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With the increasing popularity gained by cloud computing systems over the past few years,
cloud providers have built several ultrascale data centers at a variety of geographical loca-
tions, each including hundreds of thousands of computing servers. Since cloud providers
are facing rapidly increasing traffic loads, they must have proper expansion strategies for
their ultrascale data centers. The decision of expanding the capacities of existing data cen-
ters or building new ones over a certain period requires considering many factors, such as
high power consumption, availability of resources, prices (of power, land, etc.), carbon tax,
free cooling options, and availability of local renewable power generation. While a rich vol-
ume of recent research works focused on reducing the operational cost (OPEX) of the data
centers, there exists no prior work, to the best of our knowledge, on investigating the trade-
off between minimizing the OPEX of the data centers and maximizing their revenue from
the services they offer while respecting the service level agreement (SLA) with their cus-
tomers. In this study, we model this optimization problem using mixed integer-linear pro-
gramming. Our proposed model is unique compared to the published works in many
aspects such as its ability to handle realistic scenarios in which both data centers’ resources
(servers) and user generated traffic are heterogeneous. To evaluate the proposed model
and the impact of different parameters on it’s performance, several simulation experiments
are conducted.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

One of the main concepts related to cloud computing is the migration of computations from the user-side to the Internet.
With the cloud computing paradigm, companies no longer need to establish and run their own servers to provide on-line
services to their customers. Instead, they can simply ‘‘rent’’ the required infrastructure from a specialized cloud provider
under a pay-per-use model reducing the Total Cost of Ownership (TCO) and allowing the companies to focus on their
own businesses especially in the case of startup companies. Such an option is becoming more appealing for an increasing
number of companies, which creates more demand on cloud providers forcing them to optimize their expansion strategies.
These expansion strategies should take into consideration both the quality of the service provided to the customers and the
economical impact on the service provider [1,2].
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Cloud providers may own several data centers distributed across different locations to serve their clients. Such data cen-
ters are usually huge containing tens of thousands of servers and consuming more power than a medium-size town.1 Even
with these huge data centers, a cloud provider might still be unable to provide a high quality of service (i.e., one where the ser-
vice-level agreement (SLA) with the client is not violated) due to the high demand. Thus, expansion strategies must be devised.
The cost of expanding a data center or building a new one can vary greatly depending on the land cost and the required com-
puting capacity. In this paper, we address the problem of deciding the best expansion strategy for a given cloud provider by
deciding whether it is beneficial for the cloud provider to build new data centers or to simply expand the data centers it cur-
rently has. To solve this problem, one needs to address several issues such as where to build the new data centers and in which
capacities and how to distribute the current and future traffic loads among the new and existing data centers.

Data centers are a crucial part for governmental institutions, businesses, industries, and many others. They vary greatly in
size from small in-house data centers to large scale data centers that provide their services publicly for millions of users. Data
centers of one service provider may be distributed over a large geographical area which requires an extra overhead for
managing them efficiently. Moreover, they consume large amounts of power that can reach up to tens of megawatts for run-
ning their hardware and cooling them. These facts are creating many problems on both the environment and energy
resources. A 2010 study showed that large-scale data centers consumed about 2% of all electricity usage in the United
States [3]. This percentage can be translated to be over 100 billion kW h with an approximate cost of $7.4 billions [4].
Power usage in data centers is divided into the power consumed by the IT components and the power consumed by non-
IT components such as ventilation and cooling systems, and lighting.

Being environmentally responsible is definitely a concern in the cloud computing society. Researchers from both
Academia and the industry are collaborating to address environment grand challenges and to accelerate the research in this
field [5]. Managing carbon footprint and power consumption [6] are examples of such efforts. From a monetary perspective,
the increasing prices of power offer more reasons to reduce the power consumption of data center and to increase the usage
efficiency of the available power. The new laws for carbon tax are also pushing forward the optimization of power usage. The
adoption of renewable energy usage to cover data centers power requirements is showing a momentum between data cen-
ters owners. Also, building data centers in locations that provide free air cooling is a good choice for data centers owners (e.g.,
Facebook data center in Prineville, Oregon). Moreover, management overhead of today’s data centers requires a lot of man-
power to handle the extended traffic loads. The shortage of such skills is a very serious issue especially in case of constructing
many distributed data centers. Another important issue with having many distributed data centers is the load balancing
between the data centers. This can be impacted by the availability and cost of high network bandwidth connecting data
centers.

The contributions of our work are as follows. First, the objective of our proposed model is to decide the best expansion
strategy for a given cloud provider by deciding whether it is beneficial for the cloud provider to build new data centers or to
simply expand the data centers it currently has. To the best of our knowledge, no prior work has addressed this problem
explicitly. Second, our proposed model addresses the problem of heterogeneity of resources (like servers) and traffic types
(with their varying delay constraints). This is another aspect that has not been addressed explicitly before, to the best of our
knowledge. Third, our proposed model aims to satisfy the conflicting goals of maximizing the revenue while minimizing the
operational cost (OPEX) for the provider. Moreover, it has to perform well for varying conditions at the different geographical
regions, varying prices of electricity, different kinds of renewable power sources and their availabilities and different traffic
types throughout the day/year.

