
Expert Systems with Applications 39 (2012) 3185–3196
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A blind reversible method for watermarking relational databases based
on a time-stamping protocol

Mahmoud E. Farfoura a, Shi-Jinn Horng a,⇑, Jui-Lin Lai b, Ray-Shine Run b, Rong-Jian Chen b,
Muhammad Khurram Khan c

a Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 106 Taipei, Taiwan
b Department of Electronic Engineering, National United University, 36003 Miao-Li, Taiwan
c Center of Excellence in Information Assurance, King Saud University, Saudi Arabia
a r t i c l e i n f o

Keywords:
Relational database
Digital watermarking
Copyrights
Blindness
Robustness
Database attacks
Reversible
Cryptography
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.09.005

⇑ Corresponding author.
E-mail addresses: mfarfora@rss.gov.jo (M.E. Farfo

(S.-J. Horng), jllai@nuu.edu.tw (J.-L. Lai), run5116@
rjchen@nuu.edu.tw (R.-J. Chen), mkhurram@ksu.edu.s
a b s t r a c t

Digital watermarking technology has been adopted lately as an effective solution to protecting the copy-
right of digital assets from illicit copying. Reversible watermark, which is also called invertible water-
mark, or erasable watermark, helps to recover back the original data after the content has been
authenticated. Such reversibility is highly desired in some sensitive database applications, e.g. in military
and medical data. Permanent distortion is one of the main drawbacks of the entire irreversible relational
database watermarking schemes. In this paper, we design an authentication protocol based on an effi-
cient time-stamp protocol, and we propose a blind reversible watermarking method that ensures own-
ership protection in the field of relational database watermarking. Whereas previous techniques have
been mainly concerned with introducing permanent errors into the original data, our approach ensures
one hundred percent recovery of the original database relation after the owner-specific watermark has
been detected and authenticated. In the proposed watermarking method, we utilize a reversible data-
embedding technique called prediction-error expansion on integers to achieve reversibility. The detec-
tion of the watermark can be completed successfully even when 95% of a watermarked relation tuples
are deleted. Our extensive analysis shows that the proposed scheme is robust against various forms of
database attacks, including adding, deleting, shuffling or modifying tuples or attributes.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Copyright protection of owners is becoming more and more
necessary due to the rapid growth of the Internet, the wide devel-
opment of digital multimedia contents, and the easier distribution.
As an important area in information hiding (Petitcolas, Anderson, &
Kuhn, 1999), digital watermarking provides a promising method of
protecting digital data from illicit copying, and manipulation by
embedding a secret code directly into the data. Digital watermark-
ing allows the user to add a layer of protection to the digital media
content by identifying copyright ownership and delivering a track-
ing capability. Accordingly, it monitors and reports where the
user’s digital media contents are being used.

Cryptography provides a means of secure delivery of content to
the consumers only. Not all legitimate consumers are trustworthy,
and untrustworthy consumers may alter or copy the decrypted
content illegally. However, cryptography provides no protection
ll rights reserved.

ura), horngsj@yahoo.com.tw
ms16.hinet.net (R.-S. Run),

a (M.K. Khan).
once the content is decrypted, which is required for human percep-
tion. Watermarking complements cryptography by embedding a
message within the content (Cox, Doerr, & Furon, 2006).

There is a rich body of literature on watermarking multimedia ob-
jects, starting from watermarking still images (Cox, Kilian, Leighton,
& Shamoon, 1997; Wong & Memon, 2001) and later extended to dig-
ital video (Hartung & Girod, 1998) and audio (Arnold, 2000) and text
(Brassil, Low, & Maxemchuk, 1999). Digital watermarking was
exploited in other digital media like protecting software (Collberg
& Thomborson, 2002), natural language (Atallah, Raskin, & Hempel-
mann, 2002) and sensor data (Sion, Atallah, & Prabhakar, 2004a).

The basic watermarking procedures like watermark insertion
and detection to multimedia objects cannot be applied directly to
watermarking relational databases due to the differences in the
characteristics of multimedia and relational data. Unlike highly
correlated multimedia data whose relative positions are fixed,
database relations contain independent tuples with little redun-
dancy. The tuples can be added, deleted or modified frequently
in either benign updates or malicious attacks.

In the conventional irreversible watermarking schemes, only
the embedded watermark information can be extracted from the

http://dx.doi.org/10.1016/j.eswa.2011.09.005
mailto:mfarfora@rss.gov.jo
mailto:horngsj@yahoo.com.tw
mailto:jllai@nuu.edu.tw
mailto:run5116@ms16.hinet.net
mailto:rjchen@nuu.edu.tw
mailto:mkhurram@ksu.edu.sa
http://dx.doi.org/10.1016/j.eswa.2011.09.005
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

3186 M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196
suspected data; however, in reversible watermarking schemes, the
original objects can be recovered as well as the embedded
watermarks.

Comparatively, watermarking of relational databases started to
receive attention due to the increasing use of database systems in
many real-life applications (Agrawal & Kiernan, 2002; Li & Deng,
2003; Li, Guo, & Jajodia, 2004; Li, Guo, & Wang, 2008; Li, Swarup,
& Jajodia, 2003; Shehab, Bertino, & Ghafoor, 2008; Sion, 2004; Sion,
Atallah, & Prabhakar, 2004b). Nonetheless, most watermarking
schemes have been irreversible (the original relation cannot be re-
stored from the watermarked relation). One major motivation for
reversible watermarking is some real-life applications such as out-
sourced medical and military data. These kinds of data do not allow
any losses. Another purpose of reversible watermarking is provid-
ing shareware or trial versions of specific database applications
where the original database version can be recovered after the con-
sumer buys the license of that application.

Since most the previous relational database watermarking
schemes (Agrawal & Kiernan, 2002; Li & Deng, 2003; Li et al.,
2003, 2004, 2008; Shehab et al., 2008; Sion et al., 2004b) suffer
from an intrinsic problem, where an attacker can falsely claim
ownership, since the previous schemes rely only on the robustness
of the embedding algorithms, apparently an attacker can succeed
to destroy the embedded watermarks under some conditions.
Our new authentication protocol comes to solve this problem by
introducing a trusted time-stamping service (TSS) to the water-
marking scheme which plays a significant role in authenticating
the watermarked relation and the embedded watermark besides
to relation owners.

In this work, we propose a blind reversible method for water-
marking relational database which proves the true ownership of
the database owner. In the proposed scheme, we embed a stream
of owner-specific watermark bits in the fractional portion of
numeric attributes by utilizing a reversible data-embedding tech-
nique called prediction-error expansion proposed by Thodi and
Rodriguez (2004). Once a database relation is outsourced and the
owner suspects any intentional misuse, he/she can use the detec-
tion procedure to check whether the outsourced relation is abused
by detecting and verifying the embedded owner-specific water-
mark information.

The rest of this paper is organized as follows: Section 2 gives an
overview of related researches and preliminary background. Sec-
tion 3 explains in detail the proposed watermarking scheme,
including watermark insertion and watermark detection. In Sec-
tion 4, we present robustness analysis. In Section 5, we present
experiment details and Section 6 concludes this paper with sum-
maries and suggestions for future works.
2. Related researches and preliminary background

2.1. The previous irreversible schemes

The first well-known conventional (irreversible) database
watermarking scheme was proposed by Agrawal and Kiernan (AK
for short) (Agrawal & Kiernan, 2002) for watermarking numerical
values in relational databases. The fundamental assumption is that
the watermarked database can tolerate a small amount of errors. In
AK (Agrawal & Kiernan, 2002) scheme, the private key K, used for
copyright verifiability, concatenated with the primary key of the
tuple, is the seed for the pseudorandom number generator algo-
rithm which decides the tuples, attributes within a tuple, and bit
positions within an attribute to be marked. Only when the attacker
has access to the private key, it can detect the watermark with high
probability. The technique survives several attacks and preserves
mean and variance of all numerical attributes.
Agrawal and Kiernan’s scheme (Agrawal & Kiernan, 2002) can-
not be directly applied to watermarking categorical data since
any change, no matter how small it is, to a categorical value may
render the value meaningless. To solve this problem, Sion (2004)
proposed a scheme to watermark a categorical attribute by chang-
ing some of its values to other values of the attribute (e.g., ’red’ is
changed to ‘green’) if such change is tolerable in certain applica-
tions. In Li et al. (2003) extended the work by Agrawal and Kiernan
(2002) to provide for multi-bit watermarks in a direct domain
encoding which in turn increases the length of embedded water-
marks. Since some sensitive types of applications like medical
and military cannot bear any permanent data distortion, the afore-
mentioned works cannot be applied to watermark those relations.

