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a b s t r a c t

We propose a novel trust framework to address the issue of ‘‘Can Alice trust Bob on a service?’’ in
large online social networks (OSNs). Many models have been proposed for constructing and calculating
trust. However, two common shortcomings make them less practical, especially in large OSNs: the
information used to construct trust is (1) usually too complicated to get or maintain, that is, it is
resource consuming; and (2) usually subjective and changeable, which makes it vulnerable to vicious
nodes. With those problems in mind, we focus on generating small trusted graphs for large OSNs, which
can be used to make previous trust evaluation algorithms more efficient and practical. We show how
to preprocess a social network (PSN) by developing a simple and practical user-domain-based trusted
acquaintance chain discovery algorithm through using the small-world network characteristics of online
social networks and taking advantage of ‘‘weak ties’’. Then, we present how to build a trust network (BTN)
and generate a trusted graph (GTG) with the adjustable width breadth-first search algorithms. To validate
the effectiveness of ourwork and to evaluate the quality of the generated trusted graph, we conductmany
experiments with the real data set from Epinions.com. Our work is the first that focuses on generating
small trusted graphs for large online social networks, andwe explore the stable and objective information
(such as domain) for inferring trust.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Millions of people are joining online social networks every
day, interacting with others who they did not know before.
Establishing trust among those indirectly connected users plays
a vital role in improving the quality of social network services
and enforcing the security for them. The way in which a system
discovers, records, and utilizes reputation information to form
trust, and uses trust to influence a user’s behavior, is referred
to as a ‘‘reputation and trust-based system’’ [1]. Reputation and
trust systems are seen as ‘‘soft security’’ mechanisms, which use
collaborative methods for assessing the behavior of members
in the community against the ethical norms, making it possible
to identify and sanction those participants who breach the
norms, and to recognize and reward members who adhere to
the norms [2]. Two common shortcomings make previous trust
systems less practical, especially in large OSNs, that is, the
information used to construct trust is (1) usually too complicated
to get or maintain—it is resource consuming; and (2) usually
subjective and changeable, which makes it vulnerable to vicious
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nodes. With those problems inmind, we focus on generating small
trusted graphs for large OSNs, which can be used to make previous
trust evaluation algorithms more efficient and practical, as well as
resistant to vicious attacks.

1.1. Application scenario and our motivation

Most interactions between two users in online social networks
can be brokendown into the scenario seen in Fig. 1: Alice is a service
requester, and Bob is a service provider. Bob is the target whose trust
is to be evaluated along with the topic of one of his services, and
Alice’s question, ‘‘Can I trust Bob on this service?’’

An effective trust evaluation algorithm is expected to provide
a proper answer for Alice. However, most of the existing trust
evaluation algorithms are only effective on small-scale networks,
which are often represented by several short trusted paths or small
trusted graphs. Furthermore, how we can get such small trusted
graphs has not been solved in any related literature. Therefore,
there is a large gapbetween large social networks and small trusted
graphs [3,4]. Our motivation is to bridge this gap.

In this paper, we mainly focus on Web-based social networks
where users can provide user-generated content and construct
a list of trusted neighbors, and most importantly, the content
can be classified into categories by design. The categories are
important, for they will be used to define the users’ domain,
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Fig. 1. A scenario of trust evaluation.

which will be further used to compute the social distance between
a user and his neighbor. Based on this, we propose the PSN
(preprocessing the social network) algorithm. The fundamental
theory is Granovetter’s [5] famous theory (a highly-influential
sociology paper with over 20,000 citations, according to Google
Scholar). This theory, known as ‘‘The Strength of Weak Ties’’,
discussed the spread of information in social networks. In his
theory, it is discovered that weak ties are dramatically valuable,
because they are usually the source of new information.

Let us take a look at the scenario in Fig. 1. To make a decision
about whether or not to trust Bob, it is natural for Alice to ask
her neighbors for suggestions. Next, her neighbors will ask their
own neighbors. They will continue to repeat this asking process
until they connect with someone who knows Bob. This process is
a typical breadth-first search.

It has been widely documented that social networks bear sig-
nificant traits of small-world networks [6]. Small-world network
theory tells us that there exist short path(s) for any two persons
(at leastmost, if not all) in theworld. However, in online social net-
works, a user usually has hundreds of neighbors, which results in
the high complexity of the breadth-first search. So, it is very chal-
lenging to efficiently locate the short paths hiddenwithin the enor-
mous network.

Some existing research provided a solution that sets a limit
to the search length, based on small-world network theory, such
as the work in [7,8]; others made use of small-world network
models for analysis or simulation. For instance, Watts’s small-
world network model [6] was used in [9,10]. In this paper, we
propose a flexible approach in which the width of the breadth-
first search is adjustable. Our key idea is: (1) to select long contacts
to reach the target quickly, according to the theory of ‘‘weak
ties’’; and (2) to discover capable neighbors who can give effective
suggestions in each step of the breadth-first search based on their
topic-related degrees and target-related degrees.

1.2. The concept of trust

We take the natural definition of ‘‘trust’’, that is, Golbeck’s [9]
definition in the context of a social web where ‘‘trust in a person is
a commitment to an action based on a belief that the future actions
of that person will lead to a good outcome’’.

We also distinguish ‘‘referral trust’’ from ‘‘functional trust’’,
which were first proposed by Jøsang [11]. In our work, ‘‘referral
trust’’ represents the ability to recommend a good target, while
‘‘functional trust’’ represents the true ability of a target from his
direct neighbor’s point of view. For example, Alice needs to have
her car serviced, so she asks Bob for his advice about where to
find a good car mechanic in town. Bob is thus trusted by Alice to
know about a good car mechanic (which is called ‘‘referral trust’’).
Also, Bob trusts Eric to be a good carmechanic because of his direct
experience; this kind of trust is called ‘‘functional trust’’.

Another challenge with trust evaluation is taking proper
information for inferring trust through trusted paths. Frequently
used information, such as reputation, similarity, and explicit
ratings, is often subjective, and can be easily changed by users.
In this paper, we explore stable and objective information for
inferring trust.