The rest of this paper is organized as follows. Section 2 discusses the system model. Section 3 explains the simulation
results and shows the optimization results. Section 4 includes a literature review for some of the optimization techniques.
Finally, the conclusion and future work are presented in Section 5.
2. System model

In this section, an optimization problem is formulated using mixed integer-linear programming to address the problem of
determining the best expansion strategy a cloud provider can take to face the increasing demands and to increase its rev-
enue. The computed strategy may include expanding current data centers by increasing the number of servers they contain
or building new data centers (which involves determining how many data centers to build, where to build them and in
which capacities). As part of the solution, the formulation also addresses the problem of how to distribute the service request
among the data centers to achieve the highest revenue. The proposed model achieves its goal by calculating the profit gained
in each year of the period under consideration. Taking a look at the accumulated and inflated profit over the years and com-
paring it with what would the initial investment gain (e.g., by placing it in a savings account or in bonds) makes the decision
of whether to build new and/or expand the current data centers an easy decision. Fig. 1 represents our system model.

This section covers many issues. The expansion strategy optimization model is discussed in Section 2.1, whereas in
Section 2.2, we present the heterogeneity of resources and traffic model. Inflation is discussed in Section 2.3. In
Section 2.4, we present an extension of the proposed model to take into account the effect of renewable energy more
explicitly.
1 http://goo.gl/zg2PWg.
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Fig. 1. System model for ultrascale cloud computing data centers.
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2.1. The expansion strategy optimization model

An earlier version of this proposed model appeared in [7] where the cloud provider inputs its current data center locations
along with the number of servers each one has and then the system will find the revenue maximizing option regarding build-
ing new and/or expanding the current data centers. We consider a discrete-time model, in which the time period of interest
is discretized in two levels: a major level and a minor level. On the major level, the overall time period is divided into T time
segments, where each segment can represent a decade, a year, a month, etc., while, on the minor level, each major time seg-
ment is divided into H timeslots. In the following, we consider T and H to be the number of years and the number of hours in
each year, respectively.

Before describing our model, we briefly go over the notations used and the assumptions made. In order for our model to
work, we have to specify discrete sets of user locations, denoted by U, which could be cities, towns, etc., and data center loca-
tions, denoted by S, which includes the set of existing data center locations along with the set of candidate locations on
which the cloud provider can build new data centers. Now, we define a set of binary variables, X ¼ fxt

sjt 2 T; s 2 Sg, to denote
whether a data center is built on location s at year t. Obviously, we must make sure that if a data center is built on a certain
location in a certain year, it stays like this for the following years (i.e., if xt1

s ¼ 1 then xt2
s must also be 1 for all t2 > t1). Existing

data centers are easy to handle in this way. If s is the location of an existing data center, then xt
s ¼ 1 for all t 2 T .

By taking into account the changes in electricity price in different locations at different times during the day, the authors
of [8] proposed a request distribution policy to route the parts of service requests to potentially different data centers. For

this purpose, we denote the total number of service requests originating from user location u during hour h of year t by Lt;h
u

and the portion of Lt;h
u served by the data center at location s by kt;h

s;u. Let K ¼ fkt;h
s;ujs 2 S;u 2 U; t 2 T;h 2 Hg. The following con-

straint ensures that no request is denied.
Please
lat. M
X
s2S

kt;h
s;u ¼ Lt;h

u ; 8h 2 H; t 2 T ð1Þ
We define a binary variable, yt;h
s;u, to represent the ability of data center at location s to handle service requests from user loca-

tion u at hour h in year t. Let Y ¼ fyt;h
s;ujs 2 S; u 2 U; t 2 T;h 2 Hg. Obviously, if a data center is not yet built at a certain location,

it cannot service any request. Thus, we have the following constraint.
yt;h
s;u 6 xt

s; 8s 2 S; u 2 U; h 2 H; t 2 T ð2Þ
Moreover, to ensure that a data center at location s does not receive a service request it is not ready to handle, we use the
following constraint.
0 6 kt;h
s;u 6 yt;h

s;uLt;h
u ; 8s 2 S; u 2 U; h 2 H; t 2 T ð3Þ
We define mt
s to be the number of servers in data center at location s during year t. Let M ¼ fmt

sjt 2 T; s 2 Sg. The number of

servers in any data center is bounded by lower and upper bounds represented by Mmin and Mmax, respectively. Then we have:
xt
sM

min
6 mt

s 6 xt
sM

max; 8s 2 S ð4Þ
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The total power consumption in the data center is divided into two types depending on whether power is consumed by an
IT equipment (such as servers and routers) or not (e.g., for conversion, lighting, and cooling, etc.). The ratio between the total
power consumption to the IT equipment power consumption is donated by Eusage and it is used as a measure for a data cen-
ter’s power usage efficiency (PUE) [9]. As for the power consumption of the servers, we denote the average power consump-
tion of a single server when the server is idle by Pidle and when it is handling the service request by Ppeak. Following the model
of [10], we can calculate the power consumption in candidate location s for a certain hour h in year t as follows:
Please
lat. M
Pt;h
s ¼ mt

sðPidle þ ðEusage � 1ÞPpeakÞ þmt
sðPpeak � PidleÞct;h

s þ xt
s� ð5Þ
where � is an empirically derived constant and ct;h
s denotes the average server utilization of the data center at location s dur-

ing hour h of the year t defined as:
ct;h
s ¼

P
u2Ukt;h

s;u

mt
sl

ð6Þ
where l denotes the total number of service requests that a server can handle in one hour. Note that although the last two
equations seem non-linear, they can be easily linearized by plugging the definition of Eq. (6) into Eq. (5), then we reformulate
Eq. (5) as following:
Pt;h
s ¼ mt

