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a  b  s  t  r  a  c  t

Consumer-oriented  companies  are  getting  increasingly  more  sensitive  about  customer’s  perception  of
their products,  not  only  to get a feedback  on their popularity,  but  also  to  improve  the  quality  and  service
through  a better  understanding  of  design  issues  for further  development.  However,  a consumer’s  per-
ception is  often  qualitative  and  is achieved  through  third party  surveys  or the  company’s  recording  of
after-sale  feedback  through  explicit  surveys  or  warranty  based  commitments.  In  this  paper,  we consider
an automobile  company’s  warranty  records  for different  vehicle  models  and  suggest  a data  mining  pro-
cedure to  assign  a customer  satisfaction  index  (CSI)  to  each  vehicle  model  based  on  the  perceived  notion
of  the level  of satisfaction  of customers.  Based  on  the  developed  CSI  function,  customers  are  then  divided
into  satisfied  and  dissatisfied  customer  groups.  The  warranty  data  are  then  clustered  separately  for  each
group  and  analyzed  to find  possible  causes  (field  failures)  and their  relative  effects  on  customer’s  satisfac-
tion (or  dissatisfaction)  for a vehicle  model.  Finally,  speculative  introspection  has  been  made  to identify
the amount  of  improvement  in CSI  that  can  be  achieved  by the  reduction  of some  critical  field  failures
through  better  design  practices.  Thus,  this  paper  shows  how  warranty  data  from  customers  can  be uti-
lized  to have  a better  perception  of  ranking  of a  product  compared  to  its competitors  in  the  market  and

also  to  identify  possible  causes  for making  some  customers  dissatisfied  and  eventually  to  help  percolate
these  issues  at the design  level.  This  closes  the  design  cycle  loop  in which  after  a  design  is converted  into
a  product,  its  perceived  level  of satisfaction  by customers  can also  provide  valuable  information  to  help
make  the  design  better  in an iterative  manner.  The  proposed  methodology  is  generic  and  novel,  and  can
be  applied  to other  consumer  products  as well.
. Introduction

Most companies spend a considerable amount of effort in
mproving their products from a technical point of view. Although
t is right on its own merit, today’s advancement in computing algo-

ithms and fast computing hardware enable companies to obtain a
ore direct feedback on their products from their own customers.
hen a company produces a range of products (such as a platform
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of designs) with different trade-offs between cost, quality, and
environmental effects, the level of satisfaction of one product over
the other as perceived by customers bears a wealth of information
about ‘why a product is liked or not liked by users?’. Interestingly,
such information, if derived from after-sale surveys or warranty
data, can provide valuable information to the designers for a
possible improvement of the product for the next design phase.
Since this is somewhat intuitive and importantly many successful
companies do collect and record warranty or other after-sales
information, it is now a matter of a research study to devise a
mechanism to retrieve hidden information from the data. In this

paper, we  make an effort in this direction using an automobile
industry’s warranty data to demonstrate the procedure.

Customer satisfaction has been defined in the literature as ‘the
state of mind that customers have about a company when their
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Table 1
Some basic statistics of the vehicle models relative to Model 5.

Vehicle model number

1 2 3 4 5

Segment Compact Midsize Luxury Midsize Luxury
Total customers 19.61 × C 13.35 × C 1.93 × C 30.19 × C C
66 S. Bandaru et al. / Applied So

xpectations have been met  or exceeded over the lifetime of the
roduct or service’ [1,2]. Customer satisfaction leads to customer
etention, customer loyalty and product repurchase. Thus its mea-
urement is an important and integral part of an effective customer
elationship management (CRM). Broadly speaking, satisfaction
easures involve three psychological elements for evaluation of

he product or service experience: (i) cognitive, which depends on
he actual use of the product or service by the customer, (ii) affec-
ive, which depends on the customer’s attitude towards the product
r service or the company and (iii) behavioral,  which depends on
he customer’s view regarding another product or service from the
ame company [3]. An important implication of the above definition
or customer satisfaction is that it is subjective. Due to its non-
uantifiability, most companies resort to a survey/questionnaire
ased assessment for the measurement of their products’ perceived
atisfaction. In this regard, years of research on customer behavior
as led to specification of 10 domains of satisfaction, ranging from
uality, efficiency, etc. to commitment to the customer and prod-
ct innovation [4]. Surveys are designed to touch these domains.
hat actually to ask in the survey depends on the kind of product

r service provided, the kinds of customers served, number of cus-
omers served, the longevity and frequency of customer/supplier
nteractions, and what is to be done with the results. The very
ature of such surveys requires the customer to evaluate each
tatement on a psychometric scale (or a rating scale) [5]. Likert
cales [6], semantic differential scales [7], smiling faces scales and
ercentage measures [8] are popular in that order. A typical five-

evel Likert item consists of a statement and asks the surveyee to
hoose among (a) strongly disagree, (b) disagree, (c) neutral, (d)
gree, and (e) strongly agree. Several studies exist which show the
erit and demerits of different rating scales and how they should be

nterpreted.
In the automotive sector, original equipment manufacturers

OEMs) depend on reports published by various marketing infor-
ation firms, like the American Customer Satisfaction Index [9],

.D. Power and Associates [10] and Consumer Reports [11] for gain-
ng insights into vehicle quality. Quality analysis data provided are
ften focused on questions related to number of failures in the field
namely, incidents per thousand vehicles (IPTV) [12] and problems
er hundred vehicles (PPH)) for individual components like engine,
ransmission, etc. Limited emphasis is placed on the assessment of
ndividual users’ perception and satisfaction resulting from day-to-
ay use of the product. Moreover, survey based estimates rely on a
mall sample of the customers (around 200–400 per vehicle model
10]). Despite this, the surveys themselves are highly regarded and
lay a significant role in molding the customer’s attitude towards

 particular vehicle model. To some extent, the surveys also help
he OEMs in identifying major problem areas. The CRM policy of
EMs should therefore be flexible enough to take into account

he information contained in these survey reports published
nnually.

For service based companies, Parasuraman et al. [13,14] pro-
osed the ‘gaps model’ for estimating satisfaction objectively by
sing the gap between the customer’s expectation and perceived
xperience of performance. Apart from these and a few other
elated studies, quantitative measurement of customer satisfaction
as not received much attention in the literature. The main reason is
s follows: there are three practical approaches to measuring sat-
sfaction, namely, post-purchase evaluation, periodic satisfaction
urveys and continuous satisfaction tracking. Post-purchase evalu-
tion (known as initial quality study in the automotive sector) deals
ith satisfaction assessment shortly after the delivery of product
r service. Periodic satisfaction surveys provide occasional snap-
hots of customer perceptions. Continuous satisfaction tracking is
uch like post-purchase evaluation but carried out over time. Post-

urchase evaluations are very common and seem to be used across
Total claims 11.10 × K 6.99 × K 1.57 × K 17.67 × K K
Total field failures 1026 1084 776 1228 606

all sectors. Most products and services are however, not amenable
to periodic assessment and therefore not enough data is obtained
for a single customer to warrant a quantitative study.

Automotive OEMs, on the other hand, provide customers a war-
ranty period which covers repairs and mechanical faults as part of
the sale. Claims can be made by the customers at authorized deal-
erships and service stations which keep customer-specific records
of these claims. Warranty data consists of claims data and sup-
plementary data. A review of warranty data analysis methods for
identifying early warnings of abnormalities in products, providing
useful information about failure modes to aid design modifica-
tion, estimating product reliability for deciding on warranty policy,
and forecasting future warranty claims needed for preparing fis-
cal plans can be found in [15]. In this paper, we  go a step further
and use the same warranty data for obtaining a mathematical model
for predicting customer satisfaction. Typically, customer satisfac-
tion is measured at the individual level, but it is almost always
reported at an aggregate level. We  ensure that this is true for our
model by employing a bottom-up approach to modeling. To illus-
trate, Table 1 shows some basic statistics of the five vehicle models
considered in this study. The numbers correspond to the warranty
data of all vehicles serviced between January 2008 and August 2009.
For anonymity, the total number of customers and claims for each
model are shown relative to those of the model with the lowest
customer base (Model 5). The last row of the table shows the num-
ber of unique field failures, a common constituent of IPTV or PPH
figures, that occurred in a vehicle model during the said period. A
field failure refers to any vehicle-related problem faced by the cus-
tomer for which he/she had to visit a dealer or service station. Each
unique field failure is associated with a corresponding repair code
for classification purposes. Given the limited resources available
with customer relation managers, it is only prudent to prioritize
these field failures for a subsequent root-cause analysis and possi-
ble reduction in the next design phase. The methodology presented
in this paper allows one to prioritize these unique field failures
based on a quantitative measure of their potential for improve-
ment in the customer’s perception and hence the CSI. The method
begins with the building of a quantitative model of the customer
satisfaction index using an evolutionary optimization technique.
The present work suggests an improvement to the method in [16]
and validates it against Consumer Reports ratings of the vehicle
models. The resulting CSI modeling function is then used to obtain
the CSI improvement potential (CIP) for different types of field
failures.

