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Abstract

We address the problem of determining the home positions for m automated guided vehicles (AGVs) in a loop layout

where n pickup points are positioned along the circumference �m < n�. A home position is the location where idle AGVs

are held until they are assigned to the next transportation task. The home positions need to be selected so as to minimize

an objective function of the response times, where the response time for a pickup point is de®ned as the travel time to

the pickup point from the nearest home location.

For the unidirectional ¯ow system, where all AGVs can move in one direction only, we ®rst point out that the

problem of minimizing an arbitrary regular cost function can quite straightforwardly be solved in O�n2� time if m � 1

and in O�mnm� time if m P 2, which is polynomial for a ®xed number m of AGVs. For m P 3, we can do better,

however: we derive a generic O�mn3� time and O�mn� space dynamic programming algorithm for minimizing any

regular function of the response times. For minimizing maximum response time a further gain in e�ciency is possible:

this problem can be solved in O�n2� time if m � 2 and O�n2 log n� time if m P 3. Our results improve on earlier pub-

lished work, where it was suggested that problems with m P 2 are NP-hard.

For the bidirectional ¯ow system, where the AGVs can move in both directions, the problem of determining the

home locations is inherently much more di�cult. Important objective functions like average response time and max-

imum response time can nonetheless still be minimized by the same types of algorithms and in the same amount of time

as their unidirectional counterparts, once restrictive conditions apply such that the case m � 1 can be solved in poly-

nomial time. One such restrictive condition is that each AGV travels at constant speed. Ó 2000 Elsevier Science B.V.

All rights reserved.
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1. Introduction

Material handling is a signi®cant part of the
manufacturing process, both in terms of cost
(Allegri, 1994; Tompkins and White, 1984) and
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time. Indeed, the processing time of a typical job is
only 5% of the manufacturing leadtime (Han and
McGinnis, 1989); the remainder of the leadtime is
spent in storage and in transportation by a mate-
rial handling system.

Technological progress in hardware and soft-
ware has led to the replacement of many conven-
tional non-automated material handling systems,
such as forklifts and rolling carts, with automated
material handling systems, such as conveyor belts
and automated guided vehicle systems. The task of
automated guided vehicles (AGVs) is to pick up
parts or items at certain points, usually storage
depots and shop ¯oor workstations, and to drop
them o� at others. AGV systems o�er several ad-
vantages over conveyor belts and forklifts, such as
higher ¯exibility, less space utilization, more safety
and lower operating costs. The investment costs of
AGV systems are relatively high, however, and the
investment seems to be worthwhile only if the
system is used intensively and e�ciently (Ganes-
harajah et al., 1997).

The performance of an AGV system is gener-
ally a decreasing function of the service time, that
is, the time between the time that a part becomes
available for transportation and the delivery time.
The service time consists accordingly of two
components: waiting time and the travel time be-
tween the pickup point and the delivery point. In
addition to AGV technology, various tactical de-
sign and operational control issues a�ect the per-
formance of the system, including the design of the
path layout, the location of pickup and delivery
points, the number of AGVs in the system, and the
scheduling and routing of the AGVs. We refer to
Co and Tanchoco (1991), King and Wilson (1991),
Johnson and Brandeau (1996) and Ganesharajah
et al. (1997) for an overview and discussion of the
various issues.

The topic of this paper is one such operational
issue: the positioning of idle AGVs in a loop
layout. AGV idleness is unavoidable when an
AGV delivers a part and there is no pickup re-
quest to which the AGV can be assigned next. The
positions of idle AGVs thus a�ect the empty
travel times to the pickup points, and as such play
a role in the waiting time of the parts. Accord-
ingly, a clever positioning of idle AGVs may im-

prove the performance of an AGV system. A loop
layout is a single circuit where the pickup and
delivery points are positioned along the circum-
ference. It is an important practical layout: it of-
fers greater e�ciency and ¯exibility than a single
line layout and is simple enough to avoid AGV
interference problems and shop locking problems,
which often occur in complex layouts (Egbelu and
Tanchoco, 1984; Kusiak, 1985; Ganesharajah
et al., 1997). Furthermore, loop layouts also form
the components of so-called tandem loops of tan-
dem con®gurations, which are suitable for more
complex shop ¯oor layouts (Bozer and Srinivasan,
1991, 1992).