2.2. The previous reversible schemes

Several reversible watermarking schemes in the field of digital
multimedia have been proposed. Data compression based reversal
(Celik, Sharma, Tekalp, & Saber, 2005) involves methods to loss-
lessly compress a set of selected features from an image and
embed the watermark information in the space saved due to the
compression. They use a binary-to-L-ary conversion to embed the
secret payload. In Celik et al. scheme, the payload capacity greatly
relies on two factors: the number of the L-levels and the number of
smooth regions in the cover image. The larger L and the smoother
regions, the higher payload an embedding method has. However,
data compression based schemes lack robustness because the ap-
plied compression methods cannot resist the distortions.

Histogram shifting techniques (Vleeschouwer, Delaigle, & Macq,
2001) rely on the fact that adjacent pixels in grayscale images are
close to each other, so pixels in an image can be divided into dis-
tinct zones, and a histogram for each zone can be calculated. After
that, if the watermark bit is 1 then the histogram circularly up-
graded, or downgraded if the watermark bit is 0. This technique
is not suitable in the case of relational database watermarking be-
cause, as we mentioned in Section 1, the data in a relation are dis-
crete and not related.

Difference expansion (DE) techniques (Alattar, 2004; Tian,
2003) schemes usually generate some small values to represent
the features of the original image. Then, expand or enlarge the gen-
erated values to embed the bits of watermark information. The
watermark information is usually embedded in the LSB (least sig-
nificant bit) parts of the expanded values. Then the watermarked
image is reconstructed by using the modified values. In Tian’s
scheme, an integer transformation is defined as

g ¼ ðxþ yÞ
2

� �
; ð1Þ

d ¼ x� y ð2Þ

For example, x = 106 and y = 104 are two adjacent pixels. Then the
difference d and the average g can be computed as follows:
d ¼ 106� 104 ¼ 2; and g ¼ bð106þ104Þ

2 c ¼ 105. Here, bxc denotes the
greatest integer smaller than x (floor function). To embed a water-
mark bit i = 1 into the pixel pair, the difference d is represented
using the binary format, shift it left by one bit and append the
watermark bit i into the vacant LSB. If l is the bit length of d (i.e.,
d = bl�1bl�2 � � � b0), then the new difference value d0 can be obtained
as

d0 ¼ bl�1bl�2 � � � b0i ¼ 2 � dþ i ¼ 2 � 2þ 1 ¼ 5 ð3Þ

Then, the new pixel values is given by

x0 ¼ g þ ðd0 þ 1Þ
2

� �
¼ 105þ 3 ¼ 108 ð4Þ

M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196 3187
y0 ¼ g � d0

2

� �
¼ 105� 2 ¼ 103 ð5Þ

At the decoder side, the watermark bit can be extracted from the
LSB of the difference value, and the original difference value can
be restored

d0 ¼ x0 � y0 ¼ 108� 103 ¼ 5

i ¼ LSBðd0Þ ¼ LSBð1012Þ ¼ 1
ð6Þ

d ¼ d0

2

� �
¼ 5

2

� �
¼ 2 ð7Þ

Then the inverse integer transform is given by Eqs. (8) and (9). Thus,
original pixel values x and y can be recovered completely

x ¼ ðx0 þ y0Þ
2

� �
þ ðdþ 1Þ

2

� �
¼ 105þ 1 ¼ 106 ð8Þ
y ¼ ðx0 þ y0Þ
2

� �
� d

2

� �
¼ 105� 1 ¼ 104 ð9Þ

Gupta and Pieprzyk (2008) have proposed a reversible water-
marking scheme based on DE. The major drawback of his scheme
is that it requires two attributes to embed a single watermark
bit, and the amount of distortion introduced in the attributes be-
comes directly proportional to the numerical difference of the
two attributes. And since data in a relation are discrete and values
are not related, it is trivial to have a high distortion in the final
watermarked relations. Another problem that this scheme faces
is more vulnerable to alteration attack; thereby any alteration to
any one of the participated attributes will fail detecting the water-
mark and recovering the original data. Our objective in this paper
is to show that embedding a watermark bit in a single attribute
will be a better choice and will solve the previous problems raised
in Gupta and Pieprzyk (2008).

Instead of using DE, prediction-error expansion (PE) proposed in
Thodi et al. (2004) is utilized in this work. In PE, a predictor instead
of a difference operator is used to create the feature elements into
which expansion embedding will be done. A predictor better ex-
ploits the correlation inherent in the neighborhood of a pixel.
The prediction errors are the feature elements into which expan-
sion embedding is done. Consider a pixel with intensity y in a gray-
scale image and a watermark bit i to be embedded. A predictor
operates on the neighborhood of pixel y and predicts its intensity
y^. The prediction error pe is given by

pe ¼ y� y^ ð10Þ

To embed a watermark bit i into prediction-error pe, pe is repre-
sented by using the binary format. Shift it left by one bit and ap-
pend the watermark bit i into the vacant LSB. If l is the bit length
of d (i.e., pe = bl�1bl�2 � � � b0), then the new prediction-error p0e can
be obtained as:

P0e ¼ bl�1bl�2 � � � b0i ¼ 2 � pe þ i ð11Þ

The modified prediction-error, p0e and the predicted intensity y^ are
combined to calculate the embedded pixel intensity y0 (i.e. the
watermarked value), where

y0 ¼ y^ þ p0e ¼ y� pe þ p0e ¼ yþ pe þ i ð12Þ

At the detector side, the intensity of the pixel is predicted by
using the same predictor as employed by the embedder. The
predicted intensity will be y^ (if the neighborhood has not been
altered). The prediction error at the decoder is y0 � y^ = p0e. The
embedded bit is the LSB of p0e, i.e. i = LSBðp0eÞ, the true pixel intensity
is restored after calculating the original prediction error as

pe ¼
p0e
2

� �
ð13Þ

y ¼ y0 � pe � i ð14Þ

In our approach, we assume that y is the fractional part of any
numeric attribute to be watermarked, and y^ is any given value
known at watermark insertion and detection time. In Section 3
we will give more details about the proposed watermarking
method.