The rest of the paper is organized as follows. In Section 2 we
describe the components of the dataset being used. Extraction of
relevant features is described in Section 3. Section 4 describes the
single-vehicle framework for the proposed satisfaction model built
on these extracted features. Section 4.3 presents the bi-objective
optimization problem for obtaining the satisfaction model for a
given vehicle model and Section 4.4 presents the evolutionary opti-
mization method used for solving this problem. Section 5 presents

its extension to obtain a generalized satisfaction model when mul-
tiple vehicle models are involved. The results and their validation
are presented in Section 6. A sensitivity analysis is also per-
formed on the obtained CSI function. Next, Section 7 presents two
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pplications of the quantitative CSI model, which are very relevant
rom the CRM point of view. Section 8 concludes the paper.

. Vehicle sales and service data

As discussed above, warranty data consists of claims data and
upplementary data. The datasets used in this study also contain
ervice repairs made beyond the warranty period and hence we
re referring to claims data as service data. Supplementary data
oes not change with time. In our case, the sales data serves as this
omponent.

Before going any further, it would be beneficial to know what
ttributes of vehicles contribute to satisfaction. A study by J.D.
ower and Associates lists the following as critical elements of
ustomer satisfaction [17]:

 Quality and reliability (24%) with respect to problems experi-
enced with the vehicle across different vehicle sub-systems.

 Vehicle appeal (37%) which includes design, comfort, features,
etc.

 Ownership costs (22%) which includes fuel consumption, insur-
ance and costs of post-warranty service or repair.

 Dealer service satisfaction (17%) with respect to service quality,
service time, etc.

It can be seen that, satisfaction related to quality, reliability and
ervice contributes close to 50% towards the overall satisfaction
including some contribution from the ownership costs). In this
aper, we are primarily focused on assessing quality, reliability and
ervice satisfaction as they can be quantified through the field fail-
re information obtained from sales and service data. Table 2 shows
ypical fields found in the sales and service data of a vehicle that
an be used to assess this satisfaction.

It is not clear how the data fields in Table 2 can be used directly.
herefore, we first extract certain characteristic features x from
he combined sales and service data, so that the CSI for a par-
icular customer/vehicle can be approximated by a mathematical
unction f,

SIvehicle = f (x). (1)

e call CSIvehicle the CSI model for predicting the customer satis-
action of a given vehicle model.

From the manufacturer’s point of view, a CSI model (f) which
an aggregate the views of all the customers in a deterministic way
s beneficial for identifying vehicle models with high perceived
uality and, more importantly, for highlighting the problem areas
cross different vehicle models. Taking cues from literature, we
an impose certain conditions on the function f so that it achieves
he above stated goal. It has been hypothesized that the frequency
istribution of customer satisfaction is a theoretically continuous

ne that is typically skewed to the left [18]. Moreover, it is also
idely believed that this distribution is often the convergence

f (two or) three nearly normal distributions of (two or) three
tatistically differing populations – dissatisfied, satisfied and

able 2
ata fields in the sales and claims data of a vehicle and the notation used in this
ork.

Vehicle sales data
(one-time entry)

Vehicle service data
(for ith claim of a single visit)

Vehicle ID no. VIN Vehicle ID no. VIN
Sale  date d0 Repair start date di

Mileage at sale m0 Repair end date ei

Mileage at repair mi

Repair cost ci

Repair code ri
Fig. 1. Expected frequency distribution of CSI from the proposed method which
makes averaging possible.

extremely satisfied customers [18]. The work presented in this
paper is based on this hypothesis. The direct implication is that,
given a vehicle model, most of the customers will have a similar
overall perception (satisfaction) of the vehicle model. This results
in a CSIvehicle distribution with low variance as shown in Fig. 1.
A function f which models the CSIs based on this assumption
would also make more sense for averaging over all customers thus
obtaining an overall satisfaction value for the vehicle model under
consideration. This is what we  mean by the bottom-up approach
mentioned earlier. By aggregating the CSIvehicle values for all the
customers corresponding to a vehicle model, a representative CSI
value for that vehicle model can be obtained.

3. Feature extraction

The fields presented in Table 2, though representative of cus-
tomer satisfaction, cannot directly be used in a mathematical
function. To have a computationally tractable method for modeling
the CSI, we have identified six features that can be deterministically
calculated for each vehicle using the combined sales and service
data. More features can be considered to make the study more elab-
orate. The relation between these features and the satisfaction can
also be logically established as shown below:

1 x1: Number of visits made by a customer. The VIN or vehicle
identification number is unique for each vehicle. By counting the
number of times a particular VIN occurs in the service dataset,
the number of visits made by the customer owning that vehicle
can be determined. More visits mean lower customer satisfaction
and hence the dependency can be modeled as CSIvehicle ∝ 1/x1.

2 x2: Total number of days for which the vehicle was unavailable
to the customer. The waiting time for a customer is the calendar
difference between the repair start date and the delivery date.
We  sum these differences over the number of visits to get x2 =∑x1

i=1(ei − di). Longer waiting times have a negative impact on
satisfaction which can be modeled as CSIvehicle ∝ 1/x2.

3 x3: Sum of all service/repair costs. These costs include the labor
costs, part costs and miscellaneous costs, if any. The total expen-
diture on a vehicle for the given period can be obtained as
x3 =

∑x1
i=1ci. And logically it follows that CSIvehicle ∝ 1/x3.

4 x4: Average time interval between visits. The time to first visit
is the calendar difference between the earliest visit date in the
service data and the vehicle sale date. Thereafter, the time inter-
val between subsequent visits can be obtained from the service
data alone. The cumulative time intervals are averaged over the
number of visits. Mathematically,
x4 = 1
x1

(d1 − d0 +
x1∑

i=2

(di − di−1)). (2)
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A larger value of x4 means longer problem-free vehicle use
and hence higher customer satisfaction. Therefore, we  have
CSIvehicle ∝ x4.

 x5: Average miles run between visits. Like the time intervals, the
miles run by the vehicle without problems can be obtained from
the odometer readings in the sales and service data as,

x5 = 1
x1

(
m1 − m0 +

x1∑
i=2

(mi − mi−1)

)
. (3)

It is easy to conclude that CSIvehicle ∝ x5.
 x6: Sum of problem severity ratings. Each vehicle visit is associ-
ated with a repair code ri which defines the type of failure. All
repair codes are assigned a severity rating between 1 (minor
problem; e.g. oil change) and 5 (major problem; e.g. engine
replacement) by domain experts. Since severity rating has a neg-
ative impact on the CSI, we have CSIvehicle ∝ 1/x6.

Notice that the features x4 and x5 are averages whereas the rest
f the features are simply summations. From the OEM’s point of
iew, the cost of overestimating the CSI is usually more than the
ost of underestimating it. Since both the sum of days and the sum
f miles between visits positively affect the CSI, averaging them
ver the number of visits reduces the chance of overestimating the
ustomer satisfaction for any particular customer.

. Single vehicle CSI model

The characteristic features extracted above are still not directly
sable since they vary in different ranges. A pre-processing step is
eeded for this purpose. In this section, we discuss the procedure

or obtaining an optimized CSI function for each vehicle model one
t a time, then in the next section, we shall discuss a way  to come
p with a multiple vehicle CSI function.