The problem of positioning idle AGVs in a loop
layout was ®rst studied by Egbelu (1993), who
suggested that the following three objectives may
be used to determine the home locations of idle
AGVs:
· minimizing the maximum response time of any

pickup point, where the response time for a pick-
up point is the empty travel time from the near-
est home location;

· minimizing the average response time;
· distributing the idle vehicles evenly in the net-

work.
More speci®cally, Egbelu (1993) considered the

problem of determining the home locations of m
AGVs in a loop layout with n pickup points to
minimize the ®rst objective, that is, to minimize the
maximum response time. He di�erentiated be-
tween two types of loop layouts: those with a
unidirectional ¯ow system, where all AGVs move
in one and the same direction; and those with a
bidirectional ¯ow system, where the AGVs can
travel in both directions. Furthermore, he com-
mented on the practical complications of multi-
AGV bidirectional ¯ow systems, as AGVs moving
in opposite directions may give serious interference
and control problems.

Egbelu (1993) showed that the problem of
minimizing maximum response time is solvable in
polynomial time in case of a single AGV �m � 1�,
both in case of a unidirectional and a bidirectional
¯ow system. He suggested that the problem is NP-
hard if m P 2 for either type of system. For the
multi-AGV unidirectional problem, he gave an
integer non-linear programming formulation and
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presented a heuristic for its solution. For the bi-
direction problem, he proposed two heuristics.

Kim (1995) considered the problem of posi-
tioning a single idle AGV to minimize the average
response time. He showed that both the static
version of the problem, in which m � 1, as well as
a speci®c dynamic version of the problem, where
mÿ 1 AGVs have already been located, can be
solved quite straightforwardly in O�n2� time.

In this article, we establish that the problems of
minimizing maximum response time and mini-
mizing average response time are solvable in
polynomial time for any number of AGVs, in ei-
ther type of ¯ow system, thereby refuting Egbelu's
suggestion that these problems are NP-hard if
m P 2.

More speci®cally, our contribution is as fol-
lows. For the unidirectional ¯ow system, we ®rst
point out in Section 3.1 a property of a class of
optimal solutions for minimizing an arbitrary
regular function of the response times and observe
that as a result of this property any such function
can quite straightforwardly be minimized in O�n2�
time if m � 1 and in O�mnm� time if m P 2, which is
polynomial when m is ®xed. We call a response
function regular if it is non-decreasing in the re-
sponse times.

We can do better for m P 3, however. In Sec-
tion 3.2, we derive a generic O�mn3� time and
O�mn� space dynamic programming algorithm for
minimizing any regular function of the response
times. A still further gain is possible for minimiz-
ing maximum response time. In Section 3.3, we
show that this problem is solvable in O�n2 log n�
time for m P 3.

The bidirectional ¯ow system is addressed in
Section 4. First of all, it appears that in general it is
not possible to determine the optimal home loca-
tions in polynomial time, even if m � 1. However,
in speci®c situations where there is a polynomial
subroutine for solving the case m � 1, any regular
function of the response times can still be mini-
mized in polynomial time by the same type of al-
gorithm as its unidirectional counterpart by calling
this subroutine a polynomial number of times. All
AGVs traveling at constant speed is one such a
speci®c situation. Indeed, in this case, average re-
sponse time can still be minimized in O�mn3� time

and O�mn� space and maximum response time can
still be minimized in O�n2 log n� time.

Section 5 concludes our paper with some ®nal
remarks. Before we proceed to the heart of the
paper, however, Section 2 presents a formal
problem description, the notation used, and the
assumptions made.

2. Problem description, notation, and assumptions

In this paper, we address the problem of de-
termining the home locations of m AGVs circu-
lating in a loop layout with n pickup and delivery
points. To avoid trivialities, assume that n > m
and that all pickup points are distinct.

Without loss of generality, assume that the n
pickup points have been consecutively numbered
in the clockwise direction. It is immaterial at which
pickup point the numbering was started. For
matter of notational convenience, we also intro-
duce pickup points 0 and n� 1 and let by de®ni-
tion pickup point 0 be equal to pickup point n and
pickup point n� 1 be equal to pickup point 1. Let
tij denote the travel time between pickup points i
and j �i � 1; . . . ; n; j � 1; . . . ; n�. By default, let
tii � 0 for i � 1; . . . ; n.

