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The present paper is concerned with the cyclic inelastic large 
deflection analysis of structural steel members, such as pin-ended 
columns and fixed-ended tubular beam-columns of strut type. An 
elastoplastic finite element formulation for beam-columns, 
accounting for both the material and geometrical nonlinearities, 
was developed and implemented in the computer program FEAP 
used in the analysis. The geometrical nonlinearity is considered 
using the modified approximate updated Lagrangian description of 
motion. The two-surface plasticity model, recently developed by 
the authors, is employed for material nonlinearity. The model 
accounts for the important cyclic characteristics of structural steel, 
even within the yield plateau, such as, the decrease and disappear- 
ance of the yield plateau, reduction of the elastic range and cyclic 
strain hardening. The cyclic elastoplastic performance of the for- 
mulation was found to be good when compared with the exper- 
imental results as well as the results obtained from other material 
models. Copyright © 1996 Elsevier Science Ltd. 
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1. Introduction 

Current seismic design philosophy relies strongly on the 
concept of energy dissipation through inelastic action. Steel 
braces are very effective structural members and are widely 
used as energy dissipaters in skeletal buildings and offshore 
structures under extreme loading conditions such as severe 
earthquake and wave motion. They also minimize storey 
drift of high-rise buildings for possible moderate earth- 
quakes during their lifetime ~'2. 

An accurate cyclic analysis of braced frames requires 
precise methods to predict the cyclic inelastic large deflec- 
tion response of the braces. This has been the subject of 
intensive research work and a variety of analytical methods 
have been developed to simulate the hysteretic behaviour 
of braces in the past few decades H°.  An overview of 
Japanese research on steel braces has been given by Naka- 
shima and Wakabayashi j i. The main research approaches 
used for the cyclic analysis of braces may be classified as: 
empirical (phenomenological) models 3,4, plastic-hinge 
models 2"5'6 and elastoplastic finite element models 9,m. 

The empirical models are based on simplified hysteretic 
rules that only mimic the experimental axial force-axial 

displacement relationship, and require numerous empirical 
input parameters for each member. To select such para- 
meters one needs experimental results on braces similar to 
those under study 2. In the plastic-hinge approach, it is 
assumed that the plastic hinges (instantaneous 
plastification) form at discrete points in the member, with 
the structure remaining elastic between the plastic hinges. 
Although the plastic-hinge method can provide a good 
insight into the basic hysteretic behaviour of a structure, a 
crucial drawback involved in this method is the neglect of 
gradual plastification through the cross-section and along 
the member length, the Bauschinger effect, cyclic strain 
hardening and residual stresses produced during hysteretic 
plastic deformation which are important factors in the over- 
all response of the member 6. 

The more accurate models were based on the finite 
element method considering geometric and material nonlin- 
earities m. In this approach, the member is divided into sev- 
eral elements along its length, and the cross-sections are 
further subdivided into elemental areas to trace gradual 
plastification along the length and through the section of 
the member. This method is generally applicable to many 
types of problems, and it requires only the member 
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geometry and material properties (constitutive law) to be 
defined. 

Recently, various stress-strain relationships have been 
employed in the analysis by different researchers, such as 
elastic-perfectly plastic, bilinear with hardening, and trilin- 
ear with both strain hardening and the Bauschinger effect ']. 
From these studies, it was concluded that the spread of plas- 
ticity along the length and the Bauschinger effect cause a 
reduction in the maximum compressive resistance under 
cyclic loading ~. On the other hand, the stress-strain 
relationship used in structural analyses depends on the load- 
ing history to which the structure or structural members are 
subjected. Therefore, an accurate and refined constitutive 
law should be used to account for the general cyclic behav- 
iour of structural steel which has a characteristic yield pla- 
teau followed by strain hardening. For this purpose, based 
on the experimentally observed cyclic behaviour of  struc- 
tural steel, a multiaxial two-surface plasticity model (2SM) 
was recently developed by the authors ]2 '% This model can 
treat accurately the cyclic behaviour of structural steel even 
within the yield plateau, such as the reduction and disap- 
pearance of  the yield plateau, the Bauschinger effect and 
cyclic strain hardening. 

The main objective of this study is to apply the 
developed 2SM for material nonlinearity to trace the cyclic 
inelastic large deflection behaviour of structural bracing 
members, such as pin-ended columns and beam-columns 
of strut type. An elastoplastic finite element fl)rmulation for 
beam-column, considering geometrical and material nonlin- 
earities, was developed and implemented in the computer 
program FEAP is used in the analysis. The modified 
approximate updated Lagrangian description (AULD) of 
motion ~' is adopted in the element formulation for geo- 
metrical nonlinearity. 

In what follows, first the important characteristics of the 
uniaxial 2SM, numerical procedures and solution scheme 
are briefly presented. Then, the cyclic plasticity perform- 
ance of  the formulation is compared with experiments s'7-]~ 
as well as with results obtained from the elastic-perfectly 
plastic (EPP), isotropic hardening (IH) and kinematic hard- 
ening (KH) material models. It is found that the developed 
lbrmulation can predict with a high degree of  accuracy the 
experimentally observed cyclic behaviour of axially loaded 
pin-ended columns and beam-columns of strut type. There- 
fore, it can be used in the nonlinear structural analysis, to 
generate parametric data, and to check the accuracy of  the 
more simplified models. 