.1. Pre-processing of warranty data
Table 3 shows some statistics of the features extracted from the
ervice data of the five vehicle models that we use in this work. It
s apparent that the direct use of these features for constructing f

ill lead to a biased CSI model, since numerically they will have
arying effects on the CSI. Therefore, a normalization procedure is
dopted to map  the features to the range [0, 1] using,

able 3
ome statistics of extracted features for all vehicle models.

Stat. x1 x2

Model 1 Min. 1 1 

Max.  20 357 

Mean  1.39 1.46 

Model 2 Min. 1 1 

Max.  12 371 

Mean  1.32 1.37 

Model 3 Min. 1 1 

Max.  10 77 

Mean  1.67 1.74 

Model 4 Min. 1 1 

Max.  17 368 

Mean  1.45 1.59 

Model 5 Min. 1 1 

Max.  10 248 

Mean  2.01 2.35 
puting 30 (2015) 265–278

xnr
i = xi − minj x(j)

i

maxj x(j)
i

− minj x(j)
i

∀ i ∈ {1, 2, . . .,  6}, j ∈ {1, 2, . . .,  C},

(4)

where C is the total number of customers of a vehicle model.
It is important to realize that such a linear normalization does not
affect the frequency distribution.

Second, keeping in mind different logical dependencies
established earlier, we  now introduce the following feature trans-
formation for simplicity of notation, so that an increase in the value
of Xi leads to a better CSI,

Xi = 1
(1 + xnr

i
)
,  for i ∈ {1, 2, 3, 6}, (5)

Xi = (1 + xnr
i ), for i ∈ {4, 5}. (6)

This transformation allows us to use a monotonic CSI function
as a variation of each Xi. In this work, we call Xi’s as the transformed
features in contrast to the xi’s introduced in the last section, which
are called extracted features. The addition of the constant (one here)
in Eqs. (5) and (6) ensures that the CSI does not approach infinity
for vehicles with minimum corresponding xi.

4.2. Mathematical structure of CSI function

To arrive at a mathematical form for the CSI function, we now
define a functional form:

CSIvehicle = f (X1, X2, X3, X4, X5, X6). (7)

The function f is not known a priori, except to know that it is a
monotonic function of the six transformed features. However, there
are certain expectations we have for the CSI function. As stated ear-
lier, our primary goal is to obtain a CSI model which will have a low
variance (as shown in Fig. 1) for a given vehicle model for the given
data. Secondly, the model should be flexible enough to differentiate
between two  or more vehicle models which have clearly differ-
ent perceived quality in the market. This is our secondary goal. We
use a parametric mathematical model which allows the features
to interact freely with each other. The parameters of the model
are obtained using an algorithm which satisfies both the goals. Our
assumed model is composed of six terms, Tl. Each term is a product
of different transformed features given by,
Tl =
6∏

i=1

X˛ilˇil
i ∀ i, l ∈ {1, . . .,  6}. (8)

x3 x4 x5 x6

0 1 1 1
11,253.76 429 799,686 50
155.93 110.63 5,317.23 3.14

0 1 1 1
8195.94 395 115,671 39
199.07 137 7810.22 3.09

1.91 1 1 1
12,188.07 408 999,959 51
349.01 114.57 5502.76 4.21

0 1 1 1
9985.60 433 333,024 45
148.10 129.33 6573.53 2.65

5 1 1 1
9134 459 78,501 35
458.71 118.70 5162.20 5.03
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Fig. 2. Binary representation for the

Here ˇil’s are Boolean decision variables which decide the pres-
nce (when ˇil = 1) or absence (when ˇil = 0) of the ith transformed
eature in the lth term. When ˇil = 1, ˛il denotes the corresponding
xponent.

The six multiplicative terms can in turn be multiplied or added to
ach other. Again, a Boolean encoding decides which terms to mul-
iply and which ones to add. We  adopt 1 for ‘+’ operator and 0 for ‘×’
perator. These intermediate Boolean variables are represented by
l. The inverse operations (division and subtraction) are not con-
idered since the dependency of CSIvehicle to each extracted feature
i is already incorporated into the transformed features Xi’s. For the
ame reason the powers ˛il’s are considered to be non-negative real
umbers lying between 0 and 1. With six terms, we have five addi-
ional Boolean decision variables. The 41 (= 36 ˇ’s+5 � ’s) Boolean
ariables can be represented using a binary string. In addition, we
ave 36 real-variables (˛’s).

Fig. 2 shows an example of the representation scheme adopted
n this paper. Every seventh bit is the variable � l which defines the
rithmetic operation between the Tlth and Tl+1th terms. The usual
rder of precedence is followed for the operators (multiplication
nd then addition) to evaluate the CSI. Whenever a term evalu-
tes to unity (i.e. when ˇil = 0 ∀ i),3 it is simply ignored in further
omputations. The illustrated string evaluates to

CSIvehicle = T1 + T2 × T3 + · · ·
= X˛21

2 X˛51
5 X˛61

6 + X˛22
2 X˛42

4 X˛62
6 × X˛13

1 X˛23
2 X˛33

3 + · · ·
= X˛21

2 X˛51
5 X˛61

6 + X˛13
1 X˛22+˛23

2 X˛33
3 X˛42

4 X˛62
6 + · · ·

his modeling approach resembles a genetic programming mod-
le [19] with T = {Xi ∀ i} as the terminal set and F = {×,  +} as the
unctional set without introducing the computational cost associ-
ted with such generic systems.

.3. Formulating an optimization problem

For achieving a customer level CSI model we  now focus on
ur primary goal of obtaining an optimized CSI function which,
hen evaluated for different customers produces a distribution
ith low variance. A narrower CSI distribution means better agree-
ent among the customers thus making averaging more sensible

or obtaining the overall satisfaction. It is intuitive that this can be
ccomplished by minimizing the variance (or standard deviation)
f the CSI values of all customers. However, there are two  situations
hich can lead to trivial solutions.

Firstly, since the exponents ˛il’s are non-negative, a simple mini-
ization of the variance causes them to approach the lower bound

f zero giving rise to severely right skewed CSI distributions after
ormalization. This is shown in Fig. 4, described later. To avoid
his, we incorporate a second ‘helper objective’ which minimizes
he skewness of the distribution. Secondly, the presence of Boolean
ariables may  cause ˇil = 0 ∀ i, l giving a trivial distribution of zero
ariance. The following set of constraints is used to prevent this
ituation.
l

ˇil ≥ 1 ∀ i ∈ {1, . . .,  6},

3 ˛il = 0 ∀ i is highly improbable.
Τ3 +

sed adaptive form of the CSI model.

which basically impose that each extracted feature Xi is used in at
least one of the terms. This also makes practical sense since the
six extracted features are the only information that can be derived
from the sales and service data and we would want the resulting
CSI model to use all of them.

This optimization is carried out using a genetic algorithm (GA).
The binary representation of the model discussed above was
designed with this in mind. Eq. (9) gives the bi-objective opti-
mization problem formulation for finding the customer level CSI
model from the sales and service data of C customers of a vehicle
model.

Minimize �

Minimize |g|
Subject to

∑
l

ˇil ≥ 1 ∀ i ∈ {1, . . ., 6},

36 real variables: 0 ≤ ˛il ≤ 1 ∀ i, l ∈ {1, . . .,  6},
36 Boolean variables: ˇil ∈ {0, 1} ∀ i, l ∈ {1, . . .,  6},
5 Boolean variables: �l ∈ {0, 1} ∀ l ∈ {1, . . ., 5},

(9)

where

� =

√√√√ 1
C

C∑
j=1

(CSInr
vehicle,j − �)2

, � =
∑C

j=1CSInr
vehicle,j

C
,

g =
1
C

∑C
j=1(CSInr

vehicle,j − �)3

�3
.

where CSInr
vehicle,j is the normalized value of CSIvehicle evaluated for

the jth customer. The normalization is linear between 0 and 1, per-
formed using maximum and minimum values of CSIvehicle,j. Note
the arbitrary upper bound on ˛il’s. Any other value may also be
used.