sðPidle þ ðEusage � 1ÞPpeakÞ þ ðPpeak � PidleÞ
P

u2Ukt;h
s;u

l

 !
þ xt

s�
The power plant in each region supplies power to different types of subscribers (commercial, residential, and industrial)
which leads to varying demand throughout the day. Moreover, some of the power plants depend on renewable energy
sources such as the wind and the sun. So, the proposed model must enure that the total amount of consumed power does
not exceed the amount of available power at any hour.
Pt;h
s 6 Pt;h;max

s ; 8s 2 S; h 2 H; t 2 T ð7Þ
Several factors affect the quality of the provided service and may cause violations in the SLA. Delay is one of these factors.
Different types of delay have been explored in the literature. In this model, we focus only on the propagation delay. The fol-
lowing constraint makes sure that the propagation delay for any request from user u served by data center at location s,
denoted by Ds;u, does not exceed the maximum delay allowed by the SLA.
2Ds;uyt;h
s;u 6 Dmax; 8s 2 S; u 2 U; h 2 H ð8Þ
In order to avoid other SLA violations, we limit the average server utilization at each data center by a constant upper bound
cmax 2 ð0;1�. Thus, we have the following condition.
ct;h
s 6 cmax; 8s 2 S; h 2 H ð9Þ
The value of cmax depends on the quality of service and the type of service request. For now, the type of service we consider is
web service request, therefore, the value cmax is small enough to avoid waiting time. Section 2.2 presents an extension of this
model capable of handling heterogenous service requests.

Now, we are ready to present our formulation. The input parameters include the set of user locations, the set of the data
center locations, the hourly traffic loads from each user location, the propagation delay between each user location and each
data center location along with the upper bound on the propagation delay, the power consumption of a single server when it
is idle and when it is processing a request, and, for each data center location, the PUE, the hourly power constraint, the maxi-
mum utilization and the maximum and minimum capacities (in terms of the number of servers) of each data center. The
parameters to be computed are X;M;Y and K. Note that the sets X and M might be partly filled with information about exist-
ing data centers as follows. If s is the location of an existing data center, then xt

s ¼ 1 for all t 2 T , and m0
s is set to the number

of servers already in data center at location s. The formulation is as follows.
Maximize
x;m

RVðTÞ � ðOPEXðTÞ þ CAPEXðTÞÞ

Subject to Constraints ð1Þ—ð9Þ:
The notation is explained in the following paragraphs.
The overall cost of the data centers can be divided into operational cost (OPEX) and capital cost (CAPEX). CAPEX includes

the costs of land acquisition, construction of the infrastructure of the data center, electricity and bandwidth supplied to the
data center, etc., whereas OPEX includes the costs of electricity, carbon tax, bandwidth cost, etc. More formally, CAPEX for a
certain year t can be expressed using the following equation.
CAPEXðtÞ ¼
X
s2S

ðxt
s � xt�1

s ÞBCt
s þ ðmt

s �mt�1
s ÞSCt

s; ð10Þ
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where BCt
s represent the cost of building a data center at location s in year t and SCt

s represent the cost of buying a server for
the data center at location s in year t. Berral et al. [11] present a more detailed equation for CAPEX.

To maximize the profit, cloud providers are interested in reducing OPEX, which means that locations with low electricity
prices are favorable. However, choosing such locations might not be the most environmentally responsible decision. For
example, in Wyoming and Utah, the price of electricity is cheap because of their coal-fired power plants [8]. The carbon foot-
print of coal-fired and natural gas generators is higher than nuclear and hydroelectric generators [12]. OPEX for a certain year
t can be expressed as follows [8].
Please
lat. M
OPEXðtÞ ¼
X
s2S

X
h2H

ht
sP

t;h
s þ dt

sðqs þ 1ÞPt;h
s þ

X
u2U

ðkt;h
s;ur

t
s;uÞ

 !
ð11Þ
where dt
s is the carbon tax in location s in year t, qs is the power transmission loss rate at location s, rt

s;u is the cost of the

bandwidth between user location u and candidate location s and ht
s is the price of electricity in candidate location s taken

during three different time-of-use price periods: off-peak (when the demand for electricity is low), mid-peak (when the
demand for electricity is moderate; generally, during daytime, but not the busiest times of day) and on-peak (when the
demand for electricity is high; generally, when people are cooking, firing up their computers and running heaters or air
conditioners).

Now, the revenue of year t is computed using the following equation [13].
RVðtÞ ¼ ðð1� pðxÞÞatkt;h
s;u � pðxÞbtÞ
where pðxÞ is the probability that the waiting time for a service request exceeds the SLA-deadline, at is the service fee that
the data center charges the customers for handling a single service request and bt is the penalty that the data center must
pay for every service request it cannot handle (thus, causing an SLA violation).
2.2. The heterogeneity of resources and traffic model

The data centers are inherently heterogeneous. Upgrade cycles and replacement of failed components and systems con-
tribute to this heterogeneity. The data centers are expected to upgrade their compute and storage infrastructure to generate
different systems that have either (i) different processor architectures, cores and frequencies, (ii) varying memory capacity
and interconnection speeds, or (iii) different I/O capabilities. On the other hand, the data centers receive various types of traf-
fic, this traffic having different characteristics and requirements (e.g., voice, video, best effort, etc.). For these reasons, we
propose a new system model (similar to the model of the previous section) that would allow the data centers to provide
the services needed with lower power consumption.

The model of Section 2.1 addresses the problem of determining the best expansion strategy a cloud provider can take to
face the increasing demands and increase its revenue, but it does not take into account the heterogeneity of resources and
traffic types. We extend this model by allowing heterogenous set of resources to be available and exploit this heterogeneity
in workload distribution by assigning the workloads to the servers customized for the their types. If no such servers are avail-
able, we assign the workloads to servers with the goal of minimizing power consumption which would eventually lead to
reduced OPEX.