2.3. The previous time-stamping protocols for digital watermarking

Hwang, Hwang, and Chang (2005) proposed a time-stamping
protocol for digital watermarking. The main purpose of a time-
stamping technique is to ascertain whether a certain digital med-
ium was created or signed at a certain time. Later, Chou, Chen,
and Chan (2007) proposed another time-stamping protocol based
on Hwang et al. (2005), they claimed that the former protocol is
not secure enough against attacks, such like off-line attack, the
reader is referred to Chou et al. (2007) and Hwang et al. (2005)
for more details about their protocols. Both the protocols done
by Hwang et al. (2005) and Chou et al. (2007) were mainly based
on symmetric and asymmetric key cryptography. Hence it is
proved that asymmetric key cryptography is more secure than
symmetric one. Based on Chou et al. (2007) and Hwang et al.
(2005), we propose a new time-stamping protocol relying only
on asymmetric key cryptography, to solve the problem of multiple
claims of ownership in relational database. In the following section
we give the details of the proposed time-stamping protocol.
3. The proposed watermarking method

3.1. Time-stamping protocol for relational database watermarking

Firstly, we identify some of the notations used in our time-
stamping protocol:

r = Signks(RW): denotes applying the signing function Sign() to
the relation RW using the private key ks.
Ver(r,kp): denotes applying the verifying function Ver() to r
using the public key kp.
H(RW): denotes the hash value of relation RW.
Ekp(X): denotes the encryption of input X using public key kp.
Dks(X): denotes the decryption of input X using private key ks.
OIDi: denotes the owner’s ID.
t: denotes the timestamp.

The proposed protocol consists of two phases, the signing phase
and the verification phase.

Our protocol runs in two passes as in Chou et al. (2007), but
using asymmetric key cryptography only, which is a noteworthy
improvement over (Chou et al., 2007). The trusted time-stamp ser-
vice (TSS) acts as a legal trusted third party in which any owner can
trust to register the watermarked database relation and some other
important information such like the owner OIDi, and the user-spe-
cific watermark W. Assuming that each participant has their pri-
vate keys, and the corresponding public key certificates are valid
and verifiable with the presence of a public key infrastructure
(Housley et al., 1999). Given keys and certificates, parties are able
to authenticate their peers following standards such as Standard
Specifications for Public Key Cryptography (2000).

3188 M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196
The detailed procedures for our watermarking time-stamping
protocol in the signing phase are shown in Fig. 1 and presented
as follows:

Step 1. Owner OIDi encrypts the watermarked database relation
RW, the watermark W, and his OIDi, using TSS’s public key Tkp,
to compute the following value c (=ETkp(RW,W,OIDi)) and sends
it to TSS.
Step 2. TSS decrypts the value c using his private key Tks to
obtain RW, W, and OIDi. Then TSS uses a secure one-way hash
function H() Schneier (1996) to compute the value of d
(=H(RW,W,OIDi, t)) where t is the current time. After that, TSS
signs on d by using his private key, obtaining s1. Finally, TSS
uses the owner’s public key OIDikp

to encrypt s1, obtaining T1,
and to encrypt t to obtain T2 and he sends the encrypted T1

and T2 to the owner OIDi.
Step 3. When the owner receives T1 and T2, he uses his private
key OIDiks

to decrypt T1 and T2 obtaining the TSS’s signature s1,
and timestamp t respectively. After that, the owner OIDi vali-
dates s1 by verifying the value of s1 by using the TSS’s public
key, to obtain d and he checks whether the result is equal to
H(RW,W,OIDi, t).
Verðs1;kpÞ ¼ d? ¼ HðRW;W;OIDi; tÞ ð15Þ

The time-stamping verification procedures are described as follows:
Step 1. The notary requests the owner OIDi to verify the time-
stamp of database relation RW and the corresponding water-
mark W.
Step 2. The owner OIDi sends (RW,W,OIDi,s1, t) to the notary for
arbitration.
Step 3. The notary verifies s1, obtaining d and compares d to the
computed H(RW,W,OIDi, t) in Eq. (15).

The time-stamp verification phase is completed after step 3 is
done.

For the situation of multiple owners claiming the ownership of
a watermarked database relation, the problem could be solved by
comparing the time-stamps, the owner who has the smaller
time-stamp is the legal owner.
3.1.1. Security analysis
From the security perspectives, the protocol is more secure

since all the messages sent between both TSS and owner OIDi are
encrypted using public and private keys. For an attacker to succeed
attacking a time-stamped watermarked database relation, based
Fig. 1. Time-stamping protocol for re
on this protocol, he should be able to forge RW, W, OIDi, s1, and t
which are impossible.

We summarize the strength points of our watermarking time-
stamping protocol:

� The protocol is efficient since it works on only two passes.
� The TSS is not required to store any messages.
� The protocol is impervious to forgery.
� The original database relation R is not required for verification,

hence it is kept secret.

3.2. Assumptions

Our proposed reversible watermarking method is motivated
from the AK scheme (Agrawal & Kiernan, 2002); we examine the
following assumptions that are used in the AK scheme:

1. Primary key criticality: A database relation must have a pri-
mary key which is fixed at the time of watermark embed-
ding and detection. Any alteration to it may decline the
relation integrity, usability, and availability.

2. Error tolerance: A small modification to some attributes in
a database relation that is being watermarked will not
affect the whole data usability and availability.

3.3. Model

For a database owner Alice, in order to prove the ownership of a
given relation R, she should be able to retrieve the embedded user-
specific watermark W. The following desired properties should be
satisfied:

1. Prevent illegal embedding and verification: The whole pro-
cess is governed by a key; only an authorized person who
has the key can embed, detect, and verify watermarks. This
prevents unauthorized persons from inserting a false
watermark or illegally verifying watermarks.

2. Blind detection: At the time of watermark detection, the
watermark can be detected without the need of original
database. Solely the key, which is typically used during
the watermark insertion, is required.

3. Imperceptibility: The watermarked tuples and attributes,
i.e. the position of watermark cannot be detected by an
attacker.

4. Robustness: The watermarking scheme should be able to
survive and resist against benign database updates and
malicious attacks.
lational database watermarking.

Table 1
Notations used in this paper.

g Number of tuples in the relation
R Database relation to be watermarked
RW Watermarked relation
W Watermark bits to be embedded
Ai Attribute i in relation R
ti Tuple i in relation R
a Number of attributes in relation R
1/c Fraction of tuples marked
s The detection parameter
o Number of tuples marked
K The embedding secret key
L The length of watermark

M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196 3189
5. Limited distortion: The amount of introduced distortion
should not decline the usability of the database relation.
The statistical data metrics like the change in ‘‘mean’’ and
‘‘variance’’ can be measured and maintained to the
minimum.

6. Incremental updatability: Where each tuple is marked
independently of all other tuples.

7. Reversibility: The original non-watermarked database rela-
tion can be fully recovered after the watermark has been
detected and authenticated.

8. Low false positives rates: The probability of detecting a
watermark from non-watermarked relation should be
negligible.

9. Randomness: The watermark information should be spread
to the whole relation in order to resist any localized attacks.

3.4. Malicious attacks

The following malicious attacks should be considered in the
proposed watermarking scheme:

1. Tuple alteration attack (bit-flipping attack): attacker tries
to alter some values randomly.

2. Tuple deletion attack: attacker tries to delete some tuples
from the watermarked relation aiming to weaken the
embedded watermark.

3. Tuple insertion attack (mix-and-match attack): attacker
tries to replace some tuples from other sources.

4. Attribute attack: attacker may add, delete, or modify an
attribute in order to delete some parts of the watermark.

5. Tuple sorting attack: attacker rearranges the tuples based
on one or more attributes hoping to weaken the embedded
watermark.

6. Additive attacks: attacker inserts additional watermarks to
watermarked data so as to confuse ownership proof.

7. Invertibility attacks: attacker suddenly discovers a fake
watermark from the watermarked relation by guessing
some values of the secret key K.

3.5. Notation and parameters

Consider a database relation R and its schema has the form
R(P,A0,A1, . . . ,Aa�1), where P is the primary key, A0,A1, . . . ,Aa�1

are the a attributes of R, where Ai 2 R and g is the number of tuples
in R. Any of the A0,A1, . . . ,Aa�1 attributes is a candidate for marking.
To minimize the amount of distortion that will be introduced to
the original data, watermark bits will be embedded in the fraction
portion of the numeric attributes. Gap c is a control parameter that
determines the fractions of tuples marked. The bigger value of c,
the lower embedding rates, and the lower change introduced to
relation data, also the lower robustness, and vice versa. Table 1
summarizes the important parameters used in our algorithms.

