negative color’.
For clarity we also write the emotion and correspond-
ing probability percentage in the mood window. The
mood with highest probability is also written sepa-
rately. In the mood window there are two combo
boxes at the bottom. In these combo boxes there is
the possibility of choosing the visualization type and
the classifier. Figure 6 shows the bars visualization.
If the program is 100% sure that we have a certain
emotion, then the width of the bar will correspond to
the full width of the window.

Figure 7 shows the circle visualization. The edge
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Figure 7: Circle visualization of the probabilities for
each emotion

of the circle is a classification of 100% of the emo-
tion. So if the dots get closer to the edge the higher
the probability of the emotion. The center of the
circle corresponds to neutral. The current mood is
displayed on the top of the window.

6 Evaluation

We ran several test to evaluate the performance of
the emotion detector. Note that our changes, fixes
and new implementation of classifiers should not alter
the previously reported results [3]. The aim of our
experiments is thus getting a second set of results for
comparison purposes.

6.1 Dataset

Our dataset is the Cohn-Kanade database [1], which
contains 52 different people expressing 7 emotions.
These emotions are: neutral, happy, surprised, an-
gry, disgusted, afraid and sad. For every person sev-
eral videos are available. Every video starts with the
neutral expression and then shows an emotion. Each
frame of every video is labelled with the correspond-
ing emotion. For some people in the database, not
all emotions are available.

6.2 Experiments

For each classifier we performed person dependent
and person independent test. The training set for

person independent tests contains samples from sev-
eral people displaying all seven emotions. A sample
consists of a single labelled frame from a video. The
test set is a disjoint set with samples from other peo-
ple. On the other hand, in person dependent tests
the training set contains samples from just a single
person. It is then evaluated on a disjoint test set
containing only samples from the same person.

6.3 Results

First we examined the performance of our implemen-
tation of a Naive Bayes classifier. We divided the
data into three equal parts, from which we used two
parts for training and one part for testing. Results
are averaged over the three different combinations
of test/training set possible. This is also known as
cross-validation. The confusion matrix of the person
independent test is shown in table 2. The confusion
matrix for the TAN classifier, using the same training
and test sets, is shown in table 3.

In person dependent tests the classifier is trained
and evaluated using data from only a single person.
All samples for a person are again split in three equal
parts for cross-validation. We did this for five people
and averaged the results to obtain the confusion ma-
trix. The confusion matrix of the person dependent
test is shown in table 4. The confusion matrix for
the TAN classifier using the same people is shown in
table 5.

As can be seen in the confusion matrices the results
of classifying the emotion in the person dependent
tests are better (for NB 64,3% compared to 93,2%
and for TAN 53,8% compared to 62,1%) than the
person independent tests. This result is of course
intuitively correct, because the classifier was trained
specifically for that person, so it should perform quite
well when the test set is also from that same person.

Our results very clearly do not correspond to pre-
viously reported results by Cohen et al [3]. Sur-
prisingly our Naive Bayes classifier outperforms the
TAN classifier. Our Naive Bayes classifier gives the
same results as reported in literature. The TAN clas-
sifier, however, performed significantly worse. We
presume this is caused by an incorrectly learned de-
pendency structure for the TAN model. Investigat-
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Neutral Happy Surprised Angry Disgusted Afraid Sad
Neutral 82.34 1.89 1.76 1.78 0.89 3.74 7.60
Happy 2.17 74.17 0.42 1.95 3.81 14.85 2.63
Surprised 2.16 0.00 90.08 1.35 0.00 1.60 4.81
Angry 8.01 5.43 0.31 55.28 20.96 3.60 6.42
Disgusted 6.12 8.66 3.76 23.76 46.54 6.93 4.24
Afraid 4.15 20.52 12.91 0.08 1.66 57.47 3.22
Sad 22.46 2.82 15.26 7.95 6.17 1.38 43.96

Table 2: Confusion matrix for the naive Bayes classifier in person independent tests. The rows represent
the emotion expressed and the columns represent the emotion classified. Average accuracy is 64.3%. Rows
represent the true emotion, while columns represent the detected emotion.

Neutral Happy Surprised Angry Disgusted Afraid Sad
Neutral 87.35 1.49 1.66 2.51 0.37 2.58 4.04
Happy 6.63 63.98 2.04 2.42 5.31 14.05 5.57
Surprised 3.90 0.00 80.97 1.82 0.74 2.29 10.28
Angry 17.93 6.43 4.25 36.32 15.72 9.94 9.40
Disgusted 9.33 9.18 4.11 25.45 37.07 7.68 7.19
Afraid 11.76 22.47 10.92 4.89 5.75 37.08 7.13
Sad 21.14 9.10 11.24 9.09 5.71 9.82 33.90

Table 3: Confusion matrix for the naive TAN classifier in person independent tests. Average accuracy is
53.8%.

ing the learned dependencies, we found them to dis-
agree greatly with the ones reported by Cohen et al.
While they reported mostly horizontal dependencies
between the features on the face, our structure con-
tains many vertical dependencies. This could be a
bug in our implementation of the TAN classifier.