1.3. Our contribution

Based on the above analysis, we propose a trust framework
called SWTrust. In this paper, we do not extend our work into
developing integrated trust evaluation models, but rather, we
focus on generating trusted graphs from large online social
networks that could then be incorporated in the existing models
to make them more efficient and practical. Our key ideas and
contributions are as follows:
• In order to solve the key challenge of ‘‘discovering short

trusted paths efficiently’’, we propose a novel user-domain-
based trusted acquaintance chain discovery algorithm for pre-
processing a large social network (PSN), based on the theory of
‘‘weak ties’’.
• We provide both centralized and distributed breadth-first

search algorithms for building a trust network, based on the
trusted acquaintance chains discovered by the PSN process.
Moreover, we differentiate between referral trust and functional
trust, and explore the stable and objective information (such
as domain) for inferring trust, which can weaken the effect of
vicious nodes.
• We conduct a lot of experiments with the data set from

Epinions.com, and the results show the effectiveness of our
work. In addition, we obtain many interesting and useful
findings from the experiments.

The remainder of this paper is organized as follows: Section 2
surveys related work in the literature and presents our approach.
Section 3 describes the overview of the SWTrust framework.
Sections 4–6 respectively describe one of the three key steps
of the SWTrust framework. Section 7 describes the experimental
design, shows the numerical results that are obtained through the
evaluation of SWTrust, and provides their physical interpretations.
Finally, Section 8 concludes this paper and suggests future work.

2. Related work

Relationship-oriented networking tries to provide better secu-
rity, usability, and trust in the system, and allows different users
and institutions to build trust relationships within networks simi-
lar to those in the real world [12]. Online social networks are one
of such networks. Therefore, building trust relationships is a key
issue for online social networks.

Wang and Wu proposed FlowTrust to infer trust with network
flows [3] and MeTrust for trust management with multi-trusted
paths, based on multi-dimensional evidence [4]. In both papers,
they presented the strong necessity of generating small trusted
graphs.

Mármol and Pérez [13] summarized features of trust and
reputation models, in which ‘‘gathering behavioral information,
scoring and ranking entities, entity selection, transaction, and
rewarding and punishing entities’’ are five components of a
complete model. In this paper, we do not extend our work into
developing an integrated trust evaluation model, but rather, we
focus on generating trusted graphs that could then be incorporated
in the existing models, which can be taken as the first three
components of a complete model.

2.1. Local and global trust

The advantages and disadvantages of local and global trust
metrics are discussed in detail in [7]. The authors pointed out
that the local trust metric is more accurate when considering a
personal view. In this paper, we mainly go the way of the local



50 W. Jiang et al. / Future Generation Computer Systems 31 (2014) 48–58
metric, i.e., computing personalized trust value with mainly local
information, which is also consistent with small-world network
theory.

However, to compute trust for all users, a local trust metric
is more complex than a global one. Speeding up the web servers
is one of the main architectural challenges of the existing social
websites [14]. A more reasonable setting for a local trust metric
would be one inwhich every user runs it from his personal point of
view [7]. In this work, we provide both centralized and distributed
algorithms. In a distributed setting, each user can select next hops,
based on his own knowledge of connected neighbors, using his
own computer or mobile device.

2.2. Transitivity of trust

The primary property of trust used in this work is transitivity.
That is, if A highly trusts B, and B highly trusts C , then it is with high
probability that A will trust C .

Transitive trust inference, usually based on graph theory, is
facing the challenge of finding short and trusted paths for two
given users. The challenge is even more serious in online social
networks, because each user may have dozens or hundreds of
neighbors; choosing whom will reach the target is really difficult
to decide. The main work of this paper is to address this challenge.
Granovetter [5] presented the famous theory, ‘‘The Strength of
Weak Ties’’, on the spread of information in social networks. Our
work in this paper also takes advantage of weak ties in that
we differentiate between local neighbors and long contacts of a
user, and we select more long contacts when discovering trusted
acquaintance chains.

When measuring trust based on path discovery, the length of
a path can become an issue [15]. Golbeck found that it is more
accurate to predict trust with a shorter path [9]. Jøsang et al. [16]
also pointed out the possibility that trust can be diluted through
the propagation process. The longer a chain of trusting a user is,
the weaker the predicted trust.

However, Lesani and Montazeri [17] suggested that the
information inferred from a long chain of people with high trust
values may be much more precise than the information inferred
from a short chain of people with low trust values. Cho et al. [18]
defined trust availability and path reliability, and identified the
optimal length of a trust chain that generates the most accurate
trust without revealing risk, which is based on a tradeoff between
trust availability and path reliability over trust space.

Kim et al. [15] compared and evaluated how the length of
available trusted paths and aggregation methods affect prediction
accuracy. They proposed four strategies to predict the level of trust
and evaluate the prediction accuracy: the strategy for weighted
mean aggregation among shortest paths, min–max aggregation
among shortest paths, weighted mean aggregation among all
paths, and min–max aggregation among all paths. Among those
four, they found that the strategy of weighted mean aggregation
among all paths is the best.

We implement the four strategies in [15] to test the effective-
ness of our work, and we extend it in three ways: firstly, we gen-
erate trusted graphs for large online social networks, making use
of its own characteristics based on the theory of ‘‘weak ties’’; sec-
ondly, we evaluate the quality of trusted graphs with the exten-
sion of eight strategies in Table 4 for predicting trust, using the data
from the real online social network of Epinions.com; furthermore,
besides path length and trust evaluation strategies, we test the ef-
fects of several other factors that may influence the accuracy.

2.3. Information for trust in online social networks

Caverleea et al. [19] presented the SocialTrust framework for
providing a network-wide perspective on the trust of all users in
online social networks. In SocialTrust, the authors studied three
key factors for trust establishment in online social networks of
trust group feedback, distinguishing the user’s relationship quality
from trust, and tracking user behavior, and describing a principled
approach for assessing each component.

Skopik et al. [20] presented a novel approach addressing
the need for flexible discovery and the involvement of experts
and knowledge workers in distributed and cross organizational
collaboration scenarios, in which they focused on the notion
of social trust in collaborative networks, and demonstrated the
inference of trust depending on captured collaboration data that
considers individual trust perceptions.

De Meo et al. [21] proposed a general approach to recommend
similar users, resources, and social networks to a user, which
operates in a social internetworking context instead of on a single
social network, considering both explicit and implicit relationships
and taking into account both local and global information.

Kim et al. [22] proposed a trust-prediction framework in rating-
based experience sharing social networks, which can work even
without a web of trust. Their work measures a degree of trust
based onusers’ expertise andpreferences regarding topics (i.e., cat-
egories), using users’ feedback rating data, which is available and
much denser than a web of trust.

While the above ideas are good, the information for trust is
difficult to get or maintain. In this paper, we propose a simple
and practical method that needs little information for inferring
trust. Thanks to the theory of ‘‘weak ties’’, we find domain, which
is objective and stable for use.