Also the effect of  initial residual stress on the cyclic 
bebaviour of  steel columns is examined using the 
developed formulation. It is found that the initial residual 
stress has only the effect of decreasing the initial buckling 
load capacity and does not affect subsequent cyclic behav- 
iour. 

2. Review of the uniaxial two-surface model 

The important characteristics of the uniaxial 2SM ~-, shown 
schematically in Figure 1, are now briefly reviewed. 

Plastic" modulus: The same expression as in the Dafalias 
and Popov ~'~ model is used to calculate the plastic modulus 
E e, that is 

do- ¢5 
E e - - E P + h  (1) 

de ~' 8i , , -  8 

bounding l ine (path DE) 
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Figure 1 Uniax ia l  stress ~r-plast ic strain eP curve  

where, E~ is the slope of the current bounding line defined 
in equation (7); 6 is the distance between the bounding line 
and loading point (say, point Q2 in Figure 1) and is 
assumed always greater than or equal to zero; 6~,, is the 
value of 6 at the initial yield state in the current loading 
path (say, point Q] for path CD in Figure 1); h is called 
the shape parameter and is assumed to be a linear function 
of  ~ as follows 

h = e .  6 + f  (2) 

where e and f are material constants. 
The plastic modulus E P in equation (1), changes from 

infinity at the initial yield state 6 = 5m, to the slope of the 
bounding line, E{I, (see Figure 1), at the steady state 6 = 0, 
as 6 decreases. This means that the transient elastoplastic 
behaviour under cyclic loading can be described by this 
model. Since at the initial yield state 6 = ¢%,,, the denomi- 
nator in equation ( 1 ) vanishes, this numerical problem can 
be overcome by setting the denominator to a very small 
value, say 1.0 x 10 -s, in the numerical analysis. 

Reduction o f  the elastic' range: The reduction of the 
elastic range (Bauschinger effect) is expressed as follows 

~:/K¢~ = o~ - a . exp(-b~/'  × 100) 

-(c~ - a - 1 )exp(-c~P x 100) (3) 

where K and Ko are half of  the current and initial size of 
the elastic range, respectively (~o = 0,3; a, b, c and o~ are 
constants; ~ '  is the effective plastic strain (EPS) range 
(denoted as AEPS by Shen et al.~2), which is defined as 
the maximum amplitude of the effective plastic strain that 
the material has ever experienced. 

Treatment o f  the yield plateau." The prediction of the end 
of yield plateau is important in the evaluation of cyclic 
behaviour. From the monotonic and cyclic experimental 
results, it is concluded that the disappearance of  the yield 
plateau depends on the EPS range and the plastic work. 
The end of the yield plateau is judged by the following 
expression 
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,) m ,) 
< 0 yield plateau still continues 

--> 0 yield plateau disappears (4) 

where e ~', and W~, represent the plastic strain and plastic 
work at the end of the yield plateau under monotonic load- 
ing, respectively, W e is the plastic work given by f o-de p, 
and m is a material parameter. 

The physical implication of equation (4) is that whether 
the material (steel) shows the hardening behaviour or not 
after the stress state reaches the yield stress o:, ~2. That is, 
the hardening behaviour is assumed if a point (WP/WP,, 
~P/e~;,) lies above the line given by equation (4), otherwise 
the behaviour on the yield plateau is assumed. 

Movement  o f  the bounding line: The size of  the bound- 
ing lines in the uniaxial case, fi, is defined as a function of 
the EPS range, ~ ' .  

~c = ~:~ + (Ko - K~) e x p ( -  0 . 2 5 ~  p~) (5) 

where ~o is the size of the initial bounding line (see 
Figure 1); ~ is the limiting value of the bounding line and 
assumed to be equal to the ultimate tensile stress o-,; and 
~" is the material constant. 

Virtual bounding line and memory line: In order to pre- 
dict random cyclic behaviour, the virtual bounding line and 
memory line concepts are proposed as shown in Figure 2. 
It is assumed that the virtual bounding line X,.XI,, and mem- 
ory line X,,,Xf, for the current loading path (path BC) are 
parallel to the real bounding line XX'. The initial memory 
line is assumed to pass the initial yield stress o:,. and moves 
together with the loading point A. Therefore, the loading 
point A on the memory line X,,,X~, represents the point of  
the maximum stress that the material has ever experienced. 
Supposing that line O~O', is the centre line of the bounding 
lines XX' and YY', the memory lines X,,X,[, and Y,,,Y,~, in 
tension and compression sides are assumed to be symmetri- 
cal with respect to this centre line 0,0' ,)  2 . 

