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Abstract 

“The On Chip NUMA Architectures (OCNA) introduce a new challenge namely memory-latency to the scheduling 
methods. The language run-times and libraries try to explore the processing power of these multiple cores by mapping the 
user-created tasks on to these cores by using suitable scheduling algorithms with load balancing support to improve 
throughput. The popular load balancing techniques used are work-sharing and work-stealing and many run-time systems 
such as Cilk, TBB and wool implement task stealing algorithm to schedule the tasks on to the cores by multiplexing the 
program generated tasks on to the native worker threads supported by the operating system. But the task stealing strategy 
applied in present run-time systems assumes the sharing the last level cache (LLC) and common shared bus among all cores 
on Chip Multi Processor. It tries to optimize the utilization without considering the presence of multiple On Die DRAM 
controllers and their topological arrangements. Current task stealing technique also suffers from problem of randomly 
choosing the victim worker queue. In this paper we address these issues and propose a solution for these problems by 
suggesting few optimizations. Our proposed task stealing strategy dynamically analyzes the topology of the underlying 
hardware connections and models the group of cores and connections as a logical topology tree. This logical tree is 
translated into multiple worker pools called stealing domains. By restricting the task stealing within these domains, this 
strategy is implemented and shows an average of 1.24 times better performance on NAS Parallel Benchmark programs 
compared to popular runtimes Cilk and OpenMP. 
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1.Introduction 

The modern trend in multi-core processors is to pack multiple groups of cores onto chip with point-to-point 
links using the latest communication technology   such as QPI[11] links from Intel or Hyper Transport links 
from AMD. These groups of processors also integrate multiple on chip memory controllers to reduce the 
memory bandwidth problem and support scalability. So, modern many-core processors can be treated as On-
Chip-NUMA Architectures (OCNA) where the memory address space is divided among multiple dies and 
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sockets. In this context, it is a common observation that the work load distribution and data distribution 
between the various processors is often not uniform. A particular processor may get heavily loaded while the 
others are idle. To avoid this kind of non uniform work load distribution, a load balancing algorithm is 
commonly employed. The sender initiated algorithms generally employ a centralized dispatcher which is 
responsible for dispatching various processes to the available processors. This phenomenon is called as work-
sharing. All sender initiated strategies work with this phenomenon. 

 On the other hand each of the processors would be maintaining their individual local queues of tasks 
assigned to them by the central dispatcher. If this queue gets exhausted, i.e. if a processor completes execution 
of all of its assigned tasks then it is in an idle state becomes a thief. These architectures which are following 
receiver initiated algorithms would implement a technique where the thief-worker  would steal tasks from the 
victim worker and executes those tasks while making a decision on which processor to choose and which task 
to choose. This is called as task stealing. The method of choosing the victim is randomly done in the present 
run time systems. Randomly choosing the victim worker may cause two types of delays namely: 

 Steal miss: choosing the random victim worker queue may result a success or a failure. A failure may be 
resulted if the randomly chosen queue is also under loaded or empty.  

  Remote steal: The second possibility is the randomly chosen run-queue that may belong to the other socket 
or other group of cores DRAM in which case, the stealing of task results task migration and data migration.  In 
this paper, we analyze and address these issues and propose a new method to improve it.  

 
Nomenclature 

A Worker:  is a native thread which is part of worker pool. The number of workers generally is equal to 

the number of cores in the system. 

B Thief: A worker becomes a thief when it has no work to do. Therefore, its run-queue is empty. It is 

eligible to steal task from other run queues.   

C Victim: A worker becomes a victim when its task queue reaches a threshold value level. 

 

1.1.Structure 

 
The rest of the paper is organized in the following manner. In section 2 the related work is covered and in 

section 3 the problems identified in existing task stealing strategy are discussed. Section 4 contains the detailed 
description of the proposed algorithm and the result analysis is presented in section 5.   