3. Overview of SWTrust

3.1. Terms and problem definition

In this paper, we use the following terms.
Trust network: a trust network can be formed based on transitive

trust, with each link representing the trust relationships between
two participants.

Trusted graph: a trusted graph is a sub-network of a trust net-
work, starting from a trustor, ending at a trustee, and connected by
a set of trusted paths.

Trustor: a trustor is a user who wants to know whether to trust
someone else and starts the transitive trust evaluation.

Trustee: a trustee is a user who is being considered for interac-
tion and is the end of a transitive trust evaluation.

Domain: a domain is a basic unit in which members share some
specific interests, such as a sub-category of goods in Epinions.com.

We want to emphasize that domain is different from group
in some other research, in that domain is extracted from the
architecture of online social websites, while group is usually user-
defined; correspondingly, the number and attributes of domains
are relatively stable, while those of groups are usually changeable.

Domain is also different from attribute, which is frequently used
in the definition of similarity, in that domain is a broader concept
that can reflect the objective behavior of a user, while attribute is
usually more subjective.

Active domain: a user’s active domain includes all of the domains
in which he has participated; for instance, the place where he
wrote reviews of goods and gave ratings to other’s reviews, etc.

Topic: a topic is the reason why or for what the trustor wants to
know the trustee; usually it is a service provided by the trustee.

Let S be a social network, which can be seen as a large graph.
Our work has two sub-tasks. Firstly, given two nodes (trustor and
trustee) of S, find as many short and trusted trustor–trustee paths
necessary to efficiently construct a subgraph, that is, we generate
a trusted graph from a large social network. Secondly, evaluate the
quality of a trusted graph. The latter is as challenging as the former
because there is no standard test bed for trust models.
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Fig. 2. The architecture of the SWTrust framework.

3.2. Architecture

SWTrust has three key steps, namely, preprocessing a social
network (PSN), building a trust network (BTN), and generating
a trusted graph (GTG) (see Fig. 2). While the architecture is
suitable to most online social networks, the following methods
are more appropriate for those online social websites in which it
is easy to define domain from the network architecture, such as
Epinions.com.

Currently, we have not dealt with a social network such as
Twitter, since it is difficult to define domains/categories for the
content in Twitter, which is the key to our proposed user-domain-
based trusted acquaintance discovery algorithm. However, after
using the data mining technique to preprocess the content in
Twitter, which can classify the content into different categories
with different topics, our method may be used to predict the trust
relationships between users in Twitter.

3.3. Malicious behavior

Reputation and trust systems are seen as ‘‘soft security’’
mechanisms, which use collaborative methods for assessing the
behavior of members in the community against the ethical norms,
making it possible to identify and sanction those participants
who breach the norms, and to recognize and reward members
who adhere to the norms [2]. Our work aims to construct a trust
evaluation system efficiently. We consider two kinds of malicious
behavior: one is a noncollusive setting, that is, a vicious node gives
low trust to all of his neighbors; another is a collusive setting, in
which a vicious node gives low trust to good nodes and high trust
to vicious nodes.

Wedealwith the attack behaviors in threeways: (1) in each step
where we select the next hops, we select from the user’s trusted
acquaintance list; (2) we take the static and objective information
for referring trust along trusted paths, which cannot be changed
at will; and (3) we deal with trust conflicts when aggregating the
functional trust of direct neighbors.

4. PSN: preprocessing a online social network

Our work in this section is based on the following intuitions:

• Whenwe turn to someone for help, we always choose someone
who is related to the thing we are doing, i.e., topic related.
• When we want to know the target, we will naturally turn to

someone who is related to the target, i.e., target related.

4.1. Preparation

Asmentioned before, themain goal of our work is to provide an
answer to Alice’s question of ‘‘Can I trust the target on this topic?’’
We try to gain further insight and try to determine what Alice will
do. Generally, she will turn to some of her friends for suggestions;
then comes the next question, ‘‘Whowill she ask for help?’’We find
the following common features of those selected friends:

• More or less, they are all related to the topic, because only that
selection will give her effective suggestions.
• It is better if they are related to the target.
• If no friend is related to the topic and the target, then it is beyond

the scope of this paper. We will have nothing else to do other
than say ‘‘good luck’’. Alice herself will take the risk of trying.
However, it is rare that people will do something completely
new if none of their friends know anything about it.

Based on the above insights, we propose the PSN method to
preprocess the social network before any further steps. We make
the following representations for further processing.

• There are a total of N domains in the social network, denoted
as d1, d2, . . . , dN (as mentioned before, a domain is a basic
unit); User i′s active domain is denoted as Di, which may
include several domains. We represent Di with a binary string,
i1, i2, . . . , iN , if Di includes dj; then ij = 1, or else ij = 0. For
example, when N = 5,Di includes three domains, d1, d2, d5,
and then Di = 11001.
• User i has m neighbors, ni1, . . . , nim, and their active domains

are denoted as Di1, . . . ,Dim. Similarly, topic ’s active domain is
Dtopic , and target ’s active domain is Dtarget .

Without loss of generality, we assume that user ihas knowledge
of the active domain of his neighbors, the topic and the target. We
define three operators for computing the relations between user i
and his neighbor nij.

• Definition 1: � operator counts the number of bits of ‘‘1’’ that
have the same position inDi andDij, i.e., the number of common
domains between user i and his neighbor nij. For example,
11100 � 11011 = 2, 11100 � 00011 = 0.
• Definition 2: ◦ operator counts the number of bits of ‘‘1’’ in

Di, i.e., the number of domains where user i is involved. For
example, ◦11100 = 3.
• Definition 3: the social distance from i to his neighbor nij is

d(i, ij) = ◦Dij − (Di � Dij) + 1. This definition extends the one
presented in [23], in which d(i, ij) = 1 if i and nij belong to
any common domain. In our work, d(i, ij) = 1 only if Dij ⊆ Di.
The basic intuition is that: if there is one domain where nij is
involved but user i is not, user i will not know nij’s behavior in
that domain, and consequently cannot give a proper opinion of
him when considering that domain. The concept here is similar
to the social difference, which we usually use in real life.

Based on the above three new operators, we give more defini-
tions below.

Definition 4: topic related degree of user i is x(i) = Dtopic � Di.
Definition 5: target related degree of user i is y(i) = Dtarget � Di.
Definition 6: the priority of neighbor j to be selected as the next

hop by i is:

p(i, j) =
λ1 ∗ x(j)+ λ2 ∗ y(j)
◦Dtopic + ◦Dtarget

.