We formulate new design optimization problems using mixed integer-linear programming to address the problem of
heterogeneity of resources and traffic that data centers receive. Before describing our model, we briefly go over the notations
used and the assumptions made. The new notations used in this model are F to denote the set of all traffic types that data
centers receive and R to represent the types of server in the data centers.

The model discussed in Section 2.1 is reformulated as follows.
Maximize
x;m

RVðTÞ � ðOPEXðTÞ þ CAPEXðTÞÞ

Subject to Constraints ð12Þ—ð21Þ:
X
s2S

kt;h;f
s;u ¼ Lt;h;f

u ; 8f 2 F; h 2 H; t 2 T ð12Þ
X
r2R

wt;h;r
s;u;f ¼ kt;h;f

s;u 8s 2 S; f 2 F; h 2 H; t 2 T ð13Þ

yt;h
s;u 6 xt

s; 8s 2 S; u 2 U; h 2 H; t 2 T ð14Þ
0 6 kt;h;f

s;u 6 yt;h
s;uLt;h;f

u ; 8s 2 S; u 2 U; f 2 F; h 2 H; t 2 T ð15Þ
xt

sM
min;r
6 mt;r

s 6 xt;r
s Mmax;r; 8r 2 R; s 2 S ð16Þ

Pt;h;r
s;f ¼ mt;r

s ðPidle þ ðEusage � 1ÞPpeakÞ þmt;r
s ðPpeak � PidleÞct;h

s þ xt
s�

� �
�MPr

f ð17Þ
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Please
lat. M
ct;h
s ¼

P
u2Uwt;h;r

s;u;f

mt;r
s lt;r

s
ð18ÞX

f ;r2F;R

Pt;h;r
s;f 6 Pt;h;max

s ; 8s 2 S; h 2 H; t 2 T ð19Þ

2D f
s;uyt;h

s;u 6 Df ;max; 8s 2 S; f 2 F; u 2 U; h 2 H ð20Þ
ct;h

s 6 cmax; 8s 2 S; h 2 H ð21Þ
CAPEX is expressed using Eq. (10), whereas OPEX is expressed using a modified version of Eq. (11) as follows.
OPEXðtÞ ¼
X
s2S

X
h2H

ht
s

X
f ;r2F;R

Pt;h;r
s;f þ dt

sðqs þ 1Þ
X

f ;r2F;R

Pt;h;r
s;f þ

X
u2U

ðkt;h;f
s;u rt

s;uÞ
 !
Now, the revenue of year t is computed using the following equation [13]:
RVðtÞ ¼ ðð1� pðxÞÞat;f kt;h

s;u � pðxÞbt;f Þ, where at;f and bt;f are the service fee and the penalty for every service request of type f.
A large data center does not have such a completely homogeneous set of servers due to the rapid development of high-

performance CPU technologies, data center repairs, replacement, and expansion. Power management for data centers
equipped with heterogeneous servers is more complicated due to the challenges associated with how to distribute incoming
requests among the different available servers and how to dynamically configure servers to balance the power, performance
and reliability trade-off.

In this model, we propose a new distribution request policy to route the parts of the service requests that the data center
receives from different user locations to the different servers. For this purpose, let wt;h;r

s;u;f denote the portion of kt;h;f
s;u that is

planned to be routed towards server of type r in the data center at location s at each hour h in year t. Let

W ¼ fwt;h;r
s;u;f js 2 S;u 2 U; f 2 F; r 2 R; t 2 T;h 2 Hg. The constraints of Eqs. (13) and (12) ensure that no request is denied. Eq.

(17) calculates the power consumption in a way similar to what is discussed in Section 2.1 except that it uses MP, which
represents an appropriate mapping between the traffic types and the available server types. For a certain type of traffic, dif-
ferent server types vary in their suitability to handle this traffic due to the variation in their hardware specifications. So, for a
certain service request, the more suitable the server to which it is routed, the less power is consumed in handling it. MPr

f is
used to represent the payoff for assigning request of type f to server of type r. An appropriate mapping of traffic types to
server type is recommended. It is possible to determine the minimum number of servers needed in order to support a certain
load of traffic and the traffic mix involved. It is hoped that the results will help in understanding how traffic types should be
mapped to different server types, and in the definition of appropriate admission control policies.

2.3. Inflation

Due to insufficient data, several input parameters (such as the traffic loads) cannot be predicted accurately. The best we
can do is to compute the current (or past) values for such parameters and ‘‘inflate’’ them as shown in the following para-
graphs. Inflation is also important since the time interval considered in this model may span several years and we need
to predict future monetary values of certain things (such as electricity). Moreover, any amount of money (whether it is a
profit or a loss) ‘‘saved’’ for any amount of time (months, years, etc.) must be inflated. In this work, several values are inflated

such as the traffic loads ðLh;t
u Þ, the electricity prices ðht

sÞ, the carbon taxes ðdt
sÞ, the bandwidth costs ðrt

s;uÞ, service fees ðatÞ,
penalties for SLA violations ðbtÞ, the initial investment and the yearly revenue. Of course, these different values might require
different inflation rates. In our simulation results, we try to use realistic values for these rates based on our reading of the
literature.

To handle these cases, we define the following functions. We start with the compound interest, which can be computed as

A ¼ V 1þ i
n

� �nt
, where A is the amount of money accumulated after t years, including interest, V is the principal amount (the

initial investment amount borrowed or deposited), i is the annual interest rate (as a decimal), t is number of years the
amount is deposited or borrowed, and n is the number of times the interest is compounded per year. The Compound
Annual Growth Rate (CAGR) is the interest rate at which a given present value would ‘‘grow’’ to a given future value in a

given amount of time. It is computed as CAGR ¼ FV
PV

� �1
t � 1, where: FV and PV are the future and present values, respectively.