2. Motivation 

Task stealing algorithm has been enhanced by various optimization strategies. [9, 12, 13] address the issues 
based on profiling data which require the tools to capture it. Theses profile based strategies do not consider the 
topology of core and memory interconnections. In contrast to this, we propose a topological aware, non-profile 
and dynamic task stealing strategy.  This proposed strategy is based on capturing the topology of underlying 
hardware which does not cause any overhead since building topology tree is one time process and that too 
during the initialization of the library. This optimized task stealing strategy can be directly opted into user-level 
run-time libraries such as Cilk[4], OpenMP and TBB[14]. To the best of our knowledge, the work proposed in 
the paper provides better solution for On Chip NUMA Multi Core runtime environments. 
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3. Existing Task stealing Technique: Issues 

The task-stealing strategy implemented in most runtime systems such as Cilk, OpenMP and TBB create n 
number of native worker threads onto which the programmer created tasks are mapped. Associated with each 
worker thread is a queue or a double ended queue with both ends open. In a OCNA architecture, the task-
queues may be physically allocated on different DRAM chips. Hence accessing a remote task queue is not 
same as accessing local task-queue.  The worker thread accesses the queue from front end and rear end is open 
for stealing by other worker thread. When the task queue associated with a worker thread becomes empty, it 
randomly chooses one victim queue and steals a task. The stolen task is added to the thief’s run queue. This 
randomization has following drawbacks when applied to OCNA: 

 The random victim worker queue is also under loaded in which case the thief worker may wait for 
some amount of time or attempt repeatedly until victim with large enough run queue is found. This 
may involve considerable amount of delays [9]. If the terms Te and Tr denote  the time taken to make 
the task queue empty and  the time involved in each random steal attempt respectively, then the time 
involved in each steal attempt Ts (the time duration of task stealing from non trivial queue length 
state)  is given as:   

 
k

i=
res T+T=T

1
………………. (1) 

In the above equation, Te represents the time a queue spends between minimum threshold state and 
empty state. Tr may represent the back-off time or the random number computation time and modulo 

operation on random number. This worker thread will be idle for the time 
k

i=
rT

1
 

 The random victim worker is bound to a core on a different die or socket where stealing a task is not 
just enough but even the data required by the task has to be migrated which is costly in terms of 
memory latency and page-fault. These remote task migrations introduce 30% additional delays [8]. 

 The task stolen from a remote node may result performance isolation problem [12, 19]. Since the 
most run-times maintain only related tasks in their local task queues and remotely chosen task may be 
an odd one in terms of shared cache. This may result eviction of cache lines which are used by a 
group of related tasks and cause false sharing. 

 

4.Topology aware task stealing 

Our work focuses upon implementation of a Topology Aware Task Library (TATL) at user-level which 
multiplexes user created tasks to the native threads of the operating system. As part of this library, co-operative 
stealing domain based worker-pools are maintained. Each stealing domain implements a separate worker pool 
with few modifications to existing method of task stealing. Stealing domains are responsible for minimizing the 
cross chip task steals. Though we implemented our own task stealing library, we adapted the flexible macro 
based API provided in wool [5]. This API allows us a flexible method of spawning the tasks with variable 
number of arguments. 

   
Our proposed task stealing thereof would perform the following functionalities: 

4.1 Topology of the architecture 
During the initialization of our run-time library, we parse the proc file system of the kernel by looking at 
the directory structure of /proc/cpuinfo. There are some automated tools such as lstopo from hwlock[15] 
using which we can convert the /proc/cpuinfo into topology objects. But for simplicity reason, we have not 
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used any library but wrote an explicit parser which converts the existing architecture into a tree structure. 
For illustration of this conversion, the following example from Intel architecture is taken [10, 11]. 

 

 

 

 

 

 

Fig.1. An example On Chip NUMA architecture [10,11] 

 
The above topology is translated into the following tree form for identifying the core groups 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Logical tree of the topology in Fig.1 

It can be observed from the logical tree in Fig. 2 that cores belonging to the same group share the last-
level-cache (either L2 or L3). Many of the tasks that are similar in program code but differ only in terms of 
data can perform better if two tasks with same code and different data are bound to such group. We call 
such group of cores as a stealing domain.   
During the initialization of the runtime, the topology tree shown in Fig.2 is partitioned into two sub trees.  
An array of worker pools is created per sub tree where each worker pool represents a stealing domain.  As 
a principle, if there are M sockets or dies with separate memory controller per each, and there are N cores 
per socket, then M worker pools are created where each pool contains N worker threads there by grouping 
the total worker threads into M stealing domains. By restricting the task stealing within the same domain, 
the number of cross chip references and remote cache misses are reduced. Task stealing from a remote 
domain is allowed only when a thief worker is unable to find a victim worker in its local domain. Grouping 
MN worker threads in M domains of N workers each gives the advantage of flexible implementation and 
does not cause any overhead. The stealing domains also allow the run-time to be easily scalable. 
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4.2 Avoiding the random victim selection 
 

The method of selecting the victim worker queue is not done by random method in our implementation 
as proposed in many popular run times. The individual worker is responsible for advertising itself 
whenever its queue length reaches the threshold value.  