In our watermarking algorithms, we use a one-way hash cryp-
tographic function result determined by the primary key and the
embedding key K to determine which tuples and attributes to
mark. Usually it has the form of h ¼ HðMÞ, where M is the message.
Besides, it bears the following characteristics: given M, it is easy to
compute h; yet when given h, it is hard to compute M, such as
HðMÞ ¼ h ; given M, it is hard to find another message M0 such as
HðMÞ ¼ HðM0Þ. Several hash functions such as MD5 and SHA are
good choices for this purpose (Schneier, 1996). We use
Fðti � PÞ ¼ HðKjjti � PÞ as a message authentication code (MAC)
considered to be secured (Schneier, 1996), where ti � P is the value
of the primary key attribute P of tuple ti in relation R. For security
reason, the embedding key K should be selected from a large en-
ough key space so that it is computationally infeasible for an
attacker to guess the key. We suggest the embedding key be cho-
sen as the following:

K ¼ HðOIDjjDBnamejjversionjj . . .Þ ð16Þ

where OID is the database owner identity, || denotes concatenation,
DB name is the database name, version is the database version, and
HðÞ is a cryptographic hash function (Schneier, 1996).For the water-
mark bits W to be embedded into the database relation R, W should
be generated in a secure and random way to thwart several attacks.
Eq. (17) shows the components that constitute W:

W ¼ HðKjjOIDjjDB namejjDB specific informationjj . . .Þ ð17Þ

As mentioned before, K is the embedding key, OID is the database
owner identity, DB specific information is any specific characteristic
information related to the current relation being watermarked such
as the number of tuples, and HðÞ is a cryptographic hash function
(Schneier, 1996). The main purpose of this process is to make it dif-
ficult for the attacker to guess the embedded watermark W and to
thwart the invertibility attacks. On the other hand, the watermark
length L should be big enough to reduce the probability of guessing
the embedded watermark W by the attacker; in the robustness
analysis section a detailed discussion will be given.

Sorting operation is not required in our scheme since tuples in a
database relation will be hashed based on their primary keys con-
catenated with the embedding key to a specific index to the water-
mark vector. This property ensures the incremental updatability
can be satisfied.

3.6. Watermark Insertion

In this section, we give details of the watermark insertion pro-
cess. We list five basic methods used in the watermark insertion
algorithm.

1. Get_int(): used to extract the integral portion of a real number.
2. Get_frac(): used to retrieve the fractional portion of a real

number.
3. Bin(): used to convert a value to the equivalent binary value.
4. Lsb(): used to return the least significant bit of a value.
5. Gen_watermark(): used to generate the user-specific water-

mark as shown by Eq. (17).

Algorithm 1 describes the process of encoding one watermark
bit in an attribute. As mentioned in Section 2, prediction-error
expansion (PE) assumes two intensities for each pixel, the original
intensity y and the predicted one y^. Here we assume that y is the
fractional portion of an attribute and y^ is any value known at
encoding and decoding time that is related to that tuple, say
Fðti � PÞ: After subtracting y from y^ to obtain the difference, and
based on the watermark bit to be embedded by expanding the ob-
tained difference, we can achieve the encoding method.

3190 M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196
Algorithm 1. Bit_encoding

Input: Fðti � PÞ, watermark bit b, the value for attribute j of
tuple i: ti � Aj

Output: the updated value for attribute j of tuple i

1
 frac = Get_frac(ti � Aj);

2
 int = Get_int(ti � Aj);

3
 if (frac > 0) then

4
 diff = frac � Fðti � PÞÞ;

5
 temp = Bin(diff);

6
 temp = temp||b;

7
 newdiff = To_integer(temp);

8
 newval = newdiff + Fðti � PÞ;

9
 newval = To_number(int,newval);

10
 Reflect_update(ti � Aj,newval); //update attribute ti � Aj by

newval

11
 end if;

12
 end;
Algorithm 2 describes the process of decoding one watermark
bit in an attribute. The Get_frac() method is used to retrieve the
fractional portion. The new fractional portion will be processed
by subtracting the fractional portion from Fðti � PÞ to calculate
the expanded difference. The watermark bit i is the Lsb of the ex-
panded difference. Now by using Eq. (13), we can obtain the origi-
nal prediction error (difference). After that, using Eq. (14) we can
recover the original value of y.
Algorithm 2. Bit_decoding

Input: Fðti � PÞ, the value for attribute j of tuple i: ti � Aj

Output: the decoded watermark bit b, the updated value for
attribute j of tuple i: ti � Aj
1
 newfrac = Get_frac(ti � Aj);

2
 int = Get_int(ti � Aj);

3
 newdiff = newfrac � Fðti � PÞ;

4
 b = Lsb(Bin(newdiff));

5
 diff = Floor(newdiff/2);

6
 newval = newfrac � diff � b;

7
 newval = To_number(int, newval);

8
 Reflect_update(ti � Aj, newval); //update attribute ti � Aj

by newval

9
 end;
We extend the watermark insertion algorithm of AK scheme
(Agrawal & Kiernan, 2002) to embed multiple watermark bits W,
where a vector of watermark bits is embedded in the relation attri-
butes, one bit for each tuple determined algorithmically under the
control of the embedding key K. The final watermark insertion
algorithm is given in Algorithm 3.
Algorithm 3. Watermark insertion

// The embedding key K is known only to the owner of the
database.

// The parameters c and a are also private to the owner
Input: Watermark W, Original Relation R, Embedding Key K,

fraction of tuples 1/c, candidate markable attributes a
Output: Watermarked Relation RW

1
 w[w0, . . . ,wL�1] = Gen_watermark(W);

2
 for each tuple ti 2 R

3
 loop
4
 if Fðti � PÞ mod c = 0 then // mark this tuple

5
 attribute index j ¼ FFðti � PÞ mod a; // mark

attribute Aj
6
 mark bit idx ¼ Fðti � PÞ mod L;

7
 b = w[idx];

8
 Bit encodingðFðti � PÞ; b; ti � AjÞ;

9
 end if;

10
 end loop;

11
 end;
3.7. Watermark detection

There are two situations where the watermark detection can be
invoked: (1) if Alice suspects that some data sets are illegally cop-
ied or tampered from her relation R, Alice or a third party can use
watermark detection algorithm to verify the ownership of the sus-
picious database. (2) Alice uses a trial version of a database appli-
cation and she wants to buy the full version of that database
application.

In order to detect the watermark from the database relation R,
we have to know the embedding key K, c, and a. The watermark
detection algorithm deals with the same subset of tuples used in
the watermark insertion because of the identical distribution of
the hash function. When seeded by the same embedding key K,
then using the Bit_decoding algorithm, we can reconstruct the
embedded watermark and recover the original database relation.
After finishing the detection process, we will have several water-
marks each belongs to a certain watermark bit index. A majority
voting mechanism is applied to obtain the final watermark infor-
mation. For each marked bit, we count the numbers of its value
to be zeroes or ones respectively, and if the number of ones is high-
er than the detection s then the final value of that bit is one; other-
wise, it is zero. The detected result is a binary sequence of bits
w0[w0, . . . ,wL�1], then we compare them with the original water-
marks w[w0, . . . ,wL�1] and we count the matches among them, if
all w0[w0, . . . ,wL�1] = w[w0, . . . ,wL�1] then Alice retrieves his water-
mark from the suspected relation R is recovered successfully. The
detailed algorithm used for watermark detection is reported in
Algorithm 4.