Finally, the formula for the inflation rate is Vd ¼ Vð1þ jÞd, where Vd is total inflated/estimated cost, j is the inflation rate and
d is the difference between the base year and the selected year. Alternatively, we can use the following simpler (linear) equa-
tion to compute inflation in a much more efficient way Vd ¼ V þ ðV � j� dÞ, which is what we use in our experiments.

2.4. Renewable energy

The model discussed so far does not explicitly account for renewable energy, which is one of the biggest concerns related
to data centers and their effect on the surrounding environment. To address this issue, we reformulate Eq. (5) as follows [13].
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Please
lat. M
Pt;h
s ¼ ½mt

sðPidle þ ðEusage � 1ÞPpeakÞ þmt
sðPpeak � PidleÞct;h

s þ xt
s�� xt

sG
t;h
s �
þ

where ½x�þ ¼maxfx;0g and Gt;h
s is the amount of renewable power generated in location s during hour h of year t. The amount

of power exchange with the power grid is obtained as ½P � G�. If local renewable power generation is lower than local power
consumption, i.e., P > G, then ½P � G� is positive and the power flow is in the direction from the power grid to the data center.
If P ¼ G then the data center operates as a zero-net energy facility. Finally, if P < G, then ½P � G� is negative and the power
flow is in the direction from the data center to the power grid [13]. Note that, ½P � G�þ indicates the amount of power to be
purchased from the grid. If this term is negative, the data centers electricity cost will be zero, given the assumption that the
grid does not provide compensation for the injected power [13]. In the simulations, we are forced to ignore this important
extension due to the lack of realistic input data for the different types of renewable energy generators. Finally, it is worth
mentioning that Berral et al. [11] present a different model to handle renewable energy.

3. Simulation results

In this section we present the simulation results of the proposed optimization models discussed in Sections 2.1 and 2.2.
The simulation experiments are conducted on a virtual machine running Windows 7 (64-bit) with 16 GB of RAM and 4
processors.

The optimization problems in the two models are solved using CPLEX2 with Microsoft Visual Studio. CPLEX is a mixed inte-
ger-linear programming solver that works based on variations of the branch-and-bound algorithm for integer programming
[14] and other metaheuristic methods [15], which can be used to obtain efficient sub-optimal solutions by relaxing the integer
constraints. The computational complexity is not a concern in our proposed model as deciding on the best expansion strategy
for the cloud provider can be done over offline computations.

A detailed description of the simulation environment for the expansion strategy optimization model is discussed in
Section 3.1 while the related simulation results are provided in Section 3.2. Similarly, the simulation of the heterogeneity
of resources and traffic model is discussed in Sections 3.3 and 3.4.

3.1. Simulation environment setup for the expansion strategy optimization model

In this section, we discuss the simulation experiments conducted on the expansion strategy optimization model dis-
cussed in Section 2.1. We start by discussing the candidate locations. We focus on contiguous US for simplicity and due
to the fact that most of the required data are available for this part of the world. Since the power availability is limited in
certain regions, we need to exclude states generating power at rates smaller than their consumptions. According to [16],
the excluded states are California, Nevada, Idaho, South Dakota, Minnesota, Wisconsin, Ohio, Tennessee, Florida, North
Carolina, Virginia, Maryland, New York, Delaware, New Jersey, Connecticut, Rhode Island, Vermont, Massachusetts, and
District of Columbia. As for the remaining states, to ensure that Constraint (7) is satisfied, we consider the maximum avail-
able power in each state as follows. For Iowa, Kentucky and Mississippi, the maximum available power is 60 MW/h while
other states such as Washington, New Hampshire, Oregon, Oklahoma, Utah, Wyoming, Illinois, Arizona, Pennsylvania and
South Carolina can handle larger demands (greater then 100 MW/h). The considered candidate locations are depicted in
Fig. 2.

After deciding the set S, we turn our attention to other input parameters. According to [10], we set Ppeak and Pidle to 140
and 84 W. A fixed value of 2 is a common choice in the literature for PUE [9]. However, we do consider a more realistic case
where the PUE changes with varying outside temperature as shown in Fig. 3. For the sake of simplicity, we consider only four
different outside temperatures for each location depending on whether the considered time is in the Summer or the Winter
seasons and whether it is during daytime or nighttime. The temperatures are taken from online weather websites such as
weatherbase.com and worldweatheronline.com. The details of these periods are shown in Table 1.

As for the traffic load, we choose the total number of service requests incoming from all user locations to be between 1.5
and 2 million hits/s [18]. We assume that each server can process one request per second, i.e., l ¼ 3600. We set cmax ¼ 0:8
[19]. The electricity price information based on the average price for industrial load is available at [20]. As mentioned in
Section 2.1, we consider three different time-of-use price periods: on-peak, off-peak and mid-peak. Moreover, we assume
two different seasons: Winter and Summer. The price of electricity vary from one period to the other by as much as
3 cent/kW h. Table 1 shows the details of the considered time periods. Finally, Table 2 shows the values used for the input
parameters.

3.2. Simulation results for the expansion strategy optimization model

In this section, we present and discuss the results of the two experiments we conduct to evaluate the expansion strategy
optimization model. The objective of the first experiment is to study the decisions made by the proposed formulation regard-
ing the best expansion strategies to handle the increasing traffic load.
://www.ilog.com/products/cplex/.
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Fig. 2. Candidate locations for data centers in contiguous USA.