      The term 
k

i=
rT

1
of equation (1) of section 3 can be eliminated if the victim worker announces itself during 

the time interval Te. 
 
The values of minimum-threshold and maximum-threshold are computed using simple inventory model 

equations. 
poppush TTCS ……………….(2) 

 
popTs ……………….(3) 

 
 
Where S and s denotes the maximum and minimum threshold values for queue size; C is the queue 

capacity; Tpush and Tpop denote the times taken to perform push and pop on to double ended queue;   
represent the arrival and processing rates of task queue respectively.  

This self announcing strategy will not only reduce the time to find a suitable victim but also reduces the 
delay involved in computing the random numbers.  While all the processors do maintain their local queues 
for the respective tasks allocated to them, there might be some processors which have completed all the 
tasks in their queues and are waiting to execute the tasks of other queues. In this situation, the run-queue of 
the worker thread enters into THIEF state.  The thief worker first searches the list of workers whose state is 
already VICTIM in the same stealing domain. In our implementation, we added a status bit to each worker 
queue to represent either THIEF or VICTIM. The thief worker searches only the run-queues with status 
VICTIM. This solves the problem of randomly choosing the victim and failure to find a queue with enough 
number of tasks. When a thief worker tries to search for a victim worker, it can find the victim easily by 
looking at the bit. Hence the delays involved in repeated attempts are removed.  

 
4.3 The Proposed Algorithm 
 

As part of any task stealing library, each worker thread invokes a function on the creation of the worker 
during the worker pool initialization process and this function is responsible for the activities of task 
running and task stealing. We present the simplified version pseudo code of such function where, the 
locking and synchronization steps are hidden. 
 

In the algorithm(given in pseudo code form), the function call searchForVictimQueue() searches 
for the run queues whose status is already set to VICTIM. The values of THRESHOLD_MAX_SIZE and 
THRESHOLD_MIN_SIZE are computer using the S and s variables from equations (2) and (3) from 
section 4.2. 
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Algorithm: workerRun 
Inputs: thisStealingDomain 
if ( localTaskQueue.size == THRESHOLD_MAX_SIZE  ) 

then 

  this.status = VICTIM; 

endif  

if ( ! isEmpty(localTaskQueue)  ) 

then 

  run:  

     popAtFront(&localTaskQueue, &task); 

     execute task;  

     if (localTaskQueue.size == THRESHOLD_MIN_SIZE ) 

     then 

        this.status = THIEF; 

     endif    

else 

    this.status = THIEF; 

end if 

taskQueue= searchForVictimQueue ( thisStealingDomain ); 

popAtRear(&taskQueue, &task); 

if ( task ) 

then  

     pushAtRear(&localTaskQueue , task ); 

     goto run; 

else 

  runQueue= searchForVictimQueue ( remoteStealingDomain); 

  popAtRear(&taskQueue, &task); 

  if ( task ) 

  then  

     pushAtRear(&localTaskQueue , task ); 

     goto run; 

  endif 

end if  

 

5.Result analysis 

To analyze the problem of random victim selection, we executed MatMul[17] benchmark using existing 
task-stealing runtime. Since the victim is randomly selected, the count of attempts to task queues associated 
with the worker which may not be full enough is computed by running the benchmark number of times. Table 1 
gives the results obtained where steal miss ratio is the proportion of selecting a victim which is not potential. It 
is the ratio of the number of failure attempts to non-full- enough with respect to total number of steal attempts. 
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While calculating the steal miss ratios, it is assumed that all the worker-threads are not grouped into stealing 
domains. The experimental results revealed that this steal miss ratio as 94%. Hence it can be observed that huge 
percentage of the stealing attempts choose a wrong victim and cause repeated computation of random numbers 
and recursive steal attempts. 