Let q be the number of distinct positive travel
times. Note that q6 n�nÿ 1�. Furthermore, let t�k�
denote the kth smallest of these distinct travel
times �k � 1; . . . ; q�. Accordingly, t�k� corresponds
to the travel time between at least one pair of
pickup points, say, �sk; ek� �k � 1; . . . ; q�. If t�k�
corresponds to more than one pair, then without
loss of generality we let �sk; ek� be the pair of
pickup points that corresponds to the lexico-
graphical minimum.

Note that we require no explicit knowledge of
and make no restrictive assumptions about the
accelerating, decelerating, and traveling speeds of
the AGVs and the distances between the pickup
points ± we assume that they have been used in a
preprocessing phase to compute the traveling times
tij �i � 1; . . . ; n; j � 1; . . . ; n�.

Any positioning x of the AGVs speci®es for
each pickup point j �j � 1; . . . ; n� a response time
Tj�x�, which is de®ned as the travel time from the
nearest home location. The home location of an
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AGV does not necessarily have to be one of the
pickup points. When there is no ambiguity, Tj�x�
is abbreviated to Tj �j � 1; . . . ; n�. Each pickup
point j �j � 1; . . . ; n� has a response cost function
fj, where fj�t� denotes the cost incurred if the re-
sponse time for pickup point j is equal to t. We
consider only regular cost functions, i.e.,
throughout it is assumed that each fj�t� is a non-
decreasing function of t, for j � 1; . . . ; n.

Furthermore, like Egbelu (1993), we address
only the static variant of the problem, in which all
m AGVs are idle at the same time and no pickup
requests are available. This variant is relevant, for
instance, for single shift operations, where the
AGVs need to be strategically positioned at the
beginning of the shift, or for situations in which all
AGVs are idle from time to time. In dynamic
variants of the problem, some AGVs are idle at
their home locations, some are idle and on the way
to pickup a request, while the rest are busy
transporting items. These variants can be de®ned
in di�erent ways and lead to di�erent optimization
problems. The dynamic variant considered by Kim
(1995) can be reduced to the static variant, and for
this type of dynamic variant our results are of di-
rect use. For more complicated dynamic variants,
however, it seems that a stochastic optimization
approach is required.

Not only do we consider the static variant, we
also assume to have no deterministic knowledge
about future tasks, when and where they will arise.
Under this assumption, it may be possible, how-
ever, that we know the probability Pj P 0 that the
next task is issued by the pickup station j
�j � 1; . . . ; n�.

The objective is to minimize the response cost,
measured either by a regular minmax objective
function fmax � max16 j6 nffj�Tj�g, or by a regular
minsum objective function

Pn
j�1 fj �

Pn
j�1 fj�Tj�.

Important regular objective functions that we
consider explicitly are the maximum response time
Tmax, de®ned as Tmax � max16 j6 nfTjg, and average
response time T , de®ned as T � �1=n�Pn

j�1 Tj ±
note that these objective functions were studied by
Egbelu (1993) and Kim (1995). In case we know
the probabilities Pj �j � 1; . . . ; n�, then relevant
objective functions are expected maximum response
time and expected average response time. They are

in fact special cases of regular minmax and min-
sum objective functions, however, and for this
reason we will not consider them explicitly.

3. The unidirectional ¯ow system

3.1. Preliminaries

For minimizing the maximum response time,
Egbelu (1993) observes that there exists an optimal
solution in which the home positions of the AGVs
coincide with m distinct pickup points. This ob-
servation, however, applies to any regular function
of the response times. To see this, consider any
optimal solution in which some AGV is located in
between two pickup points, say, j and j� 1 ± be-
cause of unidirectionality, relocating this AGV to
pickup point j� 1 will de®nitely improve the re-
sponse time of this AGV, and hence never decrease
the objective function value. Furthermore, con-
sider any optimal solution in which two or more
AGVs are positioned at the same pickup point.
Relocating one of them to a pickup point where no
AGV is stationed will never decrease the objective
function value.