If the reversed loading point, such as point B in Figure 2, 
does not reach the memory line, the virtual bounding line 
X,.X:. will be used in the prediction of path BC. The virtual 

virtual bounding line 
I a - -  - - X '  

4 . . . .  ~ f D  t X ~ -  [ ~ F X bounding line 
X ~ ~ --+----"--7..~ D 

[ "Y- ~ X~ memory line 

y~ memory hne  

Yr, -----'- ~ ~ Y' bounding line 
y - - - - - ~ ~  

Figure2 Definition of virtual bounding line and memory line 

bounding line X, XI. is assumed to shift up by a distance 6,. 
which is measured from the reversed loading point B to the 
memory line Y,,,Y,~,. In the prediction of path BC, the plastic 
modulus E P is calculated as 

t~ + 6,. 
E P = E~ + h - -  (6) 

6~,, - 6 

which is obtained by substituting (6 + 6,.) and (6~,, + 6,3 for 
6 and 6i,,, respectively, in equation ( 1 ). However, once the 
loading point reaches the memory line X,,,X;,, such as point 
C in Figure 2, the plastic modulus in the continuous path 
CD is calculated by equation (1). 

Slope of  the bounding line: The slope of the current 
bounding line, E~, is assumed to decrease with the plastic 
work W', and is expressed as 

E g -  1 + w W  P (7) 

in which E~irepresents the slope of the initial bounding line 
determined from the monotonic loading experiment, where 
¢o is a constant and W e is the plastic work accumulated 
from the origin O to the current loading point. 

It is worth noting that, in the proposed model, all the 
parameters are obtained from experimental data under rela- 
tively simple loading histories '2. The material properties 
and model parameters for JIS SS400 steel (equivalent to 
ASTM A36), obtained by the authors, are listed in Table 1, 
where E and u denote the Young's  modulus and Poisson's 
ratio of  the material, respectively. 

In a work by the authors 13'H, by extending the effective 
plastic strain range concept into a multidimensional state, 
a generalized 2SM was developed for the multidimensional 
stress state. The accuracy of the 2SM has already been veri- 
fied by the experimental data '2 ~4. 

3. N u m e r i c a l  a n a l y s i s  p r o c e d u r e  

In order to accurately consider the basic cyclic behaviour 
of structural steels in the analysis of structures or structural 
members, it is necessary to use an accurate constitutive law 
(stress-strain relationship) for the material. Therefore, an 
elastoplastic analysis based on the finite element method m, 
which takes into account the spread of plasticity through 
the cross-section and along the length of member, is 
employed in the analysis of structural steel members, such 
as pin-ended columns and fixed-ended beam-columns of 
strut type. In this approach, the member analysed is divided 
into several elements along its length, and the cross-section 
is further subdivided into elemental areas, as shown in 
Figure 3 for a hollow rectangular section. Each of the 
elemental areas is identified by, area dAi, distance from the 
section centroid Yi, residual stress and strain, and stress-  
strain history. The incremental stress-strain relation for 
each elemental area is described by the developed 2SM 
discussed in the previous section. In the following dis- 
cussion the element formulation for beam-columns is 
briefly presented. 

3. I. Beam-column element formulation 
The assumptions employed in the analysis are those of 
Bernoulli-Euler beam theory and the geometry within the 
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Figure 3 Subdivision of section and residual stress distribution 
for a hol low rectangular section 

element is interpolated from the nodal parameters using 
Hermitian cubic shape functions ~°. In the present work, 
only longitudinal strain (G) is considered and so at any 
point in the cross-section, yielding is assumed to occur as 
a result of longitudinal stress (0-~) only. Local buckling is 
not considered in the analysis. The modified AULD of 
motion proposed by Jetteur et al. ~6, is utilized in the 
element formulation. In this approach, beam elements are 
improved with the help of a Marguerre-type theory 2° which 
allows an introduction of initial deflections in the formu- 
lation and a reduction in the number of finite elements 
required to describe the nonlinear behaviour of the struc- 
ture 16. 

AS shown in Figure 4, a local moving co-ordinate system 
(x,,,y,,) (rigid body motion co-ordinate) is applied to separ- 
ate the real deformation of each element from its rigid body 
displacement ~6. It is assumed that the state of the element 
in the 1~,, configuration is known. A straight configuration 
1)], joining the two end points of the deformed element, is 
taken as a reference configuration to define the configur- 
ation of the element in the subsequent step, f~.+~. The dif- 
ference between f~, and f~. is considered as an initial 
deflection 9(x) of the former. This gives rise to the modified 
version of the AULD that preserves the integration over a 
straight configuration f~,, and enables the curvature of the 
deformed configuration l)fl 6 to be taken into account, as 
shown in Figure 4. 

In the modified AULD, using the principle of virtual 
work in the local co-ordinate system and neglecting the 
transverse load, the linearized incremental equilibrium equ- 
ation can be expressed a s  16 

Y 

~r3,1 

y. i ~  xn 
I 

i ~  ~0 ~ j -----~x0 
0 X:" 

Figure4 Configuration of a beam-column element in global 
XY and local xy co-ordinate systems (subscripts are step 
numbers) 

f V* 
{Acra(Ae L) + oa(AeJVL)} dV = 

{NAd)} T ({AF} + {F}) - fv* °'6(AeC) dV (8) 

with 

{F} = {N~,Nj, Q,,M~, Qj, Mj} T ( 9 )  

(10) 

in which, as shown in Figure 5, {F} and {d}, respectively, 
are nodal force and displacement vectors; cr denotes the 
axial Euler stress in the 12~, configuration; e L and e NL a r e  

linear and nonlinear components of the axial Green's strain; 
A denotes the increment of the corresponding quantity; 6 
denotes 'variation in'; and V* is the volume of element in 
the ~;', configuration, u, v and 0 are displacement compo- 
nents at nodal points and subscripts i and j denote nodal 
points. The incremental uniaxial stress-strain relationship 
is described by the developed 2SM as 