Fig. 3. PUE values for different outside temperature [17].

Table 1
Time periods for both varying PUE values and dynamic pricing.

PeriodnSeason Summer: May 1–October 31 Winter: November 1–April 30

Daytime 6 am–7 pm 7 am- 6 pm
Nighttime 7 pm–6 am 6 pm–7 am
Off-peak 7 pm–7 am 7 pm–7 am
Mid-peak 7–11 am and 5–7 pm 11 am–5 pm
On-peak 11 am–5 pm 7–11 am and 5–7 pm

Table 2
Input parameters and their values.

Input parameter Value

Pmax 60 mW/h (for IA, KY & MS) & 100 mW/h (for WA, NH, OR, OK, UT, WY, IL, AZ, PA & SC)
Ppeak & Pidle 140 W & 84 W
L [1.5,2] million hits/s
l 3600
cmax 0.8

Mmin & Mmax 5000 & 50,000
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We run the model for five years on 12 data center locations, half of which have existing data centers. Remember that an
existing data center will have some servers in it. Since the servers are homogenous and resources (like servers) are only
added when needed, the number of servers in each data center is an indication of how much traffic load it is processing.
We assume that the number of servers to be placed in a single data center ranges between 5000 and 50,000.
Please cite this article in press as: M. Al-Ayyoub et al., Optimizing expansion strategies for ultrascale cloud computing data centers, Simu-
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Table 3
The number of servers in each data centers as computed by our optimization model.

Data centernYear 1 2 3 4 5

DC1 5000 5000 15,122 31,411 46,784
DC2 0 5000 30,237 50,000 50,000
DC3 0 0 0 0 5000
DC4 41,677 47,097 49,999 50,000 50,000
DC5 41,677 50,000 50,000 50,000 50,000
DC6 0 0 0 0 6971
DC7 0 5000 15,122 31,402 50,000
DC8 0 5000 15,123 31,394 50,000
DC9 41,677 50,000 50,000 50,000 50,000
DC10 0 0 0 12,797 50,000
DC11 36,678 47,097 50,000 50,000 50,000
DC12 41,677 50,000 50,000 50,000 50,000

Total 208,386 264,194 325,603 407,004 508,755
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In this set of experiments, we consider CAPEX as follows. From Eq. (10), CAPEX depends on two aspects: the building con-
struction cost and the server cost. For the server cost, we assume it is $2000 per server as indicated by [11]. As for the con-
struction cost, we benefit from many websites such as [21] and thecloudcalculator.com to the cost for each of the considered
states. We start by estimating the cost of constructing a data center in a reference state (for our experiments, we use NY) to
be $20 M. Then, we use several websites such as numbeo.com to compare the cost of living/owing property/building prop-
erty in NY with the other states of interest. For example, we estimate that building a data center in Oregon costs almost one
third of the cost of building it in NY. Finally, we assume that the cloud provider starts with an initial investment of $500 M
that will cover CAPEX for the first year. Any construction cost in subsequent years is covered by the leftover as well as the
profits generated up until the construction time.

Table 3 shows the number of servers in each data center as computed by our optimization model.3 The table shows that
these numbers increase with the passage of time and the increase in the traffic load. At the beginning, only one (DC1) out of the
six existing data centers is lightly loaded small while the other five are heavily loaded. In the second year, the lightly loaded data
center (DC1) remains lightly loaded (probably due to its high operational cost or high delay compared with the other available
data centers) while the heavily loaded data centers almost reach their full capacity. Moreover, three new data centers are built.
The same trend continues in the following years. Data centers with low operational cost or low delay expand in terms of the
number of servers until they reach their full capacities. If this is not enough to process the newly generated traffic, either
new data centers are built or the data centers with high operational cost are expanded depending on which option provides
higher profits. By the last year of this experiment, the cloud provider is forced to build data centers in all locations to process
the huge amount of service requests.

In the second experiment, we study the effect of using a fixed PUE value vs varying PUE values as well as using flat rate
electricity pricing vs dynamic pricing. Thus, the four cases under consideration are:

� Case 1: Fixed PUE and flat rate prices.
� Case 2: Fixed PUE and dynamic prices.
� Case 3: Varying PUE and flat rate prices.
� Case 4: Varying PUE and dynamic prices.

Figs. 4 and 5 show the annual profits (original and inflated) generated for the four cases under consideration. The effect of
inflation (an issue usually ignored in many related works) is obvious in the two figures. While Fig. 4 shows a significant
increase in the actual gained profits of each year, Fig. 5 shows an opposite trend for the inflated profits since the profits made
in the first year is exposed to inflation for a longer period of time increasing their value compared with non-inflated profits.

From Fig. 4, it can be seen that using dynamic pricing generates (an average of 2%) better annual profits than using fixed
pricing. Moreover, using different PUE values for different times of the day has even more positive effect on the annual prof-
its as it increases them by an average of 13%. Finally, mixing both dynamic settings (varying PUE values and dynamic pricing)
causes an average improvement of 14% on the annual profits. Similar trends are shown in Fig. 5 for the annual inflated
profits.