Note that λ1 and λ2 are adjustable parameters in the range of
[0, 1], which can be set by each user.

We can see from Definition 6 that j’s priority to be selected as
the next hop is only related to the topic, the target, and j’s topic
related degree and target related degree; user i cannot change j’s
priority at will.
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Fig. 3. (a) The three categories of local neighbors, longer, and longest contacts. (b)
Selection of next hop neighbors.

4.2. The PSN Process

The PSN process is as follows, which we call user-domain-based
trusted acquaintance chain discovery. Our basic intuition is that long
contacts can reach the targetmore quickly, according to the theory
of ‘‘weak ties’’. Thus, we differentiate between local neighbors and
long contacts, and we prefer to choose more long contacts when
selecting next hops.

• Divide the neighbors of user i into three categories by their
social distance from i, and one neighbor can be in only one
category.
Category 1: local neighbors. d(i, ij) = 1. In this category, Dij ⊆

Di, which indicates that the two users have quite an intimate
connection.
Category 2: longer contact. d(i, ij) > 1, and d(i, ij) < ◦Dij. In
this category, there ismore than one (but not all) common basic
domain betweenuser i andhis neighbornij, which indicates that
the two users do have a connection, but may not have a very
intimate connection. Therefore, nij is the longer contact of user i.
Category 3: longest contact. d(i, ij) > 1, and d(i, ij) = ◦Dij. In
this category, there is only one common domain between user
i and his neighbor nij. Thus, nij is the longest contact of user i.
• In each Category, sort the neighbors with their priority in

descending order.
• Select next hop neighbors uniformly from the three categories

in this way: firstly, choose the one with the highest priority in
Category 3; then, choose the one with the highest priority in
Category 2; finally, choose the one with the highest priority in
Category 1. If it is necessary to choose more nodes, do the same
process iteratively with the remaining nodes.

Fig. 3(a) shows the three categories of local neighbors, longer
contacts, and longest contacts. Fig. 3(b) shows the priority and
category-based selection of next hop neighbors.

Note that neighbors with the same social distance may be
classified into different categories. The difference is that a neighbor
in Category 3 has only one common domain with user i, while
in Category 2, it is at least two. The more domains in common,
the more similarities between them; correspondingly, the less
difference.

5. BTN: building the trust network

To build a trust network from SOURCE to SINK, two things need
to be done:

• Find as many short paths for the two given nodes as possible,
which is a typical breadth-first search, just as was mentioned
before. For each step, we use PSN to discover trusted acquain-
tance chains.
• Add trust information between directly connected nodes.

We provide two methods for the breadth-first search: one is a
centralized method, which is proper for small-scale online social
networks, such as a social network for a university, a company,
etc. The other one is a distributed method. A distributed approach
is more appropriate for large online social networks, which can
lighten the burden on the servers.

In the following Algorithms 1–3, let G be the social network
after the PSN process, let L be the max length of paths, and let c be
used to control the path length. Let L+(u) denote the set of trusted
acquaintances of u, which are selected by the PSN process and are
sorted in descending order by their priorities in each category of
longest contacts, longer contacts, and local neighbors. Let Rsource
denote the unvisited nodes.

Algorithm 1 CBFS(G, SOURCE, SINK)
1: Input: G. SOURCE, a trustor; SINK, a trustee.
2: Output: D, a path set from SOURCE to SINK.
3: c ← L− 1. Let SOURCE be the current node.
4: for each neighbor u in Rsource of current node do
5: if u is SINK then
6: do backtracking to get a path P , add P into D.
7: Continue to next loop.
8: else
9: if c > 0 then
10: Add all nodes in L+(u) into Rsource . c ← c − 1.
11: Set u as visited.
12: end if
13: end if
14: end for

Algorithm 2 DBFS(G, SOURCE, SINK)
1: Input: G. SOURCE, a trustor; SINK, a trustee.
2: Output: D, a path set from SOURCE to SINK.
3: c ← L− 1. Let SOURCE be the current node.
4: for each unvisited neighbor u of current node do
5: if u is SINK then
6: u sends response backward to his requester, add u to responder; Repeat until a

response is sent to SOURCE. Reverse responder to get a path P , then add P into D.
7: else
8: if c > 0 then
9: c ← c − 1, u sends request to L+(u).
10: Set u as visited.
11: end if
12: end if
13: end for

Algorithm 3 CGTG(D, SOURCE, SINK)
1: Input: D. SOURCE, a trustor; SINK, a trustee.
2: Output: Set D∗ , a trusted path set from SOURCE to SINK.
3: for each path P in D do
4: Delete P if the length of P is bigger than L.
5: Delete P if any RT (i, j) of P is lower than trust threshold.
6: end for

5.1. Centralized breadth-first search: CBFS

CBFS (Algorithm 1) is executed in a centralized server, where
the network information is stored. Therefore, the server will
have to provide both storage and computation. If many users are
requesting trust evaluations of someone else, the server will be
very busy.

5.2. Distributed breadth-first search: DBFS

In DBFS (Algorithm 2), the selection for next hop neighbors is
done by the current user. After that, he or she will send a request
to the selected neighbors to continue this process, and will wait
for the response back from them. The following representations are
prepared for describing the process.
• Let requester be the user who wants to know the answer to the

question of ‘‘howabout the trustee’s reputation according to the
topic ’’. Of course, the trustor is the first requester.
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Fig. 4. An example of the BTN and GTG process.
• Let request contain the information of requester, topic, target,
and the value of c.
• Let response contain the information of responder and the value

of c.
• Let responder be the sequence of nodes who have sent a

response. Reverse a responder from trustee to trustor will get a
trustor–trustee path.

Take Fig. 4(a) for example; after running CBFS or DBFS on
Fig. 4(a), we will get paths: SOURCE-1-SINK, SOURCE-2-6-9-SINK,
SOURCE-3-7-SINK, SOURCE-4-SINK. The edge e(3, 8) and node 8
are excluded because they cannot reach SINK. The path SOURCE-
2-5-9-SINK is also deleted because when node 5 is being visited,
its neighbor 9 has been visited by 6 (who has a higher priority than
5, since p(2, 6) = 0.8 and p(2, 5) = 0.7), and there is no other
neighbor available for 5 to reach the sink.

5.3. Defining trust between directly connected nodes

Our work in this paper differentiates between referral trust and
functional trust, which was presented by Jøsang et al. [11]. Take
Scenario 1 for instance; the referral trust fromAlice to her neighbor
(say, B) is the degree to which Alice believes that B can make an
appropriate evaluation of Bob, while functional trust is the realistic
assessment of Bob by his direct neighbors.