Ao" = E, Ae L ( 1 1 ) 

in which E, is the current tangent modulus of the material. 
The incremental axial displacement Au(x)  and deflection 

Av(x)  in an arbitrary section within the element is inter- 
polated from nodal displacements using Hermitian cubic 
shape functions [5/.] and [N~] as 

Au(x) = [ N . l r { A d . }  (12) 

av(x) = [NvV{adv} (13) 

in which 

1 - x / l .  ] 

[N.] = x/l,, J (14) 

-(1 + 2x/ln)(1 - x / l . )  2 

x( 1 - x/1.) 2 
[N,,] = (15) 

3(x/ln) 2 - 2(x / l . )  3 

- ( I ,  - x)(x/In) 2 

fln+l 

'w" . a o K , , / / / \ 1  

Y.~ , \ i ~  a0iv /-' --J 
? , +  " / 

o x 

Figure 5 Definition of incremental nodal force and displace- 
ment vectors 
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l,, is the length of element in the f~, configuration; and 
{Ad.} and {Ad,.} are components of the incremental nodal 
displacement vector {Ad}, i.e. 

{±d} = {{±&V, {adv}W 

{ad.} = {au,,a.  S 

{Adv} = {Avi,AOi,Avi, AOj} r 

(16) 

(17) 

(18) 

The incremental axial strain of an arbitrary point 
(elemental area) on the cross-section Ae can be expressed 
as the sum of linear and nonlinear components as 

Ae = Ae L + Ae NL (19) 

The introduction of the initial deflection 9(x) only modifies 
the linear part of the axial strain ~6 so that 

Ae L = Au'(x) - yAv"(x)  + ~ ' ( x )Av ' ( x )  (20) 

f? I [kc] -- N 
Lsym. 

k~,,  = [N'.] [N'.] T 

k~22 = [N'v] [N'v] T 

kG22 
(27) 

(28) 

in which [k] and [kG] are tangent and geometric stiffness 
matrices, respectively, N denotes axial load, and (D o, i,j  = 
1,2) can be written as 

Di1 = fA E,dA (29) 

DI2 = D21 = - fA EtydA (30) 

022 = f a  Ety2dA (31 ) 

and 

1 1 
Ae NL = 2 AR'(X)2 + 2 AFt(x)2 (21) 

in which the primes denote the derivatives with respect to 
the column axis x; y is the co-ordinate of the centroid of 
the elemental area measured from the geometric centroid 
of the cross-section. Introducing equations (12) and (13) 
into equation (20) results in 

Ae L = [N'. lr{Ad.} - (y[N'[,] r 

- 9'(x)[N~.] r) {Adv} (22) 

where the initial deflection is defined in terms of the 
internal relative rotations at ends i and j with respect to the 
deflected chord of the element, A~gi and A0j as shown in 
Figure 5, as follows 

9(x) = [N,]r{O,AO,,O,AOj} r (23) 

Making use of the above equations, the stiffness equation 
for the in-plane beam-column element in the local co- 
ordinate system can be written as 

( [k]  + [k~] ){ad}  = { a r }  + { r}  - {f} 

with 

[kl = dX 
I_sym. k22 

k,I = D,,EN',] [N',.] r 

k12 = DI2[N'u] [N"] T 

+ D, lP ' (x )  [N'.] [N'~] r 

k22 = D22[/Vtv r] [N'vr] T 

+ 2DI20'(x) [N"] [N'v] r 

and 

(24) 

(25) 

(26) 

For the inplane analysis of beam-columns, a vector of equi- 
valent nodal force vector {f} can be derived as 

dX 
{f} = M[N"] + NP'(x)  [N~ 

(32)  

in which, the stress resultants of axial force (N) and bend- 
ing moment (M) are obtained by 

f 
N = | erdA (33) 

J A 

= -  f crydA (34) M 
J A 

Using the cross-sectional subdivision the integrals in 
equations (29)-(31),  (33) and (34) are calculated simply 
by summing the contribution of each elemental area over 
the cross-section. Once the stiffness matrix and nodal force 
vectors of each element are determined, they are rearranged 
according to the order of degree of freedoms for each node 
and transformed from the local to the global co-ordinate 
system using the usual transformation matrix. 

3.2. Numerical  integration and solution scheme 

The Gauss-Lobatto numerical integration rule 2~ is utilized 
in the present study to evaluate integrals in the stiffness 
equations. Five sample points are adopted. The modified 
Newton-Raphson iteration technique coupled with the dis- 
placement control method is used in the analysis. The 
details of the solution procedure can be found in Reference 
22. The displacement convergence criteria is adopted in the 
analysis and the convergence tolerance is taken as 10 -5 . 

According to the algorithm discussed above, an elasto- 
plastic beam-column finite element subroutine program was 
coded and implemented in the computer program FEAP ~5 
used in the analysis. 

4. Numer ica l  examples  

The developed formulation was used to predict the exper- 
imentally determined hysteretic behaviour of several steel 
columns and beam-columns of strut type subjected to cyclic 
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axial loading. The obtained results are also compared with 
those from the bilinear EPP, KH and IH material models. 
The aim is to compare the effect of each material model 
on the buckling and hysteretic behaviour of  the structural 
members. 