3.3. Simulation environment setup for the heterogeneity of resources and traffic model

In this section, we discuss the simulation experiments conducted on the heterogeneity of resources and traffic model dis-
cussed in Section 2.2 and the obtained results. As for the simulation setting, we use the same setting defined in Section 3.1
with some modifications (explicitly mentioned) to account for the new parameters of this model as well as to to reduce the
3 Note that our model computes many parameters including the set M which contains the numbers of servers in each data center for each year.
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number of variables. For the sake of simplicity, we use fixed values for PUE (1.14 [9]) and electricity prices. As for the traffic
load, for the purpose of our study, we assume that there are F ¼ 4 different service types, and we choose the total number of
service requests for each service type incoming from all user locations to be between 1.5 and 2 million hits/s [18]. We con-
sider four different types of server, R ¼ 4, and assume that the number of servers of each type to be placed in a single data
center ranges between 2000 and 20,000. Each server has different capacity l to handle service requests in one second. The
details of the processing capacity for each type of server are shown in Table 4. Note that we consider three types of special-
ized servers (customized for CPU intensive, memory intensive and I/O intensive workloads) in addition to a general purpose
type that we call ‘‘mixed’’ server type. Finally, Table 5 shows the values used for the input parameters that are different from
Table 2.

3.4. Simulation results for the heterogeneity of resources and traffic model

As with Section 3.2, we conduct two experiments; however, the focus here is on heterogeneity of traffic and servers. In the
first experiment, we study the effect of using different types of traffic load to handle different types of servers. We run the
Table 4
The server capacity for each type of service request.

Server type Processing request per second l

CPU intensive 5050
Memory intensive 4000
I/O intensive 3600
Mixed 2000
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Table 5
Input parameters specific to the heterogeneity of resources and traffic model experiments and their values.

Input parameter Value

Mmin & Mmax 2000 & 20,000

Eusage 1.4
R 4
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model for five years on eight data center locations, three of which have existing data center. Tables 6–9 show how the num-
bers of servers of each type increase in each data center with the passage of time and the increase in the traffic load.

In the second experiment, we study the effect of handling different types of traffic load using a single type of servers (i.e.,
using a homogenous set of servers). We assume that each server can process one request per second, i.e., m ¼ 3600.

Figs. 6 and 7 show the annual profits (original and inflated) generated for the two cases under consideration The figures
show that handling different types of traffic loads using different types of servers generates an average of 5% better annual
profits than when using a single type of servers.
4. Literature review

The main problem addressed in this work is the expansion strategies of cloud providers to meet the increasing user
demands. The body of work on this problem is limited since most of the current works focus on optimizing the currently
Table 6
The number of CPU intensive servers in each data center.

Data centernYear 1 2 3 4 5

DC1 0 0 0 0 0
DC2 0 0 0 0 4750
DC3 0 0 0 2000 20,000
DC4 0 0 2000 20,000 20,000
DC5 0 2000 20,000 20,000 20,000
DC6 6384 20,000 20,000 20,000 20,000
DC7 20,000 20,000 20,000 20,000 20,000
DC8 20,000 20,000 20,000 20,000 20,000

Total 44,217 62,000 90,486 98,665 108,000

Table 7
The number of memory intensive servers in each data center.

Data centernYear 1 2 3 4 5

DC1 0 0 0 0 0
DC2 0 0 0 0 20,000
DC3 0 0 0 2000 20,000
DC4 0 0 2001 20,000 20,000
DC5 0 14,480 20,000 20,000 20,000
DC6 20,000 20,000 20,000 20,000 20,000
DC7 20,000 20,000 20,000 20,000 20,000
DC8 20,000 20,000 20,000 20,000 20,000

Total 24,000 31,263 46,000 48,001 70,000

Table 8
The number of I/O intensive servers in each data center.

Data centernYear 1 2 3 4 5

DC1 0 0 0 0 0
DC2 0 0 0 0 20,000
DC3 0 0 0 2000 20,000
DC4 0 0 2000 20,000 20,000
DC5 0 2000 20,000 20,000 20,000
DC6 20,000 20,000 20,000 20,000 20,000
DC7 20,000 20,000 20,000 20,000 20,000
DC8 20,000 20,000 20,000 20,000 20,000

Total 44,217 62,000 90,486 98,665 108,000

Please cite this article in press as: M. Al-Ayyoub et al., Optimizing expansion strategies for ultrascale cloud computing data centers, Simu-
lat. Modell. Pract. Theory (2015), http://dx.doi.org/10.1016/j.simpat.2015.03.002

http://dx.doi.org/10.1016/j.simpat.2015.03.002


Table 9
The number of mixed servers in each data centers.

Data centernYear 1 2 3 4 5

DC1 0 0 0 0 0
DC2 0 0 0 0 2000
DC3 0 0 0 2000 2000
DC4 0 0 2000 19,000 20,000
DC5 0 2000 17,600 20,000 20,000
DC6 2000 19,999 20,000 20,000 20,000
DC7 20,000 20,000 20,000 20,000 20,000
DC8 20,000 20,000 20,000 20,000 20,000

Total 24,000 31,263 46,000 48,001 70,000
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available data centers by improving power consumption, cooling, request routing, etc. For a broader coverage of such issues,
the interested readers are referred to recent surveys such as [22]. We start our discussion of the related work by discussing
these issues before going into the more relevant papers concerned with the added issue of building new data centers and/or
expanding existing data centers by increasing their service capacity, which is achieved by increasing the number of servers
they contain.

A rich volume of recent research work focused on reducing power costs instead of consumptions. These research works
mainly devise different workload distribution policies across geo-distributed data centers for achieving different perfor-
mance objectives such as total electricity cost minimization [18,23–30], bandwidth cost minimization [31], energy efficiency
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improvement [32–35], cooling efficiency [36], carbon footprint minimization [37], and renewable energy usage maximiza-
tion [38–40]. In order to achieve these objectives, researchers mainly formulated the workload distribution problem as vari-
ous linear and non-linear optimization problems and adopted various methods and tools to solve them. For optimum
solutions, the commonly used mathematical tools are mixed integer programming [23,25,26,41].