For the special case m � 1, we can accordingly
minimize any regular function of the response
times in O�n2� time by evaluating the objective
function for all possible n home locations. For
m P 2, the above property implies that we may
restrict ourselves in our search for an optimal so-
lution to all positionings x that can be represented
by a string of m pickup points �w1;w2; . . . ;wm�
with wi < wi�1 for i � 1; . . . ;m. We say then that
the AGV positioned at pickup point wi

�i � 1; . . . ;m� covers the zone from wi up to and
including wi�1 ÿ 1. For any given assignment x of
AGVs to pickup points, we can compute the ob-
jective function value in only O�m� time, if we have
evaluated and stored the partial sums

Pk
j�l fj�tl;j�

and partial maxcost coe�cients maxl6 j6 kffj�tl;j�g
for k � 1; . . . ; n; l � 1; . . . ; k in a preprocessing
step. This preprocessing requires only O�n2� time.

These properties imply that any regular func-
tion can be minimized in O�mnm� time, which is
polynomial for ®xed m. This is achieved by simply
enumerating all n

m

ÿ �
possible ways of assigning m
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AGVs to n pickup points, evaluating the objective
value of each assignment, which takes O�m� time,
and storing the best solution. Actually, this naive
procedure is the best possible for m � 2. For
m P 3, however, there exists a faster algorithm, as
is shown in Section 3.2.

3.2. Minimizing an arbitrary regular function

This section presents a polynomial-time dy-
namic programming algorithm for minimizing an
arbitrary regular function of the response times,
which runs in O�mn3� time and O�mn� space. The
algorithm uses a forward enumeration scheme in
which AGVs are successively assigned to the cur-
rent partial assignment. Consider any assignment
of k P 1 AGVs to the pickup points
i; i� 1; . . . ; jÿ 1; j subject to the condition that the
®rst AGV is positioned at pickup point i and the
kth AGV is positioned at pickup point j, that is, a
partial assignment with w1 � i and wk � j. We
de®ne such an assignment to be in state �i; j; k�. Of
course, to assign the remaining �mÿ k� AGVs to
the pickup points j� 1; . . . ; nÿ 1; n; 1; . . . ; iÿ 1,
we need to consider only an assignment with
minimum objective value among all assignments in
state �i; j; k�.

Let x be an assignment with minimum objec-
tive value in state �i; j; k� with k P 2. To achieve
this state from a previous state, we must decide
which pickup points are covered by the �k ÿ 1�th
AGV to create x. Accordingly, the previous state
must be �i; l; k ÿ 1� for some i� k ÿ 26 l < j, in
which case the �k ÿ 1�th AGV covers the pickup
points l; . . . ; jÿ 1. The result is then that the total
cost increases by

Pjÿ1
h�l fh�tl;h� in case of an arbi-

trary regular minsum cost function. If we have an
arbitrary regular minmax function, then the max-
imum cost of the pickup points l; . . . ; jÿ 1 is
maxl6 h6 jÿ1ffh�tl;h�g.

This optimality principle leads to a polynomial-
time dynamic programming algorithm for mini-
mizing any regular objective function. Let Fi�j; k�
be the minimum objective value for assigning k
AGVs to the zone i; . . . ; j subject to w1 � i and
wk � j. We are now ready to give the dynamic
programming recursion. The initialization is

Fi�j; k� � 0 if j � i and k � 1;
1 otherwise:

�
If the objective function is of the minmax type,
then the recursion for k � 2; . . . ;m,
j � i� k ÿ 1; . . . ; n is given by

Fi�j; k� � min
i�kÿ26 l<j

max Fi�l; k
��

ÿ 1�; max
l6 h<j

ffh�tl;h�g
��

:

If the mth AGV has been assigned to pickup
point j �j � i� mÿ 1; . . . ; n�, then it needs to
cover the pickup points j� 1; . . . ; n; 1; . . . ; iÿ 1,
since we set w1 � i, that is, we located the ®rst
AGV to pickup point i. Thus, the maximum cost
of the pickup points j; . . . ; n; 1; . . . ; iÿ 1 is equal to
maxj6 h6 n;16 h<iffh�tj;h�g. We have then that the
optimal solution value for w1 � i, that is, given
that the ®rst AGV is located at pickup point i, is
equal to