Algorithm 4. Watermark detection

Input: Watermarked relation RW, key K, fraction of tuples 1/c,
markable attributes a

Output: Watermark Status 2 {true, false}, recovered relation R

1
 OldRW = RW; // backup the suspected relation

2
 w[w0, . . . ,wL�1] = Gen_watermark(W);

3
 for i = 0 to L � 1 do

4
 w0[i] = ’’; // reset watermark information

5
 count[i][0] = 0; count[i][1] = 0; // reset votes for wi to be

0, 1, respectively

6
 end for;

7
 for each tuple ti 2 RW

8
 loop

9
 if Fðti � PÞ mod c = 0 then // this tuple was marked

10
 attribute index j ¼ Fðti � PÞ mod a; // attribute Aj

was marked

11
 mark bit idx ¼ Fðti � PÞ mod L;

12
 Bit decodingðFðti � PÞ;b; ti � AjÞ;

13
 count(idx,b) = count(idx,b) + 1;

14
 end if;

M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196 3191
15
 end loop;

16
 for i = 0 to L � 1 do //Majority Voting Mechanism

17
 if count[i][0] + count[i][1] = 0 then

18
 w0[i] = �1;

19
 end if;

20
 if count[i][1]/count[i][1] + count[i][0] > s then

21
 w0[i] = 1

22
 else w0[i] = 0;

23
 end if;

24
 end for;

25
 for i = 0 to L � 1 do // find matches between original

and detected watermark

26
 if w[i] = w0[i] then matchcount = matchcount + 1;

27
 end if;

28
 end for;

29
 if matchcount = L then

30
 return true; // Alice retrieves his watermark from the

suspected relation and R is recovered successfully

31
 else

32
 return false; // suspected relation

33
 RW = OldRW; // R cannot be recovered

34
 end if;

35
 end;
6 12 24 48 96

10-80

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

τ=0.50
τ=0.55
τ=0.60
τ=0.65
τ=0.70

 (η=10,000)

Pr
ob

ab
ilit

y
of

 a
 s

uc
ce

ss
fu

l w
at

er
m

ar
k

de
te

ct
io

n

γ

Fig. 2. False hit as a function of c.
4. Robustness analysis

In this section we present the detailed analysis of our pro-
posed watermarking method. Our proposed method statistically
follows AK scheme (Agrawal & Kiernan, 2002) since the same
number o � g/c of attribute values is modified during the water-
mark insertion, so the number of introduced errors is the same,
the only difference is that every watermark bit wi is embedded
o � g /(c � L) times. We analyze the robustness of our scheme
using the same method (i.e., binomial probability) as it was used
in AK scheme (Agrawal & Kiernan, 2002). We analyze the robust-
ness of our scheme under a range of malicious attacks men-
tioned in Section 3.3. A similar work can be found in Li et al.
(2008) where the authors extended AK scheme to embed a mul-
tiple watermark bits in an irreversible scheme, the reader is re-
ferred to Li et al. (2008) for more analysis. We use the following
robustness measure probabilities to analyze our watermarking
method:

1. False hit rate: where a valid watermark is detected from non-
watermarked relation.

2. False miss rate: where no valid watermark is detected from
watermarked relation in the presence of various types of
attacks.

3. The smaller values of these probabilities, the more robust the
watermarking method.

4.1. Cumulative binomial probability

We use Bernoulli trials in our robustness analysis. Repeated
independent trails are called Bernoulli trials if there are only two
possible outcomes for each trial and their probabilities remain
the same throughout the trials. Let b (k;n,p) be the probability of
obtaining k successes out of n Bernoulli trials each with probabili-
ties p for success and q = 1 � p for failure result in k successes and
n � k failures. Then,

bðk; n;pÞ ¼
n

k

� �
pkqn�k ð18Þ
n
k

� �
¼ n!

k!ðn� kÞ! ð19Þ

Denote the number of successes in n trials as Sn. The probability of
having at least k successes in n trials and the cumulative binomial
probability can be written as:

PfSn P kg ¼
Xn

i¼k

bði; n;pÞ ð20Þ

For brevity, define

Bðk; n;pÞ :¼
Xn

i¼k

bði; n; pÞ ð21Þ
4.2. Detecting non-watermarked relations

It is obvious that watermark information can be suddenly de-
tected from a non-watermarked database relation by an attacker
even by cheer chance, or by guessing some information like the
embedding key K. This rarely happens, but a watermark detection
algorithm should be designed to take this issue into consideration;
otherwise, attacker can falsely claim the ownership of a relation.

4.2.1. False hit rate
It is the probability of detecting valid watermark from non-

watermarked relation. The lower the false hit, the better robust-
ness. We show that the false hit is under control in our scheme
and can be made highly negligible. For a watermark bits
w[w0, . . . , wL�1], let wi be extracted from data oi times (oi � g /
(c � L) > 0). After the watermark detection algorithm is applied to
a non-watermarked relation, for each detected bit wi, it has the
same probability 0.50 to match or not to match the original bit
in the watermark. The probability that at least s portion out of oi

bits can be detected from the non-watermarked data by cheer
chance is B(soi;oi,0.5). For a watermark of size L, the false hit will
be equal to

QL�1
i¼0 Bðsxi;xi;0:5Þ (Li et al., 2008).

Fig. 2 shows the change of the false hit when the watermark
insertion parameter c increases from 6 to 96 for fixed g = 10,000
and various values of the watermark detection parameter s. The
figure illustrates that the false hit is monotonic increasing with
both watermark insertion parameter c and detection parameter
s. On the one hand, the larger value of gap c – which means lower
fractions of tuples marked – the higher the false hit. On the other

3192 M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196
hand, the false hit can be decreased by increasing the detection
parameter s, which means the minimum threshold that is needed
for the correctly detected watermarks is to be ascertained. We can
see that the false hit rate is very low (less than 10�10), even for high
value of c = 96 and low value of s = 0.50, which means that our
method is robust, secure, and cannot be pirated.

Fig. 3 shows the change of the false hit when the number of tu-
ples g increases from 2000 to 10,000 for fixed c = 6 based on vari-
ous values of the watermark detection parameter s. The trend is
that the false hit is monotonic decreasing with g. We observe that
the bigger g, the lower false hit. However, the false hit can be de-
creased by increasing the detection parameter s. The conclusion
drawn from these two figures is that with small values of c and
reasonably high values of s and g, the false hit can be made extre-
mely low and even negligible.

4.3. Detecting watermarked relations

A watermarking scheme should be robust against malicious at-
tacks, or benign database operations and updates that may destroy
or affect the embedded watermark. The effect of those updates on
the process of watermark detection should be limited to the min-
imum. It should be made hard for the attacker to modify the
embedded watermark so that the innocent owner will not be in
need to claim his ownership rights of a relation, nor will he/she
be considered a pirate.

4.3.1. False miss rate
It is the probability of not detecting a valid watermark from a

watermarked relation that has been modified in some benign up-
dates or malicious attacks. We consider tuple alteration, tuple
deletion, mix and match, and attribute deletion attacks for the false
miss analysis.

4.3.2. Tuple alteration attacks
Sometimes this attack is called bit-flipping attack. In this form

of attacks, Mallory tries to destroy the embedded watermark by
altering randomly some bits and toggles their values (Agrawal &
Kiernan, 2002). We assume that the attacker does not know the
embedding key, so he/she does not know the positions where the
watermark was embedded.

Fig. 4 shows the result of simulating this attack by randomly
selecting different ratios of the watermarked relation and toggling
the least significant bits (LSB) of all their attributes. We can see
that the lower values of c – the higher fraction of tuples
2000 4000 6000 8000 10000

10-80

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

τ=0.50
τ=0.55
τ=0.60
τ=0.65
τ=0.70

 (γ=6)

Pr
ob

ab
ilit

y
of

 a
 s

uc
ce

ss
fu

l w
at

er
m

ar
k

de
te

ct
io

n

η

Fig. 3. False hit as a function of g.
watermarked – the higher resilience to this attack, even when up
to 80% of the tuples are randomly altered (for c = 6), the watermark
can be detected completely. This shows that for the attacker to
completely erase the embedded watermarks, he/she should alter
more than 80% of the watermarked relation, causing a perceptible
change to the pirated relation.