4.4. Applying evolutionary optimization method

Due to the bi-objective nature of the above optimization prob-
lem and due to non-linearities and non-differentiability in the
definitions of the objective functions, we  choose an evolutionary
multi-objective optimization (EMO) method – the elitist non-
dominated sorting GA or NSGA-II [20].

Fig. 3 shows the non-dominated solutions obtained by solving
(9) for each of the five vehicle models (refer Table 1) individu-
ally using the NSGA-II procedure. All fronts are obtained using the
following standard parameter settings:

1 Population size: 2000.
2 Number of generations: 500.
3 Tournament selection with size 2.
4 Simulated binary crossover [21] with pc = 0.9 and �c = 10 for ˛’s.
5 Polynomial mutation [22] pm = 0.05 and �m = 50 for ˛’s.
6 Single-point crossover with pc = 0.9 for binary string (ˇ’s and � ’s).

7 Bitwise mutation with pm = 0.15 for binary string (ˇ’s and � ’s).

The population size and number of generations are set by observ-
ing the number of function evaluations (per objective) after which
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Fig. 4. The figure shows the non-dominated solution set obtained from solving Eq.
(9) for Model 4. The three insets show the CSI distributions corresponding to: (a) the

optimization method. From Fig. 3, it is clear that the knee regions

T
O

ronts represents a different CSI model.

o further improvement in the non-dominated front occurs. Mul-
iple runs have indicated this value to be 106 function evaluations.

e  chose a relatively high population size of 2000 (coupled with
00 generations to bring function evaluations to 106) and a high
rossover probability of 0.9 to promote exploration. No experimen-
ation was performed with respect to mutation probabilities (pm)
nd distribution indices (�c and �m) [21].

Each trade-off solution in Fig. 3 represents a different CSI model.
he sharp kink in each of the trade-off fronts indicates the presence
f a knee [23]. The knee point of a two-dimensional Pareto-optimal
ront is the solution which gives the best trade-off with respect to
oth objectives. Due to this characteristic, it is often the preferred
olution. Fig. 4 shows the CSI distributions corresponding to three
ifferent points on the trade-off front of Model 4. Note that the left-
ost solution is a trivial solution obtained when all ˛’s approach

heir lower bounds as stated earlier. On the other hand, the right-
ost solution yields a relatively wide CSI distribution which makes

t difficult to estimate the overall CSI rating of the vehicle model
rom the CSI values of individual customers, because an averaged
SI value in such cases is not representative of the entire data and
ence is not meaningful. The second (helper) objective allows many
uch CSI models to coexist in the NSGA-II population, among which
he knee solution is found to be the most favorable one. Other solu-
ions near the knee region also yield similar distributions, making
his region a potential space for obtaining good CSI models. We
se the bend-angle approach proposed in [23] to identify the knee

olution. Table 4 shows the knee-point CSI models and their corre-
ponding objective values for all five vehicle models obtained from

able 4
bjective function values and the knee-point CSI models for all vehicle models.

Knee-point solution details

Model 1 Objectives � = 0.0071, |g| = 0.0021
CSIvehicle T1 + T2 × T3 + T4 + T5 + T6 = X0.0632

2 X

Model 2 Objectives � = 0.0392, |g| = 0.0253
CSIvehicle T1 + T2 × T3 × T4 × T5 + T6 = X0.9238

3 X

Model 3 Objectives � = 0.0178, |g| = 0.2665
CSIvehicle T1 + T2 × T3 × T4 × T5 + T6 = X0.1089

1 X

Model 4 Objectives � = 0.0187, |g| = 0.0498
CSIvehicle T1 + T2 × T3 + T4 + T5 + T6 = X0.8242

2 X

Model 5 Objectives � = 0.0362, |g| = 0.0072
CSIvehicle T1 + T2 × T3 + T4 + T5 + T6 = X0.7563

2 X
leftmost point of the trade-off front, (b) a point in the knee region of the trade-off
front, and (c) the rightmost point of the trade-off front.

the trade-off fronts shown in Fig. 3. Note that for all five models,
both � and |g| values are small.

5. Multiple vehicle CSI model

The customer level CSI modeling technique presented above
fulfills our primary goals of obtaining a low variance and low skew-
ness CSI distribution. However, as seen in Table 4 the obtained CSI
models differ between vehicle models and hence do not provide a
common basis for comparing or ranking them. Our secondary goal,
as stated earlier, is therefore to modify the problem formulation in
(9) so that a single CSI model can be used to differentiate between
two or more vehicle models as distinctly as possible. For this pur-
pose, we  propose to maximize the absolute difference between
the average CSI values of different combinations of vehicle mod-
els under consideration. Since this can be time-consuming, we first
reduce the computational effort for obtaining a specific CSI function
for each vehicle model.

The results from customer level CSI models tell us that the best
CSI models are obtained in the knee region. We  can therefore con-
strain the search space to the knee regions of all five vehicle models
by converting the variance and skewness objectives into additional
constraints. This will then allow us to employ a single-objective
of all the five efficient fronts corresponding to the customer level
CSI models of the five vehicle models are bounded by � ≤ 0.05 and

0.0184
3 X0.0696

5 + X0.0632
2 X0.9175

5 + X0.5889
2 X0.0704

3 + X0.0153
1 X0.7322

2 X0.0375
6 + X0.9479

2 X0.0011
4

0.0092
4 X0.0048

5 + X0.3450
1 X0.8507

2 X0.9177
3 X0.0071

4 + X0.0292
2 X0.2830

3 X0.7601
5 + X0.1085

2 X0.8603
3

0.2060
2 X0.9139

3 + X0.4329
2 X0.9731

3

0.0259
6 + X0.0030

1 X0.9037
2 X0.0217

3 + X0.7632
5 + X0.2979

2 + X0.0283
3

0.0287
4 X0.0230

5 X0.0303
6 + X0.4977

2 X0.6763
5 + X0.8656

2 + X0.9701
2 X0.0142

6 + X0.8672
2 X0.0151

3
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g| ≤ 0.25. The single-objective optimization problem proposed for
ultiple vehicle CSI modeling can now be stated as:

Maximize
∑

{m,n|m /=  n}

|�m − �n|,

Subject to �m ≤ 0.05 ∀ m ∈ {1, 2, . . ., 5},

|gm| ≤ 0.25 ∀ m ∈ {1, 2, . . ., 5},∑
l

ˇil ≥ 1 ∀ i ∈ {1, . . ., 6},

where,

36 real variables: 0 ≤ ˛il ≤ 1 ∀ i, l ∈ {1, 2, . . .,  6},

36 Boolean variables: ˇil ∈ {0, 1} ∀ i, l ∈ {1, 2, . . .,  6},

5 Boolean variables: �l ∈ {0, 1} ∀ l ∈ {1, 2, . . ., 5}.

(10)

Here, m and n represent the indices of the vehicle models con-
idered for obtaining the multiple vehicle CSI model. �m, �m and
m are respectively the standard deviation, mean and skewness of
he normalized CSI values of the mth  vehicle model (having Cm

ustomers). For the five vehicle models, we can use all or any com-
inations of them to obtain a corresponding multiple vehicle CSI
odel. Again, an evolutionary optimization algorithm (EA) is used

o solve the above problem. The sales and service data of all the
ehicle models considered are given as input.

In the following discussion we refer to any combination of vehi-
le models as a training set (TS). For simplicity of notation, we
epresent a training set as TS{List of vehicle models} and the
orresponding CSI model as, CSI{Listofvehiclemodels}. For example,
he training set containing Models 2, 3 and 4 is TS{2,3,4} and its
orresponding CSI model will be referred to as CSI{2,3,4}.

. Results and discussion

Due to the large number of customers involved with each vehicle
odel and the use of a population based method, all optimization

uns are computationally expensive. For example, solving Eq. (9) for
odel 4 on a 3 GB machine with 4-core processor takes more than

8 h to complete 106 evaluations. The processor burden is even
igher when multiple models are considered together to solve Eq.
10). Since the evaluation of the CSI for one customer is independent
f that for another, there is scope for parallelization without affect-
ng the EA operators. All optimization runs required in this work

ere performed on an NVIDIA Tesla C1060 Graphics Processing
nit containing 30 symmetric multi-processors using the CUDA
rchitecture. The computation of the CSI function for different cus-
omers is assigned to multiple threads operating simultaneously in
he device. This reduces the computational time by a factor propor-
ional to the total number of customers.