Based on the experimental results for SS400 steel, the 
kinematic and isotropic hardening rates are assumed as 
d c r / d C =  0.00896E which is taken equal to the slope of 
the initial bounding line, E{')~, in 2SM (see Table 1). Initial 
residual stress is not considered in the analysis. An initial 
imperfection of 8(x) = 8osin(Trx/L) is assumed in the analy- 
sis of columns; where L and 6o = 0.1%L stand for the length 
and initial deflection at midspan of the member,  respect- 
ively. In the analyses, 10 elements have been used to 
discretize the member along its length and the cross-section 
is subdivided into 14 layers, parallel to the axis of  bending, 
for prismatic solid rectangular sections and 48 (3 x 16 
through thickness and radial, respectively) elemental areas 
for hollow circular sections. The compressive load is 
applied first and it is assumed to be positive. 

4.1. Pin-ended prismatic columns 
Pin-ended prismatic steel columns studied experimentally 
by Wakabayashi et al .  w are analysed by using the theory 
and numerical procedure described. The first example is 
that of  a column of effective slenderness ratio KL/r= 
40.46, length L = 174 mm, width b = 15.45 mm and height 

h = 14.90 mm subjected to cyclic axial load, as shown in 
Figure 6. The specimen is made of SS400 steel with the 
properties of  yield stress or,. = 229.0 MPa, Young 's  modulus 
E = 206.7 GPa and yield plateau range EJ;, = 0.8%. 

Figure 6 compares the axial load-axial  displacement and 
axial load-midspan deflection relationships obtained from 
experiment ~7 and analysis using the 2SM as well as the 
EPP, KH and IH material models. In the following, some 
of the significant characteristics observed from the exper- 
imental and analytical results are pointed out and discussed. 

As illustrated in Figure 6a, the experimentally observed 
complex cyclic behaviour in a typical hysteretic loop 
includes several characteristic stages: prebuckling (OA), 
postbuckling (AB), elastic unloading (BC), elastoplastic 
tensioning (CDE) and elastic unloading in tension side 
(EF). The first stage OA is associated with the initial com- 
pressive loading of a virgin column which buckles at point 
A. Stage AB is characterized by a decreasing axial load 
accompanied by column shortening. The shortening is 
primarily due to the formation of a lateral bow in the col- 
umn [see Figure 6b(expt. ~v)], which facilitates the through- 
section and along-length plastification of the member at 
midspan caused by the P - v  effect. Once the column 

Table 1 Mater ia l  p roper t ies  and two-su r face  mode l  para- 
meters  fo r  steel g rade JIS SS400 

Parameter  Value Parameter  Value 

E( G Pa ) 204.0 STy( M Pa ) 
e v 1.3 x 10 3 v 
E~t/E 1.9 x 10 2 e~t 
a -0.505 b 
c 14.4 c~ 
e 5.00 x 102 f/E 
m -0.37 E[,/E 
w • crv 3.08 ~o/~rv 

2 (ru/Cr v 1.67 ~. e v 

260.0 
0.27 
1 .7x  10 ~ 
2.17 
0.191 
0.30 
8.96 x 10 3 
1.15 
9.89 x 10 4 

P ,A~-....____~ ~ ~ ' ~ : ~ ' - P ~  

v+ ~°~"L-  u ~._u J 

P 

o/f' 

E 

(kN) 60 ].A. e(kN) 60 i7. 

_ _ l / \  I"--. 

°l JYT° i 
~ / U  (mm) 

Expt'17 60 / ~  Expt)7 

~ ) 60 

/ ~ / ~  u (rnrn) t V v+~o (mm) 

(a) (b) 

Figure6 Compar i son  be tween predicted and exper imenta l  
results: (a) axial load P-ax ia l  d isp lacement  u; (b) axial load P-  
m idspan  def lec t ion v. (KL / r -  40.46, L = 174 mm,  b =  15.45 mm,  
h =  14.90 mm,  80 = 0.1%L, ~rv- 229.0 MPa, E=  206.7 GPa, 
E~, = 0.8%) 
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begins to buckle, plastic deformation rapidly develops, and 
the axial force decreases with the axial displacement u, 
which is kinematically related to the lateral deflection v. 

Stage BC is the elastic unloading of the column. The 
slope of this line is less than that for stage OA, since the 
stiffness of a member with a larger bow in it is smaller 
than that for a smaller bow due to the initial imperfection. 
During the application of a tensile force of an increasing 
magnitude, curve CDE in Figure 6a, the column elongates 
and gradually straightens as shown in Figure 6b for the 
experiment. Along the curve CD, it is difficult to separate 
the Bauschinger effect and the effect of gradual straighten- 
ing of the column which have softening and stiffening 
effects on the curve, respectively. However, the general 
trend of the influence is that the Bauschinger effect 
becomes pronounced, initially, owing to the associated 
reduction in tangent modulus, and later the straightening 
effect of the column prevents softening of the curve caused 
by the spread of plasticity. This trend is more apparent in 
the same stage for the subsequent cycles, as can be noticed 
in Figure 6a. Stage DE corresponds to the fully yielding of 
the column at midspan. Due to the strain hardening of the 
material, the line DE develops a positive slope. The axial 
deformation is reversed at point E and the member behaves 
elastically until point F, at which one cycle is executed. At 
point F the axial load is zero, but residual axial deformation 
(elongation of the member, see Figure 6a) and curvature 
(midspan deflection as shown in Figure 6b), as well as 
residual stresses and strains exist in the member. These 
effects are taken into consideration in the prediction of the 
subsequent cycles in the analysis. The general character- 
istics of the subsequent hysteretic loops, for a cyclically 
loaded column, are the same as the first cycle except for 
the following observations. 