F �i � min
i�mÿ16 j6 n

max Fi�j;m�; max
j6 h6 n;16 h<i

ffh�tj;h�g
� �� �

:

If the objective function is of the minsum
type, then the recursion for k � 2; . . . ;m, j � i�
k ÿ 1; . . . ; n is given by

Fi�j; k� � min
i�kÿ26 l<j

Fi�l; k
(

ÿ 1� �
Xjÿ1

h�l

fh�tl;h�
)
:

If the mth AGV has been assigned to pickup point
j �j � i� mÿ 1; . . . ; n�, then it needs to cover the
pickup points j; . . . ; n; 1; . . . ; iÿ 1, since we set
w1 � i. The total response cost for pickup points
j; . . . ; n; 1; . . . ; iÿ 1 is thus equal to

Xn

h�j

fh�tj;h� �
Xiÿ1

h�1

fh�tj;h�:

Accordingly, the optimal solution value given
w1 � i is then equal to

F �i � min
i�mÿ16 j6 n

Fi�j;m�
(

�
Xn

h�j

fh�tj;h� �
Xiÿ1

h�1

fh�tj;h�
)
:

For both types of objective functions, the
overall optimal solution value is equal to
min16 i6 nÿm�1 F �i and the corresponding optimal
home locations are found by backtracing.
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To implement these algorithms e�ciently, the
partial sums

Pj
h�l fh�tl;h� and the maxcost coe�-

cients maxl6 h6 jffh�tl;h�g are evaluated and stored
for l � 1; . . . ; n and j � l� 1; . . . ; n in a prepro-
cessing step, which takes O�n2� time. Computing
each Fi�j; k� value takes O�n� time, and since there
are O�mn2� di�erent Fi�j; k� values, the entire al-
gorithm can be implemented to run in O�mn3� time
and O�mn� space. In Section 3.3, it is shown that a
further gain in e�ciency is possible for the prob-
lem of minimizing maximum response time.

3.3. Minimizing maximum response time

This section presents a straightforward
O�n2 log n� algorithm for minimizing maximum
response time in a unidirectional ¯ow system for
any m P 2. Note that for any assignment of AGVs
to pickup points the maximum response time Tmax

is easily computed as

Tmax � max
16 j6m

ftwj;wj�1ÿ1g:

If T �max denotes the minimum maximum response
time, then T �max � t�k� for some a priori unknown k
�16 k6 q�. (Recall that t�k� is the kth smallest
travel time and that q is the number of distinct
positive travel times.) Since we do not know k
beforehand we need to guess it ± this guessing
proceeds in a systematic manner.

First of all, note that the problem of minimizing
the maximum response time can be viewed as a
®nite series of decision problems of the type ``is
T �max6 t�k�?'' for a given k, where k is repeatedly
adjusted by binary search over the values 1; . . . ; q.
If this decision problem can be solved in polyno-
mial time, then the optimization problem can be
solved in polynomial time, since k need be adjusted
no more than dlog n�nÿ 1�e times. The notation
dxe refers to the smallest integer greater than or
equal to x.

The decision problem for any given k can be
solved in O�m log n� time in the following way. We
position the ®rst AGV at pickup point sk and the
second AGV at pickup point ek � 1 ± hence, this
®rst AGV covers a zone of length exactly t�k�. Each

next AGV is assigned to the pickup point that is as
far away from the last assigned AGV as possible
but no further away than t�k�. Two cases need to be
distinguished:
· The circuit can be covered with no more than m

AGVs to guarantee the maximum response time
t�k� ± hence, the question ``is T �max6 t�k�?'' has an
a�rmative answer.

· The travel time between the home location of
the mth AGV and the last pickup point before
sk, where the ®rst assigned AGV is located, is
larger than t�k� ± in this case, the answer to the
question is no.
Since each next pickup point can be deter-

mined in O�log n� time by binary search over
the remaining pickup points and mÿ 2 pickup
points need to be assigned, it takes O�m log n�
time to solve the decision problem. The entire
procedure requires O�m log2 n� time, since we
need to solve no more than dlog n�nÿ 1�e deci-
sion problems, once the travel times have been
sorted in non-decreasing order. The sorting re-
quires O�n2 log n� time, however, and it is
therefore more time-consuming than solving the
series of decision problems. Accordingly, this
algorithm solves the problem to optimality in
O�n2 log n� time for any m P 2. Recall, however,
that we have shown in Section 3.1 that the case
m � 2 can be solved in O�n2� time by explicit
enumeration.