Qureshi et al. [18] is one of the first works to focus on the temporal and spatial variability of electricity prices in the
wholesale market. The authors argued that since the electricity prices fluctuate across different regions energy expense
per unit of computation is not the same for every data center. Based on this interesting observation, they designed a distance
constrained electricity price optimizer that can achieve significant economic gain. The price optimizer judicially places the
load from the client to the data center located at cheaper price regions within some radial geographical distance.

The recent research focused on the future site of the data center, because the electricity price is not the same in each
region. The data center is expected to be built in locations with lower prices, colder weather and available renewable energy
to reduce the carbon footprint.

In [8], the authors studied the problem of selecting the best locations to build a fixed number of data centers. They
assumed that the data centers to be built are not associated with any already existing data centers. They formulated three
optimization problems with three objective functions. The objective functions are (i) minimizing the carbon footprint, (ii)
minimizing the total cost (including energy cost, bandwidth cost and carbon tax), and (iii) minimizing the average service
latency subject to the QoS constraints. Their formulation takes as input a set of candidate locations and determines the best
location(s) to build future data center(s), the number of servers required at each new data center, and how the service
requests can be routed to each data center.

Another work to select future site(s) is proposed in [17]. The authors introduced a new process that can be used to select
the best location to build new data centers while considering any already existing data centers the cloud provider may have.
The authors formulated an optimization problem considering the following factors: (i) the capital cost (CAPEX), which
includes the costs of land acquisition, construction of the data center’s infrastructure, electricity and bandwidth supplied
to the data center, etc., (ii) the operational cost (OPEX), which includes the costs of electricity, bandwidth, water for cooling
the data center, carbon tax, administration staff salary, etc., (iii) response time, which depends on the distance between the
location of data center and a population center, (iv) consistency delay,4 which depends on the distance between two potential
locations of the data center and (v) availability. The main objective of the formulated problem is to minimize the total cost (i.e.,
CAPEX & OPEX) subject to response time, consistency delay and availability. In a later extension of this work, Berral et al. [11]
presented a new formulation with similar objective but with more involved and complex constraints that focus more on renew-
able energy.

Reducing the carbon footprint and maximizing renewable energy usage are the objectives considered by the authors of
[42]. They showed that the carbon footprint can be reduced by building the data centers near the sites of renewable energy.
They developed a mathematical model for calculating the total carbon footprint including: manufacturing, usage and com-
munication footprints. They discussed how to reduce the carbon footprint (especially, the manufacturing footprint) by redis-
tributing the load of the data center to other sites based on the availability of renewable energy.

The authors of [23] formulated a model to address the total electricity cost problem under diverse electricity prices across
different regions and time periods while maintaining QoS guarantees. This model considered total electricity cost, load con-
straint, end-to-end delay constraints for data centers.5 They formulated the model as a mixed integer programming problem
where the constraints captured the workload requirements and the service delay assurances. The authors solved it using the fast
polynomial algorithm proposed by Brenner [43].

Compared with the previously mentioned related works, the contributions of this work lie in the following points. To the
best of our knowledge, no prior work has addressed the problem of determining the best future location of the data center
while taking into account the tradeoff between maximizing the revenue and minimizing the operational cost of the data cen-
ter instead of (bandwidth, cooling, carbon tax, and power costs). Moreover, previous works neglected important economical
aspects such as the annual inflation in the costs (bandwidth, cooling, price of electricity) and in the revenue. Finally, our pro-
posed model takes into account heterogeneity in both traffic as well as resources, which is more realistic than the commonly
assumed homogeneity in traffic and resources.
5. Conclusion and future work

With the growth of ultrascale data centers around the world, research on reducing operational cost (OPEX) in the data
center is still in its infancy. In this work, we addressed the problem of deciding the best expansion strategy for a given cloud
provider by deciding whether it is beneficial for the cloud provider to build new data centers or to simply expand the data
centers it currently has. Choosing future sites for constructing new data centers requires careful consideration on several
factors, reducing the electricity cost, bandwidth cost, carbon footprint, maximizing renewable energy usage, and QoS, etc.
The data centers are inherently heterogeneous, the data centers receive various types of traffic with different characteristics
4 When a data center becomes unreachable or unavailable, the data centers that provide a service must be mirrors of each other. The consistency delay refers
to the time required for state changes to reach all mirrors.

5 The queuing delay inside the data center is assumed to be an M/M/1 queue.
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and requirements. We proposed a formulation of the problem that takes into account the locations and capacities of the
future data centers, the operational cost of the data centers, the heterogeneity of resources and traffic that should satisfy
some delay limitations, and important economical aspects such as the annual inflation in the costs and revenue.

Few major lessons that we have found from this study are as follows. First, minimizing electricity cost causes workload to
follow the cheaper price regions which does not necessarily minimize carbon footprint. Second, renewable energy sources
are intermittent and unpredictable; data centers can leverage effective integration of such renewable. Finally, traffic and
computing resources heterogeneity could increase the room for better optimizing the usage of today’s data centers.

Our work can be extended in many directions to reduce the energy cost and power density in data centers. One direction
is to consider the server consolidation, which refers to assigning incoming tasks to the minimum number of active servers in
the data center and shutting down unused servers. Thus, it would be interesting to extend the revenue maximization prob-
lems introduced in the previous sections by taking into account the cost for running the servers and assuming that the
machines can be switched on and off dynamically. We will be considering this as a future work.
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