(1) The maximum compressive load decreases with sub- 
sequent cycles of loading [see Figure6a(expt.)]. The 
decrease in the second cycle is much greater than that of 
subsequent cycles, in which the hysteresis loops tend to be 
stabilized with a few cycles. This is attributed to the pres- 
ence of a residual lateral deflection at the midspan of the 
member, as shown in Figure 6b. Moreover, since the col- 
umn at midspan experiences severe stress reversals, the 
material undergoes strain hardening. However, the influ- 
ence of the Bauschinger effect on reducing the tangent stiff- 
ness of the member plays a more dominant role than the 
strain hardening, owing to the associated lower values of 
the tangent modulus in comparison with the elastic modulus 
of the steel in a virgin state. Consequently, there is a greater 
propensity for buckling to occur. 

(2) As shown in Figure 6a(expt.), the column is pro- 
gressively lengthened from point F to point G due to the 
successive loading cycles which follow compressive ones. 

(3) Figure 6a shows that the postbuckling curve in the 
first cycle is steeper than that of the second and subsequent 
cycles in the experiment. This observation indicates that the 
postbuckling behaviour is sensitive to the strain hardening 
effect of the material which is induced following the disap- 
pearance of the yield plateau caused by accumulated plastic 
work at the midspan of the column. 

Figure 7 compares the change in load carrying capacity 
of the column during cyclic loading obtained from exper- 
iment and analyses. With reference to Figures 6 and 7, the 
following observations can be made. (1) The initial buck- 
ling load (see Figure 7) is slightly higher in the experiment 
than that predicted by the analyses using different material 
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Figure 7 Change in load carrying capacity during cyclic load- 
ing. (key as in Figure6) 

models. This may be due to the experimental boundary con- 
ditions (unavoidable friction at the hinged supports) and 
the assumed initial imperfection in the analysis. (2) The 
significant features of the hysteretic loops in Figure 6a is 
that all of the models except the 2SM give the second and 
subsequent buckling load capacities higher than those of 
the experiment (see also Figure 7). The reasons are: firstly, 
the EPP and IH models do not consider the reduction of 
the elastic range due to plastic deformation (Bauschinger 
effect); and for the KH model the size of the elastic range 
is taken to be constant which does not represent the actual 
behaviour of the structural steel'L In the case of the 2SM 
this effect is accurately taken into account through equation 
(3), which has the effect of softening the hysteresis curve 
(reduction in stiffness), leading to a lower value of the 
buckling load capacity. And, secondly, the 2SM correctly 
treats the yield plateau and cyclic strain hardening of the 
material. This leads to an accurate prediction of the axial 
load-midspan deflection [see Figure 6b(2SM)] for the col- 
umn, since the residual deflection of the column at the end 
of the previous tensioning has a large effect on the buckling 
load capacity and subsequent cyclic behaviour. As can be 
noticed from Figure 6b, the progress of buckling is differ- 
ent for each material model. In the case of the IH model, 
in spite of large progress in buckling (see Figure 6b), the 
buckling load capacity does not decrease significantly due 
to the larger cyclic strain hardening. 

As shown in Figures 6 and 7, the 2SM predicts all of 
the above discussed experimentally observed hysteretic 
behaviour of the column much better than the other 
material models. 

Figures 8 and 9 compare the experimentally and analyti- 
cal (2SM) axial load-axial displacement and axial load- 
midspan deflection relationships for the pin-ended pris- 
matic columns of effective slenderness ratios KL/r = 80.23 
and 120.66, respectively. As shown in these figures, the 
predicted results are quite close to the experimental data, 
and similar observations as in the previous example can 
be made. 

At this point it is interesting to note that Nonaka 23 also 
attempted to predict the hysteretic behaviour of a pin-ended 
prismatic column subjected to repeated axial loading, using 
a general elastic-plastic solution. Elastic-perfectly plastic 
behaviour was assumed in the analysis under the combined 
action of axial force and bending moment. Consequently, 
despite the simplicity of the solution, it has a demerit in the 
prediction that a plastically deformed column completely 



666 Structural steel members under cyclic loading: I. H. P. Mamaghani et  a l .  

P "zx--~ / ~ ' ~ " ~ - P ~  

v + ~0 ~ ' "  ~:~;a "" 

P (kN) 60 

-60 

P (kN) 60 

• 0 

~ u  (rnm) 