For an arbitrary regular minmax function, es-
sentially the same algorithm can be applied to
solve the problem to optimality. The only di�er-
ence is that binary search for the optimal solution
value takes place over a di�erent interval. None-
theless, if the optimal solution value is an integer
whose logarithm is polynomially bounded in the
size of the input, then the problem is still solvable
in polynomial time.

4. The bidirectional ¯ow system

4.1. Preliminaries

For any arbitrary regular function of the re-
sponse times in a bidirectional ¯ow system, there is
an optimal solution in which each AGV covers a

570 A.J.R.M. Gademann, S.L. van de Velde / European Journal of Operational Research 127 (2000) 565±573



certain zone between two pickup points such that
these zones have no pickup point in common.

The search for an optimal positioning of AGVs
can therefore be restricted to those that can be
represented by a string of m pickup points
�w1; . . . ;wm� with wi < wi�1 for �i � 1; . . . ;m�. This
string indicates that the ith AGV covers the zone
wi; . . . ;wi�1 ÿ 1 for each i �i � 1; . . . ;m�. In the
remainder, we refer to such a string of m distinct
pickup points as a partitioning of the loop layout
into m distinct zones.

Unfortunately, minimizing an arbitrary regular
function of the response times in a bidirectional
¯ow system is in general much harder than in a
unidirectional ¯ow system. The reason is that we
may no longer restrict ourselves to home locations
that concur with pickup points. Consider for ex-
ample the situation with a single AGV and n � 2
pickup points, which are located on a single line
layout; note that a single line layout is a special
case of a loop layout. Since the AGV may move in
both directions, the optimal home location could
be anywhere in between, and to ®nd this location
we need to minimize the given response cost
function of a single variable, i.e., the position on
the line. Here we come across two problems, which
also arise for the general home location problem
with m AGVs and n pickup points in a loop lay-
out:
· There are nonlinear functions that cannot be

minimized in polynomial time. There exist for
instance functions that can be handled only by
methods that converge in an in®nite number of
steps, such as the Golden Section Method
(Wilde and Beightler, 1967).

· Since the home location could be anywhere be-
tween the two pickup points, we would need
to know the travel times between any arbitrary
point on the line and the two pickup points.

Hence, in general, there is little that can be done
analytically.

4.2. A well-solvable case

If we assume that the optimal positioning of an
AGV in any given zone requires polynomial time,
that is, the cost of each partitioning can be com-

puted in polynomial time, then the positioning
problem can be solved in polynomial time for any
number of AGVs. In fact, the bidirectional home
location problems can then be solved by essentially
the same algorithms as their unidirectional coun-
terparts.

For m � 1 and m � 2, the fastest method is still
to enumerate all n

m

ÿ �
partitionings, optimally locate

the m AGVs within each zone, evaluate the cost of
each partitioning, and store the best one. Ac-
cordingly, the problem can be solved in O�n2� if
m � 1 or m � 2, once the costs of all partitionings
have been computed.

For m P 3, we can solve the problem by es-
sentially the same type of dynamic programming
algorithm as its unidirectional counterpart. Con-
sider a partial partitioning of the loop in which
w1 � i and wk � j, i.e., a partitioning where k P 1
AGVs cover the zone between i and j, that is, the
pickup points i; i� 1; . . . ; jÿ 1; j. We de®ne such a
partitioning to be in state �i; j; k�. To position the
remaining mÿ k AGVs we need to consider only a
partitioning with minimum objective value among
all partitionings in this state. In analogy to the
unidirectional case, we can derive a partitioning in
state �i; j; k� �k P 2� only from some partitioning
in a previous state �i; l; k ÿ 1� for some
i� k ÿ 26 l < j, where w1 � i and wkÿ1 � l. We
only give the dynamic programming recursion for
an arbitrary regular minsum objective functionPn

j�1 fj ± the recursion for an arbitrary regular
minmax objective function proceeds in a similar
fashion.