Another possible explanation is that the TAN clas-
sifier lacks enough training data to be effectively
trained. This often happens with more complex clas-
sifiers, because they need to estimate more classifier
parameters from the same amount of data.

Looking for patterns in the confusion matrices, we
see that the ‘positive’ emotions happy and surprised
are recognized very well; these are very pronounced
emotions. It holds for all emotions that when they
are not pronounced enough, they can be misclassified
as neutral instead of the correct emotion. Happy is
confused most often with afraid, and the converse
also holds. Analysis shows that people who are afraid

tend to open their mouth a bit and the mouth corners
are up a bit. When looking at just a single frame, it
is very hard to distinguish these two emotions. We
can make a similar point for anger and disgust: both
curve the mouth downward, though people tend to
open their mouth a bit with disgust and close it when
they are angry.

An interesting emotion is fear (afraid), as it can be
misclassified as surprise quite often, while the con-
verse seldomly happens. We think that these emo-
tions are very similar in their expression (e.g. ‘close’
to each other) but that surprise has a very specific
expression (little variation in the expression), mak-
ing it easy to recognize. Fear, however, probably has
a range of forms it can take and we think that sur-
prise may be positioned in-between these forms. The
main confusion for fear is happiness; again in this con-
fusion the mouth movement is similar, but for these
two emotions also the eyebrows also tend to be raised
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Neutral Happy Surprised Angry Disgusted Afraid Sad
Neutral 88.17 2.62 1.83 1.47 2.29 0.56 3.07
Happy 2.22 95.16 0.00 0.00 0.00 2.62 0.00
Surprised 0.00 0.00 100.00 0.00 0.00 0.00 0.00
Angry 1.67 0.00 0.00 98.33 0.00 0.00 0.00
Disgusted 10.00 2.22 0.00 4.44 81.11 0.00 2.22
Afraid 3.56 0.00 0.00 0.00 0.00 94.22 2.22
Sad 4.44 0.00 0.00 0.00 0.00 0.00 95.56

Table 4: Confusion matrix for the naive Bayes classifier in person dependent tests. Average accuracy is
93.2%. Rows represent the true emotion, while columns represent the detected emotion. Results averaged
over 5 people.

Neutral Happy Surprised Angry Disgusted Afraid Sad
Neutral 95.26 0.42 0.39 2.09 0.00 0.00 1.84
Happy 20.56 56.98 2.50 11.35 0.00 5.28 3.33
Surprised 12.62 1.11 73.60 8.78 0.00 2.22 1.67
Angry 15.78 2.78 0.00 79.22 0.00 0.00 2.22
Disgusted 27.78 7.78 2.22 18.89 33.33 2.22 7.78
Afraid 30.22 11.00 0.00 9.33 2.22 41.67 5.56
Sad 35.11 0.00 4.44 4.44 1.33 0.00 54.67

Table 5: Confusion matrix for the naive TAN classifier in person independent tests. Average accuracy is
62.1%. Results averaged over 5 people.

a bit. Discriminating these two emotions manually
from a single frame ourselves is hard, so this makes
sense.

7 Conclusion

We significantly improved the usability and user-
friendliness of the existing facial tracker, extending it
with automatic face positioning, emotion classifiers
and visualization. Our Naive Bayes emotion classi-
fier performs quite well. The performance of our TAN
classifier is not up to par with existing research. The
classifier either lacks enough training data, or has an
implementation problem.

We believe that additional improvements to the
system are possible. First of all we could use special-
ized classifiers to detect specific emotions, and com-
bine them to improve the classification performance.

Furthermore, the current classifier shows a strange
behavior when readapting the mask after it loses it,
due a continuous classification of the deformations.
Those deformations are artificial and generated dur-
ing the re-adaptation step and should not be con-
sidered for classification, so classification should be
interrupted during mesh repositioning. Another im-
portant step is to make the system more robust to
lighting conditions and partial occlusions. In fact,
the face detector will work only if all the features
from the face are visible and won’t work if the face
is partially occluded or not in a good lighting con-
dition. Finally, the system should be more person
independent: with the current implementation, the
system requires markers to let the user select the im-
portant feature of the face. This should be trans-
parent to the user, using the face detector to localize
the position and the scale of the face and sequentially
apply another algorithm to adjust those markers to
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the current face. In this way, there will be no need
for markers anymore and the system could be used
by any user, without any intervention. With these
improvements, this application could be applied to
real-life applications such as games, chat programs,
virtual avatars, interactive TV and other new forms
of human-computer interaction.
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