The five vehicle models in this study have been chosen from
ifferent market segments as shown in Table 1. These models have
een in the market for some time and survey based assessment

s available for them. Unlike the American Customer Satisfaction
ndex and surveys by J.D. Power and Associates, Consumer Reports
urveys assess customer satisfaction based on three aspects: per-
ormance, safety and reliability. In the context of the methods
roposed in this paper, where we use service data for CSI model-

ng, Consumer Reports reliability ratings provide the most relevant
ssessment for comparisons. According to a Consumer Reports
tudy [24], the order of reliability ratings of the five vehicle models
s given by,

SI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≈ CSI2. (11)
eaning that Model 5 has the worst overall customer perception,
ollowed by Model 3 and so on. Consumer satisfaction indices for

odels 2 and 4 are similar and they have the best overall reliability
ating among all five models.
Fig. 5. Normalized CSI distributions obtained using CSI{1,2,3} for Models 1, 2
and  3. The optimized objective function value is |�1 − �2| + |�1 − �3| + |�2 − �3| =
0.039803.

In this section, we  first discuss in detail the results from the
multiple vehicle CSI modeling of TS{1,2,3} as an illustrative exam-
ple and compare the CSI ranking against (11). Later we  summarize
the results for all possible model combinations and choose the best
CSI model based on statistical testing.

6.1. CSI model for TS{1,2,3}: An illustrative example

The GA parameters for solving (10) for TS{1,2,3} are mostly the
same as those specified for NSGA-II in Section 4.4 except the pop-
ulation size and number of generations which are set to 500 and
10, 000 respectively. Constraints are handled using the penalty-
parameter-less approach described in [25]. The optimal CSI model
obtained by solving Eq. (10) for Models 1, 2, and 3 is

CSI{1,2,3} = T1 + T2 × T3 × T4 + T5 + T6

= X0.5226
1 X0.7215

5 + X0.8558
2 X0.6597

3 X0.0349
4 X0.8129

5

+ X0.7226
1 X0.5773

5 + X0.0255
1 X0.2429

3 X0.1124
5

(12)

The optimized CSI model CSI{1,2,3} is now used to evaluate
the CSI values for all the customers in TS{1,2,3}. Fig. 5 shows
the normalized CSI distributions obtained for these vehicle mod-
els. The normalization is performed over all the customers in
TS{1,2,3}.

Normal distribution curves are fitted to the distributions in Fig. 5
to clearly show the location of means. From Fig. 5, it can be clearly
seen that our primary goal of low variance and low-skewness dis-
tribution is met  for all three vehicle models. The mean of each
distribution can therefore be considered as overall CSI for each vehi-
cle model. The inset in Fig. 5 shows the relative positions of the
means of the three distributions clearly revealing the satisfaction
rating in the order,

CSI3 ≺ CSI1 ≺ CSI2. (13)

Here, mean of the CSI distribution of Model v has simply been
denoted by CSIv. The above agrees with the Consumer Reports rat-
ing in (11).

6.2. Statistical hypothesis testing
Table 5 shows some statistical characteristics of the three CSI
distributions shown in Fig. 5. Numerically, the mean CSI values for
the three vehicle models are observed to be very close. This raises
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Table 5
Statistical characteristics of the three CSI distributions shown in Fig. 5.

Model no. Mean �m Std. dev. �m Skewness |gm|
Model 1 0.315774 0.038656 0.238562
Model 2 0.324148 0.041722 0.245239
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Model 3 0.304247 0.049920 0.207301

oncerns regarding the statistical significance of (13). For analyzing
his further, let us consider the following null hypothesis,

0 : Mm − Mn = 0, (14)

here Mm and Mn are the population means for Models m and n
espectively. The use of Welch’s t-test has been suggested in [26] for
ndependent or unpaired (in statistical hypothesis testing terminol-
gy) samples with unequal sizes and variances. This test is basically
n extension of the Student’s two sample t-test. The t statistic is
odified to accommodate unequal sample sizes as follows:

 = �m − �n√
(�2

m/cm) + (�2
n /cn)

. (15)

The degree of freedom (�) expression is calculated using,

 = ((�2
m/cm) + (�2

n /cn))
2

((�4
m/c2

m(cm − 1))) + (�4
n /c2

n(cn − 1))
(16)

ote that � and � here are the sample mean and standard devi-
tion respectively. As is customary in such tests, we use  ̨ = 5%
ignificance level. Table 6 shows the results of three Welch t-tests
erformed on all pairs of Models 1, 2 and 3.

Since none of the confidence intervals encloses the hypothe-
ized mean difference value of zero and the difference between
ample means for all vehicle model pairs lie within the confidence
nterval, the null hypothesis H0 can be rejected in all three tests

ith 95% confidence. The alternate hypothesis stating that the dif-
erence between the means is statistically significant for all three

odel pairs is hence accepted in all cases. The implication of each
est is summarized in the last column of Table 6.

The disadvantage of using multiple pairwise comparisons as
hown above is that the probability of making at least one Type

 error (incorrect rejection of true null hypothesis) increases with
he number of comparisons NC as 1 − (1 − ˛)NC. For TS{1, 2, 3, 4,
} where we require 10 comparisons, this probability comes out
o be greater than 40%. The Tukey–Kramer multiple comparison
est [27] is used instead when there are more than two  groups to
e compared and their sample sizes are unequal. In a single step, it
hows all pairs that have significantly different means. In this paper,
e implement the Tukey–Kramer test using Matlab’s multcompare

unction. Detailed results are shown later in Table 7.

.3. CSI models for remaining training sets

In this section, we solve (10) for all training sets. Additionally,
egardless of the number of vehicle models used, we apply the
btained CSI model in each case to all five vehicle models to test
he generality of the obtained function.4 Statistical tests are also
erformed in all cases. The procedure for obtaining the CSI prece-
ence order and statistical testing remains exactly the same as in
he previous section.
Table 7 shows the overall CSI precedence relations obtained
rom all 26 possible training sets. The first column in the table shows
he category of the TS, i.e. the number of vehicle models involved.

4 This is the reason for calling vehicle model combinations as training sets.
puting 30 (2015) 265–278

Actual optimized values for the objective function in (10) are shown
in the fourth column. The fifth column shows the scaled objective
values obtained by dividing the actual objective value by the num-
ber of summation terms in the objective function. This scaled value
is a measure of how well the corresponding CSI model differentiates
between the vehicle model pairs.

It is to be noted that 24 out of 26 training sets yielded the cor-
rect CSI ordering against (11). From (11) it is seen that Models 2
and 4 have approximately similar ratings, hence the relative pos-
itions of CSI2 and CSI4 are ignored in the table when determining
the correctness of the CSI precedence relations. Two training sets
in II-TS category (highlighted in Table 7) yielded unsatisfactory
results (incorrect CSI ordering or infeasible CSI model): an indi-
cation that two  vehicle models as a training set may  be not be
sufficient for generalizing the obtained CSI model for other vehi-
cle models. On the other hand, four or five training sets involve
larger datasets and therefore high computational cost. Based on
these simple observations we conclude that three training sets are
sufficient for generalization in this study. Even within the III-TS cat-
egory, we find that TS{2, 4, 5} gives the best scaled objective value.
Therefore, we shall use CSI{2,4,5} in the later sections to show some
applications of the proposed CSI modeling technique. Its functional
form is given by,

CSI{2,4,5} = T1 × T2 × T3 × T4 × T5 × T6

= X0.0665
1 X1.9547

2 X5.9082
3 X0.5356

4 X2.6382
5 X5.9102

6 .
(17)

6.3.1. A note on hypothesis testing
For the 24 training sets that yielded the correct CSI ordering,

the Welch’s t-test is performed on all vehicle model pairs. The null
hypothesis is the same as in (14). However, regardless of the num-
ber of vehicle models used, this null hypothesis is tested on all
possible model pairs (5C2 = 10). Thus, a total of 240 tests are per-
formed. We  are able to reject the null hypothesis in 239 cases. The
failed test case corresponds to TS{2, 3}: another indication against
using a training set with two  vehicle models. The analysis is same as
that described in Section 6.2 and hence is omitted here for brevity.