By applying referral trust to all of the edges except for the last
hop, and functional trust to the last hop, we can get the trust
network.

However,mining trust information for different social networks
is a challenging task that involves data mining and other tech-
niques, which is beyond the scope of this paper.

5.3.1. Referral trust
We define referral trust as the priority to be selected as the next

hop, which is in the range of [0, 1].
Definition 7: referral trust from i to j is equal to the priority of j to be
selected as the next hop by i:

RT (i, j) = p(i, j).

The referral trust, as it is defined in this paper, only uses the
information of domain, which is stable and objective, and cannot
be changed at will.

5.3.2. Functional trust
Since the main work of this paper is to discover short paths,

we only give a suggestion for defining functional trust. We can
consider several kinds of factors, such as social relations, explicit
ratings, reputation, and similarity.
• The first factor, social relations, has different meanings in

different environments. It can be a recommendation from an
expert, and a user who has such a recommendation will be
easily accepted in the network, as well as in real life. It can
also be the role in an organization, for instance, the leader of
a country is always to be taken as trustful. It can also be the
degree of importance for connectivity, such as the hub nodes.
• The second factor, ratings, involves subjective evaluations from

a user to others. Examples include ratings used in eBay or
Taobao (the most popular e-business website in China).
• The third factor, reputation, is a reflection of past behavior.
• The fourth factor, similarity, reflects commonalities from one

user to another. For example, suppose each user has three
attributes, a1, a2, a3, and two users have the same value for
a1, a2, then their similarity is 2/3.

6. GTG: generating the trusted graph

The goal of the GTG process is to select short, trusted paths
from the trust network. Since the trust network is quite small for
processing, we can do this in a centralized way.

6.1. CGTG: centralized GTG

CGTG (Algorithm 3) can be used to generate the trusted graph
in a centralized server. Let D represent the resulting path set from
the BTN process, let RT (i, j) represent the referral trust from node i
to node j, and let e(i, j) be an edge of a path.

Take Fig. 4(b) as an example. Suppose that we get the trust
values as labeled on the edges in Fig. 4(b), and the trust threshold
th = 0.5. After the GTG process, the path SOURCE-1-SINK will be
excluded, since the trust value from SOURCE to node 1 is lower
than th. Up until now, the trusted graph from SOURCE to SINK is
generated.

6.2. Trust conflict of trustee

In a trusted graph, a trustee may have several direct neighbors
who may have different opinions of him. Thus, we define the trust
conflict of a trustee to reflect the inconsistency. We calculate the
number of his neighborswhohave low trust of himand thenumber
of those who have high trust; then, the quotient is defined as trust
conflict. This definition can avoid an overly optimistic evaluation.

Definition 9: trust conflict of trustee:

TC(trustee) =
|ni : T (ni, trustee) < th|
|nj : T (nj, trustee) ≥ th|
(th is the threshold of trust).

We set the threshold of trust conflict as β = 1. If TC(trustee) ≥
β , which means that more than half (including half) of the
neighbors think lowly of the trustee, then the trustor would
likely not trust him. Therefore, only when TC(trustee) < β and
T (trustor, trustee) > th can the trustee be seen as trustworthy.
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Take Fig. 4(b) for example; TC(SINK) = 1/2 = 0.5, and
T (SOURCE, SINK) > 0.5, SINK will be seen as trustworthy. We
emphasize this concept because inconsistencies are always present
in real life.

7. Experiments

7.1. Experimental design

In order to test the performance of our work, we use a standard
evaluation technique in machine learning: leave one out. If there
is an edge between two nodes (say SOURCE and SINK), that edge
is masked and trust is calculated through a trusted graph from
SOURCE to SINK; then we compare the calculated value with the
masked value.

We mainly consider two metrics: connection coverage and trust
accuracy. Connection coverage refers to the ability of the algorithms
to provide a prediction. In this case, we compute the percentage
of trust relationships that are predictable, that is, we can find at
least one path that is shorter than the length threshold between
two users. Trust accuracy represents the ability of predicting that a
user will be trusted or not.

We design two separate groups of experiments for connection
coverage and trust accuracy.
• To test the effects of the PSN process on the connection coverage,

we record the number (denoted as n) of edges that have short
paths between the pair of nodes; then, connection coverage =
n/total edges. We carried out four sets of experiments (Table 1)
and compared the results.
• Based on the results of the coverage experiments, we further

analyze the short paths because we want to know how many
next hops are local neighbors, longer contacts, and longest
contacts.
• To test the trust accuracy, we redefined the accuracy metrics

in [8], as shown in Table 2, which includes absolute error,
precision, recall, and FScore. We use the FScore metric to
measure the accuracy using recall and precision jointly, since
there is a trade off between precision and recall.
In this paper, we use Trust State to represent when we only
consider whether to trust or not.
For accuracy experiments, we implement all eight common
strategies in Table 4, and we test the separate influence of each
possible factor. We also present a new SWTrust∗ algorithm
for comparison, which uses the idea behind the TidalTrust
algorithm [9]. In the original TidalTrust algorithm, it first
searches shortest paths from a source user to a target user. After
that, it backtracks from the target user, level by level, to the
source user through previously searched strongest (the path
that has the largest trust weight, i.e., most reliable) shortest
paths.

7.1.1. Data set and preprocess
We use the data set from Epinions.com [7], which was given

directly by Epinions staff to Paolo Massa. Yuan et al. have ex-
perimented with, and verified, the small-worldness of this data
set [24]. The data set contains 132,000 users who issued 841,372
statements (717,667 trusts and 123,705 distrusts), 1,560,144 ar-
ticles, and 13,668,319 article ratings. Users and Items are repre-
sented by anonymized numerical identifiers.

Epinions is an online communitywebsitewhere users canwrite
reviews about products and services, and can also rate other users’
reviews on a numerical scale. A review in this context can be seen
as content or service, and a review-writer is a service-provider
who wants to share his/her product experiences with community
members. The ratings for reviews are given by review-raters who
have read the reviews andhave evaluated the degree of helpfulness
of the reviews. Then, review-raters can be seen as service-users.
Table 1
The four experiments for connection coverage.

Note Meaning

k = all With PSN and selecting all neighbors
k = 18 With PSN and selecting at most 18 next hops
k = 9 With PSN and selecting at most 9 next hops
k = 3 With PSN and selecting at most 3 next hops

Table 2
The accuracy metrics.