Due to the majority voting, watermark detection fails to detect
watermark bit wi only if at least oi/2 embedded bits that corre-
spond to wi are toggled, where oi > 0 is the number of times the
watermark bit wi is embedded in the data. Thus, the probability
that the watermark bit is not recovered is B xi

2 ;xi; pa

� �
, where pa

is the probability that a tuple is altered in the attack. Now the
probability that the entire watermark is not recovered (i.e., the
false-miss rate) is 1�

QL�1
i¼0 1� B xi

2 ;xi; pa.
Fig. 5 shows the false miss in the case of random tuples alter-

ation. For fixed (g = 80,000, s = 0.50), the lower value of c, the hard-
er it is for tuple alteration attacks to succeed. The general trend
shown in this figure is that false miss is monotonic increasing with
probability of alteration pa, and with the lower value of c, the false
miss can be made extremely low.

Fig. 6 depicts the relation between c and the detected water-
mark; for fixed (g = 80,000, pa = 0.50), and variable detection
parameter s (s = 0.50–0.70), we can observe that the lower values
of c and s, the higher watermark detection rates which means
higher robustness against this attack.
4.3.3. Tuple deletion attacks
Sometimes this attack is called subset attack. In this form of at-

tacks, Mallory tries to destroy the embedded watermark by select-
ing and deleting randomly some tuples from a watermarked
relation (Agrawal & Kiernan, 2002). We also assume that the at-
tacker does not know the embedding key, so he/she does not know
the positions (tuples) where the watermark was embedded.

Fig. 7 shows the result of simulating this attack by randomly
selecting and deleting different ratios of tuples from the water-
marked relation. We can see that the lower the values of c, the
higher resilience to this attack. Even when up to 95% of the tuples
are deleted (for c = 6), the watermark can be detected completely.
This shows that for the attacker to completely erase the embedded
watermarks; he should delete more than 95% of the watermarked
relation, which means that he will lose almost the whole relation.
We conclude that this attack is not effective for the attacker.

Suppose that the attacker examines each tuple independently
and selects it with probability pd for inclusion from the pirated
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
35

40

45

50

55

60

65

70

75

80

85

90

95

100
(η=80,000, τ=0.5)

γ=6
γ=12
γ=24
γ=48
γ=96

W
at

er
m

ar
k

de
te

ct
ed

 (%
)

Tuple alteration percentage (%)

Fig. 4. Resilience to tuple alteration attack.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
(η=80,000, τ=0.5)

γ=6
γ=12
γ=24
γ=48
γ=96 Pr

ob
ab

ilit
y

of
 a

 s
uc

ce
ss

fu
l a

lte
ra

tio
n

at
ta

ck

Probability of alteration pa (%)

Fig. 5. False miss for tuple alteration attack as a function of pa.

6 12 24 48 96
72

74

76

78
80

82

84

86

88

90

92
94

96

98

100
 (η=80,000, pa=50%)

W
at

er
m

ar
k

de
te

ct
ed

 (%
)

γ

τ=0.50
τ=0.55
τ=0.60
τ=0.65
τ=0.70

Fig. 6. Tuple alteration attack as a function of c.

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

 (η=80,000, τ=0.5)
Pr

ob
ab

ilit
y

of
 a

 s
uc

ce
ss

fu
l t

up
le

 d
el

et
io

n
at

ta
ck

Deletion percentage (%)

γ=6
γ=12
γ=24
γ=48
γ=96

Fig. 8. False miss for tuple deletion attack.

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
0

10

20

30

40

50

60

70

80

90

100
 (η=80,000, τ=0.5)

γ=6
γ=12
γ=24
γ=48
γ=96

D
et

ec
te

d
w

at
er

m
ar

k
(%

)

Deletion percentage (%)

Fig. 7. Resilience to tuple deletion attack.

M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196 3193
relation. For the attack to be successful, it must delete all embed-
ded bits for at least one watermark bit. We know that each water-
mark bit wi is embedded oi times, so the probability that all the
embedded bits for wi are deleted is Bðxi;xi; pdÞ ¼ pxi

d .
Therefore, for a watermark of size L, the false miss will be equal

to 1�
QL�1

i¼0 ð1� pxi
d Þ.

Fig. 8 shows the false miss in the case of random tuples dele-
tion. For fixed (g = 80,000, s = 0.50), the lower the value of c, the
harder it is for tuple deletion attacks to succeed. The general trend
shown in this figure for this attack is similar to that shown in the
previous Fig. 5 for tuple alteration. The lower values of c have low-
er false miss (lower probability of success), which means more
robustness against this attack. The figure also shows that even if
60% of watermarked tuples are deleted, the false miss is as low
as 10�11 for c = 6 when s = 0.50. The false miss is close to one only
if more than 95% of watermarked tuples are deleted. This finding
supports the practical experiment in Fig. 7.

4.3.4. Tuple insertion attacks
Sometimes this attack is called mix-and-match attack (Agrawal

& Kiernan, 2002). In the mix-and-match attack, Mallory takes the
watermarked relation R and mixes it with g. pm fraction of tuples
from other sources to create his relation S of the same size as R,
where g is the number of tuples in the original relation and
pm > 0 is the mixing rate.

Fig. 9 shows the result of simulating this attack, by randomly
selecting different ratios of the watermarked relation and mixing
them with tuples from other sources. We can see that for c = 6
and pm = 50% when s = 0.50, the detection rate is about 98%. This
is rational due to the majority voting mechanism being applied
in the watermark detection algorithm. This shows that for the at-
tacker to modify 55% of the embedded watermarks, he/she should
mix more than 80% of the watermarked relation, causing a percep-
tible change to the relation.

In watermark detection, each watermark bit wi is extracted
from those additional tuples roughly oi. pm times, where oi is the
number of times the watermark is extracted from the original data
and pm is the probability of mixing where pm > 0. Then the proba-
bility that this watermark bit is not recovered due to this attack is

B xið1þpmÞ
2 ;xið1þ pmÞ; pm

� 	
¼ pxi

m .Therefore, for a watermark of size

L, the false miss will be equal to 1�
QL�1

i¼0 ð1� pxi
m Þ.Fig. 10 shows

the false miss in the case of mix-and-match. For fixed
(g = 80,000, s = 0.50), the lower value of c, the harder it is to

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
55

60

65

70

75

80

85

90

95

100

γ=6
γ=12
γ=24
γ=48
γ=96

 (η=80,000, τ=0.5)

D
et

ec
te

d
W

at
er

m
ar

k
(%

)

Tuples mixed percentage (%)

Fig. 9. Resilience to mix-and-match attack.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
(η=80,000, τ=0.5)

γ=6
γ=12
γ=24
γ=48
γ=96 Pr

ob
ab

ilit
y

of
 a

 s
uc

ce
ss

fu
l a

lte
ra

tio
n

at
ta

ck

Probability of alteration pa (%)

Fig. 10. False miss for mix-and-match attack.

1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

80

90

100
 (η=80,000, τ=0.5)

W
at

er
m

ar
k

de
te

ct
ed

 (%
)

Attributes deleted (out of eight)

γ=6

γ=12

γ=24

γ=48

γ=96

Fig. 11. Resilience to attribute deletion attack.