Table 7 also shows the results of the Tukey–Kramer multiple
comparison tests. In case of TS{2, 3}, the hypothesis could not be
rejected for the model pair {2, 3}. This agrees with Welch’s t-test
result above. The Tukey–Kramer test also fails to reject the null
hypothesis for the model pair {1, 2} for TS{2, 5}. This means that
the CSI model obtained using the training models 2 and 5 is not
adequate to correctly establish the precedence of vehicle models 1
and 2. The Welch t-test failed to identify this issue because of the
Type I error discussed previously. For all other training sets, the
results of both the significance tests agree as shown in the last two
columns of Table 7.

6.4. Sensitivity analysis

An important part of CRM is to study what factors affect cus-
tomer satisfaction to what extent. Understanding this gives crucial
insights for attracting new customers and retaining old ones. In
mathematical terms this study is referred to as sensitivity analy-
sis. In this section we investigate the sensitivity of the CSI models
obtained in the III-TS, IV-TS and V-TS categories of Table 7 to the
transformed features Xi. Mathematically, the partial derivative

Si = ∂f

∂X
i

gives the local sensitivity with respect to the ith transformed
feature, where f is the functional form of the CSI model under
consideration.
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Table  6
Welch’s t-test statistics.

Model pair {m,n} t � 95% confidence interval (Mm − Mn) �m − �n Implication

{1,2} -28.72 66,080.89 (-0.0089,-0.0078) -0.008374 CSI1 ≺ CSI2

{1,3} 15.35 5246.97 ( 0.0101, 0.0130) 0.011527 CSI1 
 CSI3

{2,3} 26.00 5663.99 ( 0.0184, 0.0214) 0.019901 CSI2 
 CSI3

Table 7
Overall CSI precedence relations for all five vehicle models obtained from all possible vehicle model combinations. CSI models which are infeasible or which resulted in
incorrect CSI precedence relations (against (11)) are marked in gray. The best CSI model is shown in bold.

Model training sets Predicted CSI precedence (training sets + test sets) Objective value (×10−2) Statistically significant?

Actual Scaled Welch Tukey-Kramer

II-TS {1,2} CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≺ CSI2 1.3847 1.3847 YES YES
{1,3}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 1.3820 1.3820 YES YES
{1,4}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 1.3770 1.3770 YES YES
{1,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 3.2239 3.2239 YES YES
{2,3}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≺ CSI2 2.0196 2.0196 NO NO
{2,4} CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≺ CSI2 0.9831 0.9831 YES YES
{2,5} CSI5 ≺ CSI3 ≺ CSI2 ≺ CSI1 ≺ CSI4 NA NA YES NO
{3,4}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 2.3567 2.3567 YES YES
{3,5} No feasible solution found NA NA NA NA
{4,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 4.2274 4.2274 YES YES

III-TS  {1,2,3} CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≺ CSI2 3.9803 1.3268 YES YES
{1,2,4} CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≺ CSI2 2.6595 0.8865 YES YES
{1,2,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 6.5799 2.1933 YES YES
{1,3,4}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 4.6537 1.5512 YES YES
{1,3,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≺ CSI2 3.6521 1.2174 YES YES
{1,4,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 8.0151 2.6717 YES YES
{2,3,4}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 4.7065 1.5688 YES YES
{2,3,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≺ CSI2 5.6201 1.8734 YES YES
{2,4,5} CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 8.4579 2.8193 YES YES
{3,4,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 5.8008 1.9336 YES YES

IV-TS  {1,2,3,4} CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 7.4283 1.2380 YES YES
{1,2,3,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≺ CSI2 9.1152 1.5192 YES YES
{1,2,4,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 12.3547 2.0591 YES YES
{1,3,4,5}  CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4 9.2014 1.5336 YES YES
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tomers.

Identification of relative importance of different features in the
perception of a customer as outlined above remains as valuable

Table 8
Ordering of average CSI model sensitivities (Si) for top 10% customers (by CSI value)
of  Model 2. The high sensitivity (H) groups and low sensitivity (L) groups are also
shown.

Training set (TS) CSI model Avg. sensitivity ordering (Si)

Group H Group L

{1,2,3} CSI{1,2,3} S3 > S5 > S1 > S6 > S4 > S2

{1,2,4} CSI{1,2,4} S5 > S1 > S2 > S4 > S6 > S3

{1,2,5} CSI{1,2,5} S3 > S1 > S5 > S6 > S2 > S4

{1,3,4} CSI{1,3,4} S3 > S6 > S5 > S2 > S4 > S1

{1,3,5} CSI{1,3,5} S5 > S1 > S2 > S3 > S6 > S4

{1,4,5} CSI{1,4,5} S6 > S3 > S5 > S2 > S1 > S4

{2,3,4} CSI{2,3,4} S6 > S3 > S2 > S5 > S4 > S1

{2,3,5} CSI{2,3,5} S2 > S5 > S3 > S1 > S4 > S6

{2,4,5} CSI{2,4,5} S3 > S6 > S5 > S2 > S4 > S1

{3,4,5} CSI{3,4,5} S6 > S2 > S3 > S5 > S4 > S1

{1,2,3,4} CSI{1,2,3,4} S6 > S3 > S5 > S4 > S2 > S1

{1,2,3,5} CSI{1,2,3,5} S1 > S5 > S3 > S6 > S4 > S2
{2,3,4,5} CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI2 ≺ CSI4

V-TS  {1,2,3,4,5} CSI5 ≺ CSI3 ≺ CSI1 ≺ CSI4 ≺ CSI2

In Section 1 we hypothesized that the satisfaction distribution is
omposed of (two or) three nearly normal distributions of (two or)
hree statistically differing populations – dissatisfied, satisfied and
xtremely satisfied customers. Here, we are specifically interested
n how important these transformed features are for the extremely
atisfied set of customers because ultimately they are responsible
or the affective and behavioral components of satisfaction, which
annot be measured in quantitative terms. To extend the study over
he entire market we choose the top 10% customers (by CSI value) of

odel 2, one of the best vehicle models among the five considered
n this paper, thus identifying the extremely satisfied customer set
n the market. The sensitivities Si are averaged over this customer
et to get Si for all 16 CSI models in III-TS, IV-TS and V-TS categories
f Table 7. The average sensitivities are ordered according to their
ecreasing numeric values in Table 8 and classified into two groups
f high sensitivity (H) and low sensitivity (L).

The frequency of occurrence of the transformed features (with
espect to which the average sensitivities are calculated) in groups

 and L are shown in Fig. 6. The following can be inferred from the
gure:

a) For the majority of extremely satisfied customers, the features
X3 (total cost), X5 (average miles between visits) and X6 (sum of
severity ratings) are the most important factors governing their

perception towards vehicle quality and reliability.

b) The features X1 (total number of visits) and X2 (total waiting
time of customer during vehicle service) are the next most
important factors.
10.5236 1.7539 YES YES

14.4659 1.4465 YES YES

(c) The feature X4 (average number of days between successive
visits) is the least important factor for extremely satisfied cus-
{1,2,4,5} CSI{1,2,4,5} S6 > S3 > S5 > S2 > S1 > S4

{1,3,4,5} CSI{1,3,4,5} S2 > S5 > S6 > S3 > S4 > S1

{2,3,4,5} CSI{2,3,4,5} S2 > S6 > S5 > S3 > S1 > S4

{1,2,3,4,5} CSI{1,2,3,4,5} S6 > S5 > S4 > S3 > S2 > S1
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ig. 6. Bar graph showing the frequencies FreqL and FreqH with which the average
ensitivity with respect to feature Xi occurs in L and H groups respectively.

nformation to designers. This information can be used by designers
o prioritize design decisions. For example, improvements to design
ecisions which are directly related to features in the H-group of

 vehicle model should be given preference over design decisions
hat affect features belonging to the L-group.