Metrics Computing equation

Absolute error |trust calculated− actual trust|

Precision At∩Bt
Bt

Recall At∩Bt
At

FScore 2×recall×precision
recall+precision

At = |e(i, j) : i trusts j directly|.
Bt = |e(i, j) : i trusts j by trust calculated through algorithm|.

The data set is stored in three files. The first file is Trust/Distrust
information, in which MY_ID stores the ID of the member who
is making the trust/distrust statement, OTHER_ID is the ID of the
member being trusted/distrusted, VALUE is either 1 for trust and -
1 for distrust, and CREATION is the date onwhich the trust decision
was made.

The second file is Article Author information, in which
CONTENT_ID is the object ID of the article, AUTHOR_ID is the ID
of the user who wrote the article, and SUBJECT_ID is the ID of the
subject that the article is supposed to be about.

The third file is Article Ratings information, in which OBJECT_ID
is the object that is being rated, and it is the same as Content_ID in
the second file. MEMBER_ID stores the ID of the member who is
rating the object. Some other columns, that have little impact on
our experiments, are not mentioned here.

We can easily get a social network of trust relationships with
the first file, however, domain information is difficult to get. Since
Epinions.com is organized by goods, we make an assumption that
goods with continuous SUBJECT_IDs are in the same domain.

Then, we process the data set to get domain information for
each user: (1) sort the second file, with SUBJECT_IDs in ascending
order. There is a total of 1,560,144 rows, and we choose the first
50,000 (we choose a smaller data set). (2) There are a total of
3,142 un-duplicated SUBJECT_IDs after the filter operation. We
suppose that these SUBJECT_IDs are involved with 6 domains;
then, more than 500 SUBJECT_IDs are taken into a domain. In
this way, each SUBJECT_ID is related with a domain. (3) Return to
the second file, where there are a total of 20,075 un-duplicated
Author_IDs after the filter operation. We select the first 5,000.
Then, we make a program to collect domain information of all of
these 5,000 Author_IDs. (4) Finally, come to the first file. We first
delete the rows which show distrust (distrust is beyond the scope
of this paper). Then, we make another program to filter out the
User_IDs that are not included in the 5,000 Author_IDs of Step (3).
51,929 rows remained after delete self cycle (My_ID is the same as
Other_ID), and 51,888 rows and 3,168 nodes remain, which are the
edges and nodes of our experiments.

7.2. Evaluating the efficiency of generating a trusted graph

7.2.1. The connection coverage
Parameter settings:λ1 = λ2 = 1,max length varies in the range

of [2, 12]. Fig. 5(a) shows the coverage of different numbers of next
hops. Fig. 5(b) shows the average computing time of finding short
paths for each pair of nodes. As the number of next hops is reduced,
the coverage decreases a little, but the computing time decreased
dramatically (from 3.5547 to 0.7488 s on average), which shows
the effectiveness of the PSN algorithm. Moreover, the four sets of

http://www.epinions.com
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Fig. 5. The effect of the PSN algorithm.

Table 3
The proportion of three categories.

Local neighbors (%) Longer contacts (%) Longest contacts (%)

k = all 32.16 27.51 40.33
k = 9 31.41 27.45 41.14

experiments reach the max coverage when max length = 8, 7, 9,
and 10, respectively, which indicates that, if one node can reach
the other, the path between them will not be too long.

Furthermore, when k = 9, there is a total of 3,525,586 paths for
58,888 pairs of nodes. Thus, there are more than 59 short paths for
each pair of nodes on average; most nodes have multiple paths to
reach all other nodes. This finding verifies the small-world network
theory, in which there exist short paths for any two persons in the
world.

7.2.2. The proportion of local neighbors, longer contacts, and longest
contacts

Without loss of generality, we use the two path sets of k = all
and k = 9, with L = 5. For each path (n1, . . . , ni, ni+1, . . . , nk),
we compute the relation of ni and ni+1 to decide if ni+1 is the
local neighbor, longer contact, or longest contact of ni. Then, we
summarize the total number and compute the proportion.

Table 3 shows the proportion of the three categories of next
hops. When k = all, long contacts (longer contacts and longest
contacts)make up themajor proportion of 67.84%;while for k = 9,
the proportion is 68.59%. The results show that short paths contain
the majority of nodes that are long contacts, which verifies our
intuition that ‘‘long contacts can reach the target quickly’’ and
validates ‘‘the strength of weak ties’’.

7.3. Evaluating the quality of the trusted graph

Since the role of a trusted graph is to predict trust, we compare
the performance of several methods for predicting trust based on
our generated trusted graph. Furthermore, to be objective, we use
the common strategies to evaluate trust instead of giving a new
one. If it performs well, we can say it is a graph of high quality.

We focus on three aspects for experiments: (1) whether a
generated trusted graph is of high enough quality to predict trust,
(2) which factors can influence prediction accuracy, and (3) the
robustness of our work.

Common strategies to evaluate trust. There are three factors—
propagationmethod, aggregationmethod, and length of paths—for
common strategies. Each factor has two choices; therefore, there is
a total of eight strategies. We implement all of the eight strategies
(Table 4) and compare their performances. There are two basic
operations for evaluating trust based on trusted paths:
• Trust propagation from SOURCE to the direct neighbor of SINK

through a trusted acquaintance chain; since trust usually decays
along a path, the propagation operator should reflect this
point. Two commonly used propagation functions are Min and
Multiply, which entail taking theminimal referral trust or taking
the products of all the referral trust.
Table 4
The common eight strategies for evaluating trust.

ID Strategy Propagation Aggregation Paths

1 Min–Max Min Max All
2 Multi-Max Multi Max All
3 Min-WAve Min Weighted average All
4 Multi-WAve Multi Weighted average All
5 SMin–Max Min Max All shortest
6 SMulti-Max Multi Max All shortest
7 SMin-WAve Min Weighted average All shortest
8 SMulti-WAve Multi Weighted average All shortest

Table 5
The experimental parameters for accuracy.

Parameter Description Default

µ Mean of normal distribution –
σ Standard deviation 0.25
vrate % of vicious nodes 25%
grate % of good nodes (µ = 0.75) 70%
brate % of bad nodes (µ = 0.25) 30%
th Trust threshold 0.5

Take Fig. 4(b) and the trusted path SOURCE-2-6-9 for instance;
the propagation operationwithMinwill bemin(0.6, 0.8, 0.7) =
0.6, while withMultiply, it will be calculated as 0.6∗0.8∗0.7 =
0.336. Both of the two functions satisfy the rule of trust decay
along a path.
• Trust aggregation among direct neighbors. Two commonly used

aggregation functions are Max and Weighted Average, which
entail taking the direct trust of the neighbor in the trusted
acquaintance chainwith themax referral trust and theweighted
average value among all direct neighbors.