1 2 3 4 5 6 7 8
10-60

10-55

10-50

10-45

10-40

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

γ=6
γ=12
γ=24
γ=48
γ=96

 (η=80,000, τ=0.5)
Pr

ob
ab

ilit
y

of
 a

 s
uc

ce
ss

fu
l a

ttr
ib

ut
e

de
le

tio
n

at
ta

ck

Attributes deleted (out of eight)

Fig. 12. False miss for attribute deletion attack.

3194 M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196
succeed. The general trend shown in this figure is similar to that
shown in the previous Fig. 5 for tuple alteration. Fig. 10 shows that
even if 35% of watermarked tuples are mixed, and the false miss is
as low as 10�4 for c = 6 when s = 0.50. The false miss is close to one
only if more than 45% of watermarked tuples are mixed.
4.3.5. Attribute attacks
Consider a situation where Mallory applies his attack to an

attribute or more from a pirated relation. He may add, delete,
and modify the contents of those attributes. We assume that the
watermark detection algorithm can mount the relation attributes
in a dynamic way at run time. Thus, the newly added attributes
can be manipulated and take the effect at the watermark detection.
In the case of adding new attribute(s) to the watermarked relation
RW, the same effect of tuple insertion can be applied, so this fol-
lows the tuple insertion attack analysis. For the case of altering cer-
tain attribute(s), the same situation of tuple alteration can be
considered. Finally, for the case of deleting certain attribute(s), tu-
ple deletion analysis can be applied. To avoid the repetition, we
present only attribute deletion attack in this context.

Now consider a situation where Mallory deletes an attribute or
more from a pirated relation. Only those marked tuples in the de-
leted attributes will be affected. The same effect can be generalized
when deleting tuples from a relation. Accordingly, the same false
miss analysis can be drawn.

Fig. 11 shows the result of simulating this attack by gradually
selecting and deleting different ratios of the attributes of the
watermarked relation. We can see that our method has a high
resilience to such an attack with complete watermark detection
even when deleting seven out of eight attributes with variable val-
ues of c = (6–96) and s = 0.50.

Fig. 12 depicts the false miss for attribute deletion attack. For
fixed (g = 80,000, s = 0.50), the lower value of c, the harder it is
for this attack to succeed. The general trend shown in this figure
for this attack is similar to that shown in the previous Fig. 5 above
for tuple alteration. Fig. 12 shows that even if five out of eight of
attributes are deleted, the false miss is as low as 10�6 for c = 6
when s = 0.50. The false miss is close to one only if seven attributes
are deleted, and this result supports the practical experiment in
Fig. 11.

4.3.6. Tuple sorting attack
The proposed watermarking method treats each tuple indepen-

dently at the time of watermark insertion and detection. The

M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196 3195
pseudo hashed values of the primary key of each tuple maps to a
designated watermark bit index used at both watermark insertion
and detection without the need for sorting, and, as a result, this at-
tack is not effective.
4.3.7. Additive attacks
In additive attacks, the attacker may insert another watermark

to a relation before distribution, which results in confusing the
detection algorithm. Later he/she will claim the ownership of the
pirated relation. This kind of attacks is discussed in Agrawal and
Kiernan (2002) and their proposed solution can be applied to our
method. Our proposed watermarking scheme withstands this at-
tack in two ways (1) by the setting of the proper values of the
detection parameter s and the gap c and (2) by registering the
RW using our proposed time-stamping protocol.
4.3.8. Invertibility attacks
An invertibility attack (Craver, Memon, Yeo, & Yeung, 1998) dis-

covers a fictious secret key that extracts the embedded watermark
information from a pirated relation. Later the attacker uses the dis-
covered watermark to claim the ownership of the relation. This at-
tack cannot proceed with setting the proper size of both the secret
key K and the length of watermark L, by making use of Eqs. (16)
and (17), it will make it harder to the attacker to work out the se-
cret key K. Given the probability of guessing the secret key is 1

2jKj

and the probability of guessing the watermark is 1
2L, the bigger size

of both K and L the harder for the attacker to succeed. On the other
hand, signing the watermark W using the proposed time-stamping
protocol will prevent the invertibility attack, since both the data-
base owner OIDi, RW and W are time-stamped with the TSS.
Table 2
Change in variance introduced by watermarking.

Attribute Mean Variance c = 96 c = 48 c = 24 c = 12 c = 6

A1 135 28,787 �1 �2
A2 300 141,878 +1
A3 121 2090 �1 �1
A4 54 478 +1
A5 157 31,006 +1
A6 35 204 �1
A7 15 33
A8 39 1202 �2 +2

Table 3
5. Experiments

The experimental setup included a 2.4 GHz Pentium CPU and
1 GB RAM PC running Windows Vista Professional. Algorithms
were implemented in Microsoft .NET environment using ADO com-
ponent to visit Microsoft SQL Server database. We applied our algo-
rithms to a generated synthetic data set of nine attributes, one is
the primary key and the others are numerical attributes, and the
eight attributes were used as candidate for watermarking. The size
of the generated set was 80,000 tuples. The size of the watermark
was L = 64 bit, and we investigated five embedding gaps c = 6, 12,
24, 48 and 96 to embed the watermark bits into the data set.
Throughout the experiments, several values of detection parameter
were investigated s = 0.50, 0.55, 0.60, 0.65, and 0.70. For each con-
ducted experiment, the test was repeated 100 times and the aver-
age of successfully detected watermark for each trial was
calculated.
Time overhead cost.

c = 6 c = 12 c = 24 c = 48 c = 96

Insertion time (s) 32 27 20 16 10
Detection time (s) 17 14 11 9 5

Table 4
Tradeoffs.

Parameter False hit
(H)

False miss
(M)

Data
errors

Robustness Time
overhead

c ; H ; M ; E " " "
s " H ; M " – " M –

; H
a " H ; M ; – " "
5.1. Imperceptibility

We report the effect of the errors introduced to the data after
the watermark insertion process, and we used the mean and vari-
ance as statistical metrics to measure the quantitative change
introduced to the data, in this experiment the value of c varied
from 6 to 96. We found a negligible change in the mean value for
all the attributes. For this reason we omit it. Table 2 shows the re-
sult of this experiment after rounding the values to the nearest
integer. Blank entries in the table indicate very little or no change.

As expected, greater changes in variance occur when gap c = 6
and 12 because of larger perturbations in a greater fraction of tu-
ples. The minuscule change in these statistics validates our asser-
tion that our watermarking method is imperceptible.
5.2. Overhead

We report the computational cost results for watermark inser-
tion and detection algorithms for several values of the gap c in Ta-
ble 3.

As we can see, in the worst case when c = 6, where one tuple out
of six is selected to be watermarked, it took about 32 s on average
of 100 tests carried out. This time is quite small regarding the ma-
jor benefits of the watermarking. On the other hand, the water-
marking process is usually done offline, which will not affect the
over whole performance of the database operations.
5.3. Tradeoffs

In our watermarking method, we have three tunable parame-
ters: (i) c, the gap which controls the fractions of tuples to be
watermarked, (ii) s, the detection parameter which controls the
least fraction of watermark bits required for watermark detection
and (iii) a, the number of attributes in the relation available for
watermarking. The three parameters can control the balance be-
tween the overhead and the robustness. Based on the analysis re-
ported in Sections 4 and 5, we summarize our findings in Table 4 as
follows:
6. Conclusions and future works

In this paper, we have proposed a blind reversible relational
database watermarking scheme. This scheme can prove the true
ownership of the database’s owner, and attains full recovery of
the original database relation once the watermark information is
detected and authenticated. We have extended the AK scheme to
be applied for watermarking some sensitive applications such as
medical and military systems. The watermarks are embedded into
a database relation under the control of a secure embedding key. A

3196 M.E. Farfoura et al. / Expert Systems with Applications 39 (2012) 3185–3196
majority voting mechanism was applied to correct the watermark
bits detected from the data at watermark detection phase.