. Applications of CSI model

In this section, we discuss two applications of the quantitative
SI models which are significant for a customer relations manager
o take progressive decisions regarding design enhancements and
uture market strategy for all five vehicle models. Each application
s accompanied by illustrative examples on one or more vehicle

odels. It is to be noted that similar analyses can be performed
n any other vehicle model in a similar manner. However, for the
easons mentioned in Section 6.3, we use the CSI model given in
17) obtained using TS{2,4,5} for all analyses.

.1. Application 1: Deriving classification rules

Using a quantitative CSI model and classification tree learning
lgorithms, we  can identify a set of rules to clearly distinguish
etween any two sets of customers. Identification of such rules for
lassifying dissatisfied and satisfied customers is of prime impor-
ance for making future design enhancements to the product. More
mportantly, this technique allows automobile companies to make
uy-back offers to individuals in the dissatisfied set for ensuring
ustomer retention and increasing customer loyalty. The procedure
s illustrated here for Model 2. Consider Fig. 7, which is a schematic
epresentation of the CSI distribution for Model 2 obtained using
SI{2,4,5} in (17).

The customers are divided into four equal groups.5 Customers
ith CSI rating below the first quartile Q1 are labeled as dissatis-
ed (Class D) and those with CSI rating above the third quartile Q3
re labeled as satisfied (Class S). Matlab’s classregtree algorithm
s used to generate the classification tree in Fig. 8. The features xi
xtracted in Section 3 are used as predictors for classifying cus-

omers as either belonging to D or S. The transformed features are
ot used here since their values are normalized and are of no rele-
ance to a practitioner. At the root node of the classification tree we

5 This is for illustration only. The actual choice depends on the purpose of the
nalysis.
Fig. 7. A schematic of the CSI distribution for Model 2 showing regions of satisfied (S)
and dissatisfied (D) customers. Q1 and Q3 represent the first and the third quartiles
respectively.

have equal number of S and D customers. The algorithm optimally
branches a node such that at each sub-node the number of cus-
tomers from one class (D or S) decreases and those from the other
class increases. The process is continued until the number of cus-
tomers from either of the two classes falls below 1%. This procedure
is called pruning.

The classification tree reveals some very interesting rules for
classifying satisfied and dissatisfied customers:

• Rule-I: 97.25% customers from Class S follow the nodal path:
ROOT → 1a → 2b → 3c. This means almost all customers for
whom,

[x6 < 3.5 AND x4 ≥ 96.5 AND x3 < 570.17] are satisfie

• Rule-II: 85.51% customers from D follow the nodal path:
ROOT → 1b. Another 11.88% customers from D follow the path:
ROOT → 1a → 2a → 3b. Thus for 97.39 % (85.51 % +11.88 %) of dis-
satisfied customers,

[(x6 ≥ 3.5) OR (x6 < 3.5 AND x4 < 96.5

AND x3 ≥ 87.74)].

Rule-I says that for the period considered in this study, if the
following:

1. Sum of severity ratings of all repairs to the customer’s vehicle is
less than 3.5,

2. Average number of days between successive customer visits is
more than 96.5 days, and

3. Total cost of repairs for the entire repair period is less than
$570.17.

are all true for a customer, then it is very likely that he/she is satis-
fied with Model 2.

Similarly, Rule-II says that a customer is very likely to be dissat-
isfied with Model 2 if either,
1. Sum of severity ratings of all repairs to the customer’s vehicle is
more than 3.5,

or all of the following are true:
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tion that frequency of occurrence is directly proportional to the
improvement in satisfaction holds good for Model 1 but not for
Model 5.

A viable approach for quantitatively identifying high-priority
Fig. 8. Classification tree for satisfie

. Sum of severity ratings of all repairs to the customer’s vehicle is
less than 3.5,

. Average number of days between successive customer visits is
less than 96.5, and

. Total cost of repairs for entire service period is more than $87.74.

Clearly, such classification rules carry a lot of significance in data
ining exercises relevant to CRM applications.

.2. Application 2: Identification of critical field failures

A large customer base is also associated with a large number of
epair types or failures. Table 1 shows the number of unique field
ailures in the five vehicle models considered. For planning future
esign enhancements, it becomes necessary to identify critical fail-
res and deemphasize insignificant ones. Usually, this decision is
ased on the frequency or severity of the failures and on market
eedback. In this section, we propose a method for prioritizing dif-
erent field failures on the basis of the percentage improvement in
verall satisfaction that can be achieved by eliminating (or reduc-
ng) their occurrence through design improvements. We  call this
uantity the CSI improvement potential (CIP) value of the field
ailure regardless of whether the corresponding field failure is com-
letely or partially removed.

.2.1. Procedure for evaluating CIP
Let CSIorig be the C × 1 column vector of unnormalized CSI val-

es obtained using any of the CSI models (say CSI{.}) discussed in
ection 6.3 for any given vehicle model with C customers. Then the
rocedure for calculating the CIP for 100% reduction of failures with
epair code rc is as follows:

tep 1: Remove all claims (for 100% reduction) containing repair
code rc from the service dataset. Some customers with
only failures corresponding to rc will be deleted alto-
gether in the process. Let the number of such customers be
Z. We  will later compensate this reduction in the number
of customers.

tep 2: Extract all six features xi, discussed in Section 3, to obtain
the feature matrix FM of size (C − Z) × 6. It is to be noted
that reduction of any kind of failure for a customer should
improve his/her satisfaction. However, when evaluating
x4 and x5 for customers whose first or last visit has the
repair code rc, it is possible that the decrease in numerator

of Eq. (2) and/or Eq. (3) is numerically greater than the
decrease in denominator, thus decreasing the CSI value
instead of increasing it. To avoid this, the numerator is
not changed.
 dissatisfied customers of Model 2.

Step 3: Compensate for the deleted customers (who are now
problem free) by adding Z instances of hypothetical cus-
tomers with feature vector [min(x1) min(x2) min(x3)
max(x4) max(x5) min(x6)] to FM. This ensures that these
customers are the most satisfied among the C customers.

Step 4: Normalize columns of xi’s in FM (now of size C × 6) as
described in Section 4 to get the transformed feature
matrix FMtr.

Step 5: Obtain CSInew, a C × 1 column vector of unnormalized CSI
values, using CSI{.} on FMtr.

Step 6: Normalize the 2C × 1 sized column vector CSI = [CSIorig
CSInew]T between 0 and 1 using min(CSI) and max(CSI)
to obtain CSInr = [CSInr

orig CSInr
new]T . This allows unbiased

comparison between the original and new CSI distribu-
tions.

Step 7: The CIP for 100% reduction of failures with repair code rc

can now be calculated as,

CIP =
mean(CSInr

new) − mean(CSInr
orig)

mean(CSInr
orig)

× 100%. (18)

7.2.2. Prioritizing failures based on CIP
The ability to calculate CIP allows us to prioritize failures

based on their impact on the CSI rating. Rectification of root
causes of high priority failures leads to improvement in the
design and more importantly improves the customer percep-
tion of the product. Traditionally, prioritization is done based
on the frequency of occurrence of failures. Here, we investigate
whether such an approach really improves the satisfaction pro-
portionately. Models 1 and 5 are chosen for this study as they
are the worst rated models in the non-luxury and luxury seg-
ments respectively (see Table 1 and Eq. (11)). Fig. 9 shows bar
charts of CIP values corresponding to 100% removal of the top
50 most frequently occurring repair codes or failures (arranged in
decreasing order of frequency along the X-axis) in Models 1 and 5.
The CIP values are calculated using CSI . Note how the assump-
field failures, like the one presented here, is very useful for making
progressive improvements to the vehicle design while ensur-
ing that the customers are maximally satisfied with each design
change.
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Fig. 9. CIP values corresponding to 100% removal of the top

.2.3. CIP for partial reduction of failures
Although the highest improvement in customer satisfaction is

chieved by the complete removal of high-priority field failures,
t may  not always be practical. In such cases, it may  be useful to
tudy the effect of partial reduction of failures. Important insights
nto the nature of CIP can be gained in the process. Model 1 is used
ere for illustrating the CIP behavior with respect to the most fre-
uent repair code. Again the CSI model CSI{2,4,5} is used for all CIP
alculations. Fig. 9(a) reveals that the complete removal of the most
requent repair code leads to around 20% improvement in satisfac-
ion. On the other hand, Fig. 10 shows the progressive improvement
n satisfaction for every 10% additional removal of the most fre-
uent repair code, starting from 0% (where obviously CIP = 0%) to
00% (where CIP≈ 20 % as seen in Fig. 9(a)). Fig. 10 is generated
sing a sampling method. For CIP calculation of any intermediate
% removal, a sample of 100 datasets is first created by randomly
emoving p% of the most frequent repair code. Thereafter, the CIP
s calculated for all 100 datasets and a corresponding box-whisker
rdinate is plotted at p% abscissa. The lower and upper edges of rect-
ngular box represents the first and the third quartiles respectively
f the 100 CIP values, the circle in the rectangular box represents
heir median value, and the whiskers represent the extreme CIP

alues.
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ig. 10. Box plot of CIP values for every 10% partial reduction of the most frequent
epair code in Model 1.
ost frequent repair codes for: (a) Model 1 and (b) Model 5.

