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Polyamines are primordial polycations found in most cells
and perform different functions in different organisms. Al-
though polyamines are mainly known for their essential roles in
cell growth and proliferation, their functions range from a crit-
ical role in cellular translation in eukaryotes and archaea, to
bacterial biofilm formation and specialized roles in natural
product biosynthesis. At first glance, the diversity of polyamine
structures in different organisms appears chaotic; however,
biosynthetic flexibility and evolutionary and ecological pro-
cesses largely explain this heterogeneity. In this review, I dis-
cuss the biosynthetic, evolutionary, and physiological processes
that constrain or expand polyamine structural and functional
diversity.

The common feature of diverse polyamines found in eu-
karyotes, bacteria, and archaea is that they are all derived from
amino acids and are positively charged at physiological pH.
Structurally, they are mostly linear and flexible aliphatic chains
containing two or more amine groups. They include the di-
amines 1,3-diaminopropane (Dap),” 1,4-diaminobutane (pu-
trescine, Put), and 1,5-diaminopentane (cadaverine, Cad), tri-
amines sym-norspermidine (Nspd), spermidine (Spd), and
sym-homospermidine (Hspd), the uncommon triamines
aminopropylcadaverine and aminobutylcadaverine, the tet-
raamines norspermine (Nspm), spermine (Spm), and thermo-
spermine (Tspm), and the uncommon tetraamine aminopropyl
homospermidine (Fig. 1), and a wide range of longer chain poly-
amines and branched polyamines. This review will cover the
distribution and biosynthesis of different polyamines in the
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three domains of life and will discuss the mechanisms underly-
ing this biosynthetic diversity.

Polyamines in Eukaryotes
Eukaryotic Diversity

When considering the distribution of different polyamines in
eukaryotes, it is worth considering two major factors. Firstly,
the aminobutyl group of Spd is required for the hypusine post-
translational modification of translation factor eIF5A, which is
required for the translation of mRNAs encoding polyproline
tracts (1-6). The enzyme deoxyhypusine synthase (DHS) trans-
fers the aminobutyl group of Spd to eIF5A and is encoded in all
eukaryotic genomes, including some intracellular parasites that
have lost their polyamine biosynthetic pathway (7). Thus, the
aminobutyl group of Spd is very probably universally required
for eukaryotic life, although some single-celled eukaryotes
appear to have replaced Spd with Hspd, which has two ami-
nobutyl groups (7). The second factor to consider is the evolu-
tionary events that have driven eukaryotic diversification, and
that in large part underpin polyamine biosynthetic diversifica-
tion. Current consensus about eukaryotic diversity from a phy-
logenomic point of view is that there are five supergroups and
some unaligned groups (8). These are: the Opisthokonta, con-
taining animals (Metazoa), Fungi, Choanoflagellida, and
Microsporidia; the Amoebozoa, consisting of mostly single-
celled amoeboid species and slime molds; the Archaeplastida,
including plants, green and red algae, and also glaucocysto-
phytes; the Excavata, encompassing heterotrophic and para-
sitic single-celled species; and the newly designated and large
SAR group, assembled from stramenopiles, alveolates, and Rhi-
zaria (8). Other major groups that are outside the supergroups
include the cryptomonads and haptophytes.

A key evolutionary development in the diversification of
eukaryotes, which is of profound relevance to the diversifica-
tion of polyamine metabolism, was the assimilation of an endo-
symbiotic cyanobacterium in the heterotrophic ancestor of
Archaeplastida, which then became the chloroplast (a large lit-
erature reviewed in Ref. 9). Furthermore, heterotrophic single-
celled eukaryotes subsequently took up and assimilated red or
green algal cells in independent secondary endosymbioses (10),
and even tertiary endosymbioses in dinoflagellates (11). The
nuclear genomes of the original heterotrophic host cells that
have undergone these serial endosymbioses have acquired
genes of cyanobacterial origin.

The Core Polyamine Biosynthetic Pathway

What was the likely ancestral polyamine biosynthetic path-
way in the Last Eukaryotic Common Ancestor? As putrescine
and spermidine are the only polyamines produced in all
eukaryotes that synthesize polyamines, the ancestral pathway
was almost certainly the extant core eukaryotic polyamine bio-
synthetic pathway depicted in Fig. 2. Ornithine decarboxylase
(ODC) produces Put from ornithine (12), and Spd is formed by
spermidine synthase (SpdSyn) through the aminopropylation
of Put (13) using an aminopropyl group donated by decarboxy-
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FIGURE 1. Polyamines of the diamine, triamine, and tetraamine classes
found in eukaryotes, bacteria, and archaea. The aminopropyl and ami-
nobutyl groups transferred to diamines or triamines to form triamines or tet-
raamines are shown in purple and blue, respectively. At physiological pH,
these molecules are fully protonated. Approximate relative distributions of
the polyamines are indicated in parentheses.

lated S-adenosylmethionine (dcAdoMet). The dcAdoMet is
formed by the decarboxylation of AdoMet performed by S-ad-
enosylmethionine decarboxylase (AdoMetDC) (14, 15). ODC,
AdoMetDC, and SpdSyn are the universal pathway for spermi-
dine biosynthesis in eukaryotes, and the pathway has been char-
acterized in trypanosomes (16), Leishmania (17), Plasmodium
falciparum (18), and filamentous fungus Neurospora crassa (19,
20), among others. Thus, the core pathway producing the tri-
amine Spd has been characterized in the Excavata, SAR, and
Opisthokonta supergroups.

The ancestral pathway did not synthesize the tetraamine
Spm; however, Spm biosynthesis (Fig. 2) has evolved indepen-
dently in the recent common ancestor of metazoans (21), in
flowering plants (22), and in Saccharomycotina yeasts (