Expt a7 

-60 

~ /  Expt. 17 

P (kN) 60 P (kN) 6 0 ~  

, o 

 ltv 
If/" 2sM 

-6o l~ (b) 
Figure8 Comparison between predicted and exper imental  
results: (a) axial load P-axial  displacement u; (b) axial load P- 
midspan deflection v. (KL/r=80.23, L=349 mm, b=  15.21 mm, 
h = 15.07 mm, ~o = 0.1%L, Cv= 229.0 MPa, E= 206.7 GPa, 
~,= 0.8%) 

P ' ~ A ~  ___._...,..~",,'~- P 

v +  ~o ~ - := 
I, L - u  ~ u  

P (kN) 40[ ~ P (kN) 40 

- 2 / / ~  u ! m : ) ~ / ~ f  v (20mm' 

P (kN) 40 

-60 

P (kN) 40 

2SM 

(a) -60 

Figure9 Comparison between predicted and experimental 
results: (a) axial load P-axial displacement u; (b) axial load P- 
midspan deflection v. (KL/r= 120.66, L= 521 mm, 
b=  15.42 mm, h= 14.96 mm, 6o = 0.1%L, ~v= 229.0 MPa, 
E= 206.7 GPa, ~]t= 0.8%) 

restores its full strength and initial straightness upon the 
reversion of the axial displacement 23, due to the neglect 
of the spread of plasticity, Bauschinger effect and strain 
hardening of the material. This is in contrast to the actual 
observation that a plastically deformed column hardly 
becomes straight again through mere extension 23. This dis- 
advantage has been overcome by the developed formulation 
(2SM) as discussed above. 

4.2. Pin-ended tubular column 

Figure 10 compares the experimentaP and analytical axial 
load-axial displacement hysteretic behaviour for a pin- 
ended tubular column of effective slenderness ratio KL/r = 
115, length L=2300  mm, outer diameter D=60.33  mm 

and wall thickness t = 3.91 mm. Tim specimen has material 
properties of yield stress o;.= 379.0 MPa and Young's 
modulus E = 197.0 GPa. As can be seen from Figure 10, 
the load carrying capacity rapidly decreased after the initial 
buckling due to yielding of the section at midspan of the 
specimen. The buckling continues until an axial shortening 
of 82 mm occurs, giving rise to 350 mm lateral deflection 
in the experiment. The corresponding lateral deflection pre- 
dicted by the 2SM is 300 mm. The large reduction in the 
buckling load capacity is observed in both experiment and 
prediction in the second cycle. As can be seen in Figure 10, 
the developed formulation using the 2SM predicts the 
experiment quite well. 

4.3. Tubular beam-columns of strut type 

Beam-columns of strut type are fixed-ended bracing mem- 
bers subjected to constant lateral loads Q, and cyclic axial 
displacements u, (see Figure 11) j. These members are 
widely used in offshore steel platforms and space truss 
structures. The cyclic behaviour of the struts has been the 
subject of intensive research in recent years. Among others, 
they have been studied experimentally by Sherman j8 and 
theoretically by Chen and Han 1,7. The loading conditions, 
cross-sectional properties and dimensions of the struts 
reported in Reference 1 are used in the present study. 

Using the developed formulation (2SM), a series of 
numerical studies on the cyclic behaviour of struts are car- 
ried out and the results are compared with the test data ~8. 
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Figure 11 Comparison between predicted and experimental 
results: (a) axial load P-axial displacement u; (b) axial load P- 
midspan deflection v. (KL/r= 72, L = 5720 mm, D= 114.0 mm, 
t=2.3 mm, ¢v=289 MPa, Q=O.4Q v, Qv=9.12 kN, E= 200.0 GPa) 

Figures 11 and 12 show axial load-axial shortening and 
axial load-midspan deflection for two typical examples, 
with material constants, dimensions, boundary and loading 
conditions as shown (see captions of Figures 11 and 12). 
The specimens have an effective slenderness ratio of Kl/r = 
72 and are subjected to lateral load ratios of Q/Qy = 0.4 

and 0.2, respectively. Q is the lateral point load and Qy is 
the value of Q which causes first yield in a strut with no 
axial load applied. An initial imperfection and residual 
stress are not considered in these examples. 

After applying the constant lateral load of Q at midspan, 
the specimen is first loaded in compression. The 2SM, KH 
and IH models simulate the experiments quite well in the 
pre- and post-buckling stages of axial deformation (for 
example, see path OAB in Figure 11). Upon reversal of the 
axial deformation in tension (path BCD) and reloading in 
compression (path DEF), the 2SM provides a relatively 
closer fit to the test data as compared with the other models, 
owing to the same reasons mentioned in the previous 
examples. As shown in Figures 11 and 12, except for the 
2SM the buckling load capacity in the second cycle is pre- 
dicted to be higher than that of the experiments (i.e. at point 
E in Figure 11). 
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Figure 12 Comparison between predicted and experimental 
results: (a) axial load P-axial displacement u; (b) axial load P- 
midspan deflection v. (KL/r=72, Q=O.2Q v) (key as in 
Figure 11) 
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5. Effect of residual stress 

The effect of residual stress on the cyclic behaviour of steel 
members is examined using the developed formulation. As 
a typical example, the effect of longitudinal residual 
stresses produced due to welding (it is assumed that the 
specimen is built up by welding of four plates), on the cyc- 
lic behaviour of a pin-ended column with a hollow rect- 
angular section is shown in Figure 13. The member of 
effective slenderness ratio KL/r = 70, length L = 3150 mm, 
width b = 150 mm, height h = 110 mm and wall thickness 
t=4.5 mm was subjected to cyclic axial loading. The 
material was assumed to be SS400 steel with yield stress 
o~.=265.9MPa, Young's modulus E =  197GPa, and a 
yield plateau range eft = 10Ey. The cross-section was sub- 
divided into 30 (3 x 10) and 15 elemental areas in the 
flanges and webs, respectively (Figure 3). The assumed 
residual stress distribution over the cross-section is also 
shown in Figure 3, and is uniform along the entire length 
on the member. The tensile and compressive residual 
stresses are taken as o'rt = ~ry and ~rr,. = 0.4~ry, respectively. 