7.2.4. Partial reduction plans
Fig. 11 shows the CIP values for every 10% partial reduction of the

top five most frequent repair codes (named r1 through r5) occurring
in Model 1. The plots are obtained using exactly the same procedure
as described above except that only the median values are shown
for the box-whisker ordinates for clarity. It can be verified that the
CIP values at 100% reduction of each repair code correspond to the
first five bars in Fig. 9(a). Note that despite using a highly non-
linear CSI function given by CSI{2,4,5} from (17), the CIP increases
approximately linearly with the amount of reduction for all five
repair codes. More importantly, note that different repair codes give
different rates of improvement in satisfaction.

With this information in hand, the next question to ask is what
combination of repair codes should be used and how much reduc-
tion should be targeted for each repair code to achieve a desired
level of improvement in customer satisfaction. Typically, the num-
ber of repair codes associated with each vehicle model, as shown
in Table 1, is very high. For illustration we  consider five hypothet-
ical partial reduction plans (PRPs) shown in Table 9 prescribed by
experts in the field. For example, PRP-I represents a 10% reduction
in repair code r1, 20% in r2, 30% in r3, 20% in r4 and 10% reduction
in r5.
The sampling method is again used here for calculating the CIP
value for each PRP shown in Table 9. Hundred datasets are created
by randomly removing the specified percentages of all five repair
codes. The corresponding CIP values are calculated as before. The
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Fig. 11. CIP median values for every 10% partial reduction of the top five most
frequent repair codes in Model 1.
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Table  9
Five hypothetical partial reduction plans (PRPs) using the top five most frequent
repair codes of Model 1.

PRP-I PRP-II PRP-III PRP-IV PRP-V

r1 10% ↓ 10% ↓ 10% ↓ 10% ↓ 10% ↓
r2 20% ↓ 10% ↓ 10% ↓ 10% ↓ 20% ↓
r3 30% ↓ 20% ↓ 10% ↓ 10% ↓ 10% ↓
r4 20% ↓ 20% ↓ 20% ↓ 10% ↓ 10% ↓
r5 10% ↓ 20% ↓ 20% ↓ 20% ↓ 10% ↓

Table 10
Comparison between median CIP values obtained by the sampling method and by
the principle of superposition using Fig. 11.

PRP-I PRP-II PRP-III PRP-IV PRP-V

m
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CIP median (using 100 samples) 8.58 7.39 6.59 5.87 6.25
CIP median (from Fig. 11) 8.51 7.32 6.55 5.85 6.23

edian of these CIP values for all five hypothetical PRPs are shown
n the first row of Table 10.

We  now estimate the CIP values for the same PRPs using Fig. 11
y adding the individual CIP values of the five repair codes obtained
y the amount of reduction specified by the PRP. For example, in
ase of PRP-I,

CIPPRP-I = CIPr1 (10%) + CIPr2 (20%) + CIPr3 (30%) + CIPr4 (20%) + CIPr5 (10%)

= 2.059% + 2.034% + 2.358% + 1.426% + 0.635%

= 8.512%.

(19)

his is known as the principle of superposition. The second row
f Table 10 shows that this principle approximately holds for CIP
alculations with different reduction plans. This is due to the fact
hat most failure types are independent of each other. The small
ariation is seen due to the finite number (100) of samples used for
IP calculation.

. Conclusions

In this study, we have demonstrated how starting with vehi-
le service and sales data, a plethora of valuable information can
e derived about perceived customer satisfaction indicators. First,

 single-objective optimization procedure has been suggested to
evelop customer satisfaction index (CSI) models for different vehi-
le models as a function of six important features extracted from
he service data. This customer level CSI modeling approach has
iven us an understanding of the objective space and difficulties
ssociated with it. Consequently, we developed the multiple vehi-
le CSI modeling technique through which a single aggregate CSI
unction can allow us to rank different vehicle models in increasing
rder of customer satisfaction. The ranking of five different vehicle
odels obtained by our procedure has been statistically validated

o be significant and also verified against the ranking obtained from
ublished Consumer Reports reliability ratings on the same set of
ehicle models.

The generalizing capability of the proposed optimization
pproach has been tested by using a subset of vehicle models for the
ptimization task and testing the remaining vehicle models using
he obtained CSI function. For the five vehicle models, the use of a

aximum of three during optimization was found to be adequate to
orrectly rank all five vehicle models. This demonstrates the scal-
bility of the proposed procedure in terms of developing the CSI
odel by using a few vehicle models and then applying the result-

ng CSI model to predict CSI values for other vehicle models which

ere not considered in the developmental phase.

Although the above optimization-based technique for develop-
ng a mathematical CSI function is novel and has been shown to
e effective on a five-vehicle database, another equally significant
puting 30 (2015) 265–278 277

contribution of this study comes from two  post-processing appli-
cations. The developed and tested CSI function can be used to group
customers into different classes, of which ‘satisfied’ and ‘dissatis-
fied’ customers can be isolated for further knowledge-gathering
actions. For a particular vehicle model, we have identified the rela-
tive importance of different warranty-related features. It has been
observed that total cost of repair, average miles between visits
and the sum of severity ratings of repairs are the most important
features causing the perceived satisfaction of a customer. Con-
trary to general belief, average number of days between successive
visits has been found to be the least important factor influencing
customer satisfaction. By identifying the extremely satisfied cus-
tomers and dissatisfied customers from the obtained CSI function
for a vehicle model, classification rules relating to the features that
are responsible for influencing the customers have been obtained
by using a classification tree algorithm. These rules can help a
company in easily identifying dissatisfied customers for making
buy-back or other customer-winning proposals.

Automobile industries are also interested in identifying field
failures that are critically responsible for causing customer dissat-
isfaction. If such critical field failures can be identified, an effort
to reduce them through future design improvements would be an
indirect benefit of the CSI study. With the developed CSI function
model, a number of field failures have been considered for this pur-
pose. First, our analysis has identified a set of critical field failures
that most significantly affect the CSI function and then we have
demonstrated how a partial or complete removal of such critical
field failures can lead to improvement in perceived customer sat-
isfaction. All the above analyses, originating from the proposed CSI
modeling approach, have been shown to provide useful insights
for improving perceived customer satisfaction. But in the long run
such information should also indirectly help in designing a better
product.

Our study clearly demonstrates the usefulness of after-sales
service and warranty data in four viable ways in the design cycle:
(i) rank and reveal a perceived level of customer satisfaction index
for a platform of products, (ii) identify different data features and
their combinations that are responsible for establishing a high (or
low) customer satisfaction index, (iii) identify satisfied and dissat-
isfied customers for further action through customer relationship
management programs, and (iv) rank different field failure events
according to their criticality for a possible improvement in the cus-
tomer satisfaction index of a product. Since after-sale data speaks
volumes about a product’s direct operational performance and its
perception by real customers, the above analysis, when performed
with a larger volume of customer data, is likely to bring out valu-
able and realistic information. The methodologies discussed in this
paper are generic and can be applied to other consumer product
design and development problems.
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