Determining trust value. To assign trust value to nodes, we
introduce Richardson’s technique [25] in the experiments, which
uses the concept of the quality of users assigning a trust value to
each node, while making a little modification (the samemethod as
in [8]). Each user has a quality measurement qi ∈ [0, 1]. For the
experiments in this paper, the quality of a user is chosen from a
normal distribution. For any pair of users, i and j, the trust rating
from node i to node j, denoted as T (i, j), is uniformly chosen from
[max(qj − δij, 0),min(qj + δij, 1)]. In addition, δij = (1 − qi)/2
is a noise parameter that determines how accurate users are at
estimating the quality of the user that they are trusting.

Malicious behavior. In the experiments, we consider two kinds
of malicious behavior: one is the noncollusive setting, that is, a
vicious node gives low trust to all of his neighbors; another is the
collusive setting, in which a vicious node gives low trust to good
nodes and high trust to vicious nodes.

Default experimental parameters are set as in Table 5.
Without loss of generality, in all of the experiments for trust

accuracy, we use the path set of k = 9. We present the results for
the influence factor of trust prediction and the robustness of our
work, all of which can reflect the quality of the generated trusted
graphs. First of all, we test the methods of defining trust, since the
trust value assigned to each edge will affect all the experiments.

7.3.1. Test the influence factors
The methods of defining trust. We design two settings to assign

trust value for a trusted graph: one is homogeneous, and the other
is heterogeneous. In a homogeneous setting, trust values of all
edges are given by Richardson’s technique [25], indiscriminate of
referral trust and functional trust. While in a heterogeneous setting,
only the last edge, which ends with SINK, is given a functional trust
value by Richardson’s technique [25], and other edges are given a
referral trust value by the way we define in this paper.

Parameter settings: L = 6, brate = 0.3, th = 0.5. Here, we
present the results of two sets of experiments; one is vrate = 0,
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Table 6
Comparison between heterogeneous and homogeneous settings (vrate = 0).

Setting Method Mean error Precision Recall FScore

Heterogeneous

Min–Max 0.1346 0.8855 0.8946 0.8900
Multi-Max 0.1351 0.8917 0.8982 0.8949
Min-WAve 0.1018 0.9254 0.9294 0.9274
Multi-WAve 0.1013 0.9239 0.9296 0.9268
SMin–Max 0.1365 0.8913 0.8894 0.8903
SMulti-Max 0.1374 0.8909 0.9001 0.8955
SMin-WAve 0.1203 0.8989 0.9162 0.9075
SMulti-WAve 0.1205 0.9025 0.9121 0.9073

Homogeneous

Min–Max 0.1261 0.9051 0.9105 0.9078
Multi-Max 0.1308 0.9024 0.9134 0.9079
Min-WAve 0.1145 0.9092 0.9182 0.9137
Multi-WAve 0.1156 0.9118 0.9142 0.9130
SMin–Max 0.1263 0.9013 0.9164 0.9088
SMulti-Max 0.1279 0.8991 0.9131 0.9060
SMin-WAve 0.1220 0.9006 0.9167 0.9086
SMulti-WAve 0.1224 0.8976 0.9140 0.9057
Table 7
Comparison between heterogeneous and homogeneous settings (vrate = 0.25).

Setting Method Mean error Precision Recall FScore

Heterogeneous

Min–Max 0.1974 0.7996 0.7933 0.7964
Multi-Max 0.1969 0.7967 0.7874 0.7920
Min-WAve 0.1500 0.8967 0.8189 0.8560
Multi-WAve 0.1496 0.8925 0.8166 0.8529
SMin–Max 0.1982 0.7996 0.7933 0.7964
SMulti-Max 0.1970 0.7975 0.7899 0.7937
SMin-WAve 0.1770 0.8381 0.7996 0.8184
SMulti-WAve 0.1752 0.8356 0.8023 0.8186

Homogeneous

Min–Max 0.1989 0.7482 0.8357 0.7896
Multi-Max 0.2010 0.7421 0.8388 0.7875
Min-WAve 0.1730 0.7940 0.8515 0.8217
Multi-WAve 0.1777 0.7862 0.8416 0.8130
SMin–Max 0.1995 0.7532 0.8362 0.7925
SMulti-Max 0.1964 0.7635 0.8373 0.7987
SMin-WAve 0.1825 0.7709 0.8371 0.8027
SMulti-WAve 0.1870 0.7672 0.8354 0.7998
and the other is vrate = 0.25, and vicious nodes are collusive (we
conduct experiments in all possible settings, since those results
have a similar pattern when considering the methods of defining
trust; here, we just present one of them).

Tables 6 and 7 show the comparison when vrate = 0 and
vrate = 0.25. We can see that the accuracy is high with the min
FScore of 0.7875. It indicates that the generated trusted graphs are
of high quality when it comes to predicting trust.

We also observed some interesting details: (1) in both settings,
vrate = 0 and vrate = 0.25, the accuracy of using the Multi
propagation function has little difference with that of using the
Min function. On the contrary, the aggregation method has a more
significant effect. In both settings, the accuracy of using the WAve
function is higher than that of using the Max function. The gap is
larger in the heterogeneous setting. This phenomenon exists in all
of the accuracy experiments, which indicates that opinions from
multiple paths are better than that from a single path, so as to
avoid being subjective and one-sided. (2) The accuracy is higher in
the heterogeneous setting in most cases. Take themin function for
instance; the percentage of a higher FScore in the heterogeneous
setting compared to the homogeneous setting is: 4.17%when using
the WAve function, 0.86% when using the Max function in the
setting of vrate = 0.25 (see Table 7), and 1.5% when using the
WAve function in the setting of vrate = 0. The results validate our
intuition that distinguishing between referral trust and functional
trust, as well as exploring the stable and objective information for
inferring trust, can weaken the effect of vicious nodes.

In the following experiments, we use the heterogeneous setting
to determine trust value, that is, the direct neighbors of SINK
Fig. 6. The effect of trust conflict.

give their functional trust to SINK, while others give their referral
trust to neighbors. In all of the accuracy experiments, we found
that the two propagation methods of Min and Multiple make little
difference to the accuracy; therefore, in the following experiments,
we only present the results of theMin propagation.