The normalized axial load P/Py-axial displacement U/Uy 
relationship, shown in Figure 13, indicates that the initial 
buckling load capacity decreases by 15%, from P/Py = 0.84 
(corresponding u/u~, = 0.846) to P/Px = 0.71 (U/Uy = 0.910), 
due to residual stresses. Here, Py is the squash load and uy 
is the yield displacement in tension for the column. The 
obtained results indicate that the residual stresses have 
almost no effect on the subsequent cyclic behaviour of the 
column, (see Figure 13). (Also, experimental studies on the 
inelastic behaviour of steel frames subjected to vertical and 
monotonic lateral loading, reported by Wakabayashi et 
al. 24, indicate that annealing does not affect overall frame 
behaviour.) 

From the mechanical point of view these observations 
can be explained as follows. Residual stresses cause the 
fibres with an initial compressive stress to yield before the 
applied stress reaches the yield strength of the material. 
Then, yielding spreads progressively without significant 
strain hardening due to the existence of the yield plateau, 
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Figure 13 Effect of residual stress; normalized axial load P/Pv- 
axial displacement u/uvfor a pin-ended tubular column. (KL/r= 
70, L=3150mm, b=150.0mm,  h=110.0mm, t=4 .5mm,  
80 = 0.1%L, ~v= 265.9 MPa, E= 197 GPa, E$t= 10~v, O'rt= O" v and 
~rc = 0.4cry) 
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as the load increases monotonically before unloading starts. 
Initially, this causes a reduction in compressive strength of 
the member, while later both of the response curves, with 
and without residual stress, almost coincide as can be seen 
in Figure 13. At this stage, the residual stresses produced 
due to plastic deformation play a dominant role in the sub- 
sequent cyclic behaviour of the column as compared to the 
initial residual stresses. That is, the effect of initial residual 
stresses on the subsequent cyclic behaviour significantly 
decreases (see Figure 13). 

6. Conclusions 

The present paper is concerned with the cyclic inelastic 
large deflection analysis of structural steel members, such 
as pin-ended columns and beam-columns of strut type. An 
elastoplastic finite element formulation for beam-columns, 
accounting for both the material and geometrical nonlin- 
earities, was developed and implemented in the computer 
program FEAP used in the analysis. The geometrical non- 
linearity was considered using the modified approximate 
updated Lagrangian description of motion. The 2SM, 
recently developed by the authors, was employed for 
material nonlinearity. The model accurately takes into 
account the experimentally observed cyclic behaviour of 
structural steel, even within the yield plateau which is an 
important characteristic of this material, the decrease and 
disappearance of the yield plateau, reduction of the elastic 
range, and cyclic strain hardening. 

The cyclic elastoplastic performance of the formulation 
was compared with the experimental results as well as with 
those obtained using the EPP, KH and IH material models. 
It was shown that: 

• The formulation is applicable for any geometry of the 
cross-section and takes into account the spread of plas- 
ticity and history-dependent parameters which are 
important for the accuracy of the analysis. 

• The results obtained indicate that the reduction of the 
elastic range has a significant effect of reducing the 
maximum compressive resistance under load reversals. 

• The residual deflection (progress in buckling) of the steel 
members at the end of previous tensioning has a large 
effect on the reduction of the buckling load capacity and 
subsequent cyclic behaviour. This behaviour is accu- 
rately predicted by the developed formulation. 

• The proposed formulation accurately takes into account 
the important cyclic characteristics of axially loaded col- 
umns and beam-columns, such as yielding in tension and 
buckling under compression, inelastic behaviour prior to 
buckling in compression, degradation of postbuckling 
compressive resistance, deterioration of buckling load 
capacity in subsequent inelastic cycles, progressive 
degradation of tangent modulus during the cycles, and 
plastic elongation in the column length. 

• The predicted hysteretic behaviour of structural steel 
members using the 2SM was in good agreement with 
the experimental results compared with the EPP, KH and 
IH models. 

• The initial residual stress significantly decreases the 
initial buckling load capacity and has almost no effect 
on the subsequent cyclic behaviour of the column. 

Comparison between the experimental results and predic- 
tions indicates that these observations can be mainly attri- 

buted to the accuracy of the 2SM employed in the analyses. 
This leads to the conclusion that the 2SM is quite promising 
to account for the material nonlinearity of structural steels 
under cyclic loading. Therefore, it can be used in the non- 
linear structural analysis; to generate parametric data; and 
to check the accuracy of more simplified models. 
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