Let now Fi�j; k� be the minimum objective value
for positioning k AGVs such that w1 � i and
wk � j. Furthermore let ci;j denote the minimum
total cost if a single AGV covers the zone
i; i� 1; . . . ; jÿ 1; j �i � j� 1; . . . ; n; j � 1; . . . ; n�;
by default, we let c1;0 � 0. The initialization of the
dynamic programming recursion is

Fi�j; k� � 0 if j � i and k � 1;
1 otherwise;

�
and the recursion for k � 2; . . . ;m, j � i� k ÿ 1;
. . . ; n is given by

Fi�j; k� � min
i�kÿ26 l<j

Fi�l; k
� ÿ 1� � cl;jÿ1

	
:
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If the mth AGV has been assigned to pickup point
j �j � i� mÿ 1; . . . ; n�, then the total response
cost for pickup points j; . . . ; n; 1; . . . ; iÿ 1 is equal
to cj;n � c1;iÿ1, since w1 � i. Hence, the optimal
solution value given w1 � i is then equal to

F �i � min
i�mÿ16 j6 n

Fi�j;m�
� � cj;n � c1;iÿ1

	
:

The overall optimal solution value is equal to
min16 i6 nÿm�1 F �i and the corresponding optimal
home locations are found by backtracing. Hence,
once the cost coe�cients ci;j have been computed,
the entire algorithm requires O�mn3� time and
O�mn� space.

4.2.1. Constant traveling speed
If each AGV travels at constant speed between

any pair of adjacent home locations, then each
AGV can be optimally positioned in constant time
both for average response time and maximum re-
sponse time, once its zone has been speci®ed.

For minimizing average response time, there is
an optimal solution in which the AGVs are sta-
tioned at m distinct pickup points. This means that
the cost coe�cients ci;j can be computed in O�n2�
time in a preprocessing step; hence, average re-
sponse time in a bidirectional ¯ow system can be
minimized in O�n2� time if m � 1 or m � 2 and
O�mn3� time and O�mn� space if m P 3, just as in a
unidirectional system.

For the problem of minimizing maximum re-
sponse time, each AGV must be located exactly
halfway between the two end stations of each zone.
This means that

T �max � 1
2

max
16 i6m

ftwi;wi�1ÿ1g;

where T �max is the minimum maximum response
time. Hence, T �max � �1=2�t�k� for some a priori
unknown k �k � 1; . . . ; q�. The problem of ®nding
T �max and a corresponding optimal partitioning can
be solved by essentially the same procedure as the
one described in Section 3.3 for the unidirectional
case. Accordingly, the problem of minimizing
maximum response times in a bidirectional loop
layout with constant speed can be solved in
O�n2 log n� time.

5. Conclusions

Our results constitute a complete complexity
mapping of determining the home locations of idle
AGVs in a loop layout with either a unidirectional
or a bidirectional ¯ow system. For the unidirec-
tional ¯ow system, any regular function can be
minimized in polynomial time; Table 1 gives an
overview of time complexities. Determining the
home locations of AGVs in a bidirectional ¯ow
system is much harder. In general, this problem is
not solvable in polynomial time, even in case of a
single AGV. However, under a restrictive as-
sumption on the objective function, which seems
to be quite mild from a practical point of view, the
home location problem can still be solved in
polynomial time. Furthermore, if we assume con-
stant traveling speed of the AGVs, then minimiz-
ing maximum response time and minimizing
average response time in a bidirectional ¯ow sys-
tem require as much time and space as their uni-
directional counterparts.

It is likely that determining the home locations
of idle AGVs in more complex layouts is more

Table 1

Overview of time complexities

Objective function Unidirectional

m � 1 m � 2 m P 3

fmax O�n2� O�n2� O�mn3�Pn
j�1 fj O�n2� O�n2� O�mn3�

Tmax O�n�a O�n2� O�n2 log n�Pn
j�1 T j O�n2�b O�n2� O�mn3�

a See Egbelu (1993).
b See Kim (1995).
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di�cult ± it would be interesting to see for what
types of layouts these problems can still be solved
in polynomial time. Finally, we have only ad-
dressed the static setting of the home location
problem, in which all AGVs are assumed to be idle
at the same time. Part of our future research is the
dynamic setting of the problem, in which some
AGVs are idle and others are busy transporting
items.
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