An efficient and secure time-stamping protocol for digital
watermarking of relational databases has been proposed. This pro-
tocol generates a timestamp and a specific signature for each dis-
tinct owner OIDi, watermark bits W, and a watermarked relation
RW through a trusted-third party. Several identity and integrity at-
tacks have been thwarted through this time-stamping protocol.
The proposed protocol can be applied orthogonally with any
watermarking scheme for other digital media types.

Based on the empirical and experimental security and robust-
ness analysis against benign updates and malicious attacks, the re-
sults show that the proposed scheme of watermarking relational
databases is secure, blind, and robust. The experiments show that
the amount of errors introduced to the relation is minuscule and
negligible. Our future research will be directed towards increasing
the level of attack resilience against several sources of attacks in a
typical blind reversible watermarking method, and proposing new
techniques for watermarking database relations without primary
keys.

References

Agrawal, R., & Kiernan, J., 2002. Watermarking relational databases. In Proceedings of
the 28th very large data bases VLDB conference, Hong Kong, China (Vol. 28, pp.
155–166).

Alattar, A. M. (2004). Reversible watermark using the difference expansion of a
generalized integer transform. IEEE Transactions on Image Processing, 13(8),
1147–1156.

Arnold, M. (2000). Audio watermarking: Features, applications and algorithms. In
Proceedings of the 5th IEEE international conference on computer and multimedia
and expo (pp. 1013–1016).

Atallah, M. J., Raskin, V., & Hempelmann, C. F. (2002). Natural language
watermarking and tamperproofing. In Proceedings of fifth international
workshop on information hiding (pp. 196–212).

Brassil, J. T., Low, S., & Maxemchuk, N. F. (1999). Copyright protection for the
electronic distribution of text. Proceedings of the IEEE, 87(7), 1181–1196.

Celik, M. U., Sharma, G., Tekalp, A. M., & Saber, E. (2005). Lossless generalized-lsb
data embedding. IEEE Transactions on Image Processing, 14(2), 253–266.

Chou, J., Chen, Y., & Chan, C. (2007). Cryptanalysis of Hwang-Chang’s a time-stamp
protocol for digital watermarking. <http://eprint.iacr.org/2007/004> Cryptology
ePrint Archive Vol. 2007(001-050), Issue, 2007-01-01.

Collberg, C. S., & Thomborson, C. (2002). Watermarking, tamper-proofing, and
obfuscation: Tools for software protection. IEEE Transactions on Software
Engineering, 28(8), 735–746.

Cox, I. J., Doerr, G., & Furon, T. (2006). Watermarking is not cryptography. In
Proceedings of the 5th international workshop, IWDW 2006 Jeju Island, Korea,
November 8–10, 2006 (Vol. 4283, pp. 1–15).
Cox, I. J., Kilian, J., Leighton, T., & Shamoon, T. G. (1997). Secure spread spectrum
watermarking for multimedia. IEEE Transaction Image Processing, 6(12),
1673–1687.

Craver, S., Memon, N., Yeo, B. L., & Yeung, M. M. (1998). Resolving rightful
ownerships with invisible watermarking techniques: Limitations, attacks, and
implications. IEEE Journal of Selected Areas in Communications, 16(4), 573–586.

Gupta, G., & Pieprzyk, J. (2008). Reversible and blind database watermarking using
difference expansion. In Proceedings of the eForensics, January 2008 (pp. 1–6).

Hartung, F., & Girod, B. (1998). Watermarking of uncompressed and compressed
video. Signal Processing, 66(3), 283–301.

Housley, R., Ford, W., Polk, W., & Solo, D. (1999). Internet x.509 public key
infrastructure certificate and crl profile. RFC 2459. January 1999.

Hwang, M. S., Hwang, K. F., & Chang, C. C. (2005). A time-stamping protocol for
digital watermarking. Applied Mathematics and Computation, 169(2),
1276–1284.

Li, Y., & Deng, R. H. (2003). Constructing a virtual primary key for fingerprinting
relational data. In Proceedings of the ACM digital rights management workshop
(DRM) (pp. 133–141).

Li, Y., Swarup, V., & Jajodia, S. (2003). A robust watermarking scheme for relational
data. In Proceedings of the 13th workshop on information technology and systems
WITS (pp. 195–200).

Li, Y., Guo, H., & Jajodia, S. (2004). Tamper detection and localization for categorical
data using fragile watermarks. In Proceedings of the 4th ACM workshop on digital
rights management DRM’04 (pp. 73–82).

Li, Y., Guo, H., & Wang, S. (2008). A multiple-bits watermark for relational data.
Journal of Database Management, 19(3), 1–21.

Petitcolas, F. A. P., Anderson, R. J., & Kuhn, M. G. (1999). Information hiding – A
survey. Proceedings of the IEEE, 87(7), 1062–1078. special issue on protection of
multimedia content.

Schneier, B. (1996). Applied cryptography. New York: John Wiley.
Shehab, M., Bertino, E., & Ghafoor, A. (2008). Watermarking relational databases

using optimization based techniques. IEEE Transactions on Knowledge and Data
Engineering, 20(1), 51–52.

Sion, R. (2004). Proving ownership over categorical data. In Proceedings of the 20th
IEEE international conference on data Engineering ICDE, April 2004 (pp. 584–596).

Sion, R., Atallah, M., & Prabhakar, S. (2004a). Resilient rights protection for sensor
streams. In Proceedings of the 30th international conference on very large data
bases (VLDB) (pp. 732–743).

Sion, R., Atallah, M., & Prabhakar, S. (2004b). Rights protection for relational data.
IEEE Transactions on Knowledge and Data Engineering, 16(12), 1509–1525.

Standard specifications for Public Key Cryptography, IEEE standard. 1363-2000,
2000.

Thodi, D. M., & Rodriguez, J. J. (2004). Prediction-error-based reversible
watermarking. In Proceedings of the IEEE conference on image processing,
Singapore, October 2004 (pp. 1549–1552).

Tian, J. (2003). Reversible data embedding using a difference expansion. IEEE
Transactions on Circuits and Systems for Video Technology, 13(8), 890–896.

Vleeschouwer, C. D., Delaigle, J. E., & Macq, B. (2001). Circular interpretation of
histogram for reversible watermarking. In Proceedings of the IEEE 4th workshop
on multimedia signal processing, France, October 2001 (pp. 345–350).

Wong, P. W., & Memon, N. (2001). Secret and public key image watermarking
schemes for image authentication and ownership verification. IEEE Transactions
on Image Processing, 10, 1593–1601.

http://eprint.iacr.org/2007/004

	A blind reversible method for watermarking relational databases based on a time-stamping protocol
	1 Introduction
	2 Related researches and preliminary background
	2.1 The previous irreversible schemes
	2.2 The previous reversible schemes
	2.3 The previous time-stamping protocols for digital watermarking

	3 The proposed watermarking method
	3.1 Time-stamping protocol for relational database watermarking
	3.1.1 Security analysis

	3.2 Assumptions
	3.3 Model
	3.4 Malicious attacks
	3.5 Notation and parameters
	3.6 Watermark Insertion
	3.7 Watermark detection

	4 Robustness analysis
	4.1 Cumulative binomial probability
	4.2 Detecting non-watermarked relations
	4.2.1 False hit rate

	4.3 Detecting watermarked relations
	4.3.1 False miss rate
	4.3.2 Tuple alteration attacks
	4.3.3 Tuple deletion attacks
	4.3.4 Tuple insertion attacks
	4.3.5 Attribute attacks
	4.3.6 Tuple sorting attack
	4.3.7 Additive attacks
	4.3.8 Invertibility attacks

	5 Experiments
	5.1 Imperceptibility
	5.2 Overhead
	5.3 Tradeoffs

	6 Conclusions and future works
	References