Trust conflict. Parameter settings: L = 6, brate = 0.3, th =
0.5. Fig. 6 shows the effect of considering and not considering
trust conflict. We can see that: when using the Max function to do
aggregation, the accuracy increases more when considering trust
conflict. It indicates that trust conflict can weaken the negative
effect of the one-sidedness of using theMax function.

Max length. Parameter settings: L varies in the range of [2, 8],
th = 0.5, brate = 0.3. Fig. 7(a) and (b) show the comparison of
FScore andmean error with different max lengths. We can observe
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Fig. 7. The effect of max length.
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Fig. 8. The effect of trust threshold.

that the accuracy is increased along with L, until L = 6. When
L = 2, the accuracy is the lowest, while when L > 6, the accuracy
goes down a little.We analyzed the reason and found that there are
few paths when L is too small; searching with a larger length will
find more paths, which means more evidence. However, if L > 6,
too many paths with low trust will be taken in and will decrease
the accuracy. It validates again that a trusted graph with multiple
paths is better than a single pathwhenpredicting trust; In addition,
trusted paths should be neither too long nor too short.

We also found that the accuracy increases much quicker when
L is smaller. The reason is that we can find less new paths as L
gets larger. Since the average path length of the data set is 3.96,
according to the work of [24]; as to our experiments of k = 9, the
average length is 4.0015.

Trust threshold. Parameter settings: L = 6, brate = 0.3, th
varies in the range of [0.1, 0.9]. Fig. 8(a) and (b) show the FScore and
mean error with respect to the trust threshold. Quite surprisingly,
when th varies from 0.1 to 0.9, the accuracy decreases, especially
when th ≥ 0.6—FScore decreases sharply andmean error increases
sharply. It indicates that trust threshold should not be set to too
large a value, since a larger trust threshold will make more paths
untrustful and will be deleted. Opinions from less paths can easily
be one-sided; furthermore, referral trust, as defined in this paper,
is related to a neighbor’s topic-related degree and target-related
degree. It is quite possible that all neighbors are not very familiar
with the topic and the target; however, we can still select themost
related one to give relatively effectual suggestions.

7.3.2. Test the robustness
Malicious behavior. Parameter settings: L = 6, brate = 0.3,

th = 0.5, vrate varies from 0.1 to 1.0, with an increment of
0.1, in collusive and noncollusive settings. Fig. 9(a) and (b) show
the mean error with respect to different percentages of vicious
nodes. In both noncollusive and collusive settings, the mean of
trust computation error increases slowly with the percentages of
vicious nodes, even when all of the nodes become vicious. This
indicates that the generated trusted graph cannot eliminate, but
can weaken, the effect of vicious nodes. Interestingly enough, the
mean error reaches its highest pointwhen 50% of nodes are vicious,
which indicates the behavior difference is largest when half of the
nodes are vicious and the other half are good.
a b

Fig. 9. Mean error with respect to vicious nodes.

a b

Fig. 10. The effect of the quality of nodes.

The quality of nodes. We test the effect of the quality of nodes,
by varying the proportion of good nodes and bad nodes. Parameter
settings: L = 6, th = 0.5, brate varies in [0.1, 0.8]. A user’s
quality is chosen from two normal distributions of µ = 0.25
(which represents bad nodes) and µ = 0.75 (which represents
good nodes), according to Richardson’s technique [25]. Fig. 10(a)
and (b) show the FScore and mean error with respect to different
proportions of bad nodes and good nodes. From the results, we can
see that the accuracy is relatively high: even when 70% of nodes
are bad nodes, the FScore is larger than 0.75. This finding again
validates that the generated trusted graphs are of high enough
quality to predict trust.

7.3.3. Comparative study
As mentioned before, to be fair and objective, we implemented

the common strategies to evaluate trust based on our generated
trust graphs, instead of giving a new integrated and comprehensive
predicting approach. If it performs well, we can say that the
generated trust graph is of high quality. However, to ensure the
true effects of our work, we implemented a new trust prediction
strategy denoted as SWTrust∗, which takes the weighted average
of all shortest and strongest paths, based on our generated trust
graph. Figs. 7 and 8 show the trust prediction accuracywith respect
to the max length and trust threshold. The results indicate that
SWTrust∗ has a better and more stable performance compared to
the common strategies, for its FScore keeps a high and stable level
while themean error keeps a low and stable level during thewhole
range ofmax length and trust threshold. SWTrust∗ utilizes the idea
of TidalTrust [9]. In the original TidalTrust algorithm, each node has
its trust measurement of the target, which means it needs more
information. However, in most trust chain-based scenarios, it is
difficult for indirect neighbors to provide their trust to the target.
Therefore, it is difficult to make a fair comparison with the original
TidalTrust algorithm.

7.4. Summary of experiments

To validate the effectiveness of our work, we conduct two
groups of experiments with the data from Epinions.com. The
experiments for connection coverage show the efficiency of
SWTrust and verify the small-world network theory in that
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the coverage is more than 92.8% when max length = 6; the
experiments also verify the effect of weak ties in that the
proportion of long contacts is 67.84% when selecting all neighbors
for the breadth-first search. The experiments for accuracy show
that the generated trusted graphs perform well when predicting
trust. In addition, we get many useful findings: (1) from the
experiments that compare heterogeneous and homogeneous
methods to determine trust value, we observed that using stable
and objective information to infer trust can weaken the effect of
vicious nodes, since the information cannot be changed at will.
(2) From the experiments that compare different max lengths of
trust paths and aggregation methods of Max and WAve, we reach
the conclusion that an opinion from multiple paths is better than
that from a single path, to avoid being subjective and one-sided. (3)
When comparing the accuracy of experiments with and without
the consideration of trust conflict, we observe that there do exist
controversial users. Introducing the new factor of trust conflict can
increase accuracy, especially when using the Max function to do
aggregation, since trust conflict can weaken the negative effect of
one-sidedness.

8. Conclusion and future work

In this paper, we propose the SWTrust framework to discover
short trusted paths based on trusted acquaintance chains, and we
generate trusted graphs for online social networks. Previous trust
evaluation algorithms can become more efficient and practical
if they apply SWTrust to generate trusted graphs. We focus
on generating trusted graphs and explore stable and objective
information in order to select capable neighbors in each step
of the breadth-first search. Experiments with a data set from a
real online social network validate the effectiveness of our work.
Exploring stable and objective information (such as domain) for
different kinds of online social networks, aswell as designing a new
integrated and comprehensive model for predicting trust, are our
main future work.
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