Table 1. Local Steal-misses due to random victim selection 

Numberof Worker Threads Steal Miss Ratios 

4 0.934 
8 0.949 
16 0.954 

The proposed task stealing library tries to almost eliminate the local and remote steal misses since the victim is 
of local stealing domain. 

Another experiment has been carried out to understand and analyze the impact of core-topology by 
measuring the number of remote task stealing attempts in OCNA architecture. We executed MatMul[17] 
benchmark using existing task-stealing runtime. For calculating the number of remote misses we used 8 and 16 
worker threads and these workers are grouped into two and four stealing domains respectively. It can be 
observed from the Table 2 that, on an average 36% of randomly chosen victims access a remote worker. 
Accessing a remote worker may involve migration of task causing additional 30% delays.  

Table 2. Remote Steal-misses due to random victim selection 

Numberof Worker Threads Remote Steal Miss Ratios 

8 0.379746835 
16 0.355805243 

When victim worker announces itself in the proposed task stealing technique, the local and remote steal miss 
ratios are very near to 0 and are presented in Table 3. 

Table 3. Remote Steal-misses in TATL 

Number of Worker 
Threads 

Remote Steal Miss Ratios 

8 0.000001 
16 0.000004 

 
Though the implemented runtime system is meant for finer grained tasks, we chose NAS Parallel Benchmark 
3.3[20], which contains some applications with coarse grained tasks too. As part of NPB 3.3, we added our task 
spawning directives to CG, EP and IS benchmarks. NPB 3.3 pack contains a OpenMP version and serial 
version of the benchmarks. CG program is an implementation of conjugate gradient method that is used to 
compute an approximation to the smallest Eigen value of a large, sparse, symmetric positive definite matrix. EP 
is an “embarrassingly parallel” kernel which does pseudorandom number generation at the beginning and 
collection of results at the end. EP program does not require any inter-processor communication. There are 
some challenges in computing required intrinsic functions (which, according to specified rules, must be 
done using vendor-supplied library functions) at a rapid rate. This kernel is typical of unstructured grid 
computations in that it tests irregular long distance communication, employing unstructured matrix vector 
multiplication. The parameter and values of these benchmarks are given in Table 4.  
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Table 4.  NPB 3.3 benchmark parameters 

Benchmark Parameter Class S Class W Class A Class B Class C Class D 
CG no. of rows 1400 7000 14000 75000 150000 1500000 
 no. of nonzero 7 8 11 13 15 21 
 no. of iterations 15 15 15 75 75 100 
 Eigen value shift 10 12 20 60 110 500 
EP no. of random-number pairs 224 225 228 230 232 236 

 
The results shown in Table 5 present the execution times obtained using of our proposed library TATL 
compare to the most popular run time systems like Cilk and OpenMP implementation of NPB Benchmark 
applications. The performance improvement obtained using TATL is due to minimizing the latencies involved 
in selection of random victims (94% as stated in Table 1 ) and remote victim selection (36% as stated in Table 
2). In case remote victim selection, additional overheads are involved, and contribute to remote memory access 
and task migration delays. The basic reason for delays in existing task stealing technique, used in Cilk and 
OpenMP could be due to the assumption of shared memory paradigm. With the proposed optimization in 
TATL the improvement resulted in 24% improvement in performance. The results presented here are obtained 
on dual socket Nehalem based Xeon 8-core machine with 16 threads. Though the performance improvement is 
primitive, it may scale well on many-core machines.  

Table 5. Execution time comparison (seconds) of NPB 3.3 benchmarks 

Benchmark Name CG EP 

Benchmark Class W A B W A B 

OpenMP 0.71 2.49 123.32 2.07 17.27 66.92 
Cilk 0.69 2.39 119.15 2.01 16.72 63.22 
TATL 0.55 1.91 96.11 1.63 13.4 51 
Serial Version 1.24 4.77 221.0 7.16 57.1 228.23 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.3. Speedup ratio comparison of TATL over OpenMP and Cilk 
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6.Conclusions 

In this paper we analyzed the drawbacks of existing task stealing technique and presented an improved 
version of task stealing technique suitable for runtimes on Chip NUMA multi core architectures. We also 
presented the performance results of the proposed strategy on NPB 3.3 bench mark programs and compared 
results with run times such as Cilk and OpenMP which implement existing task stealing method. The results 
show that our proposed optimizations to existing task stealing strategy give consistent improvement in 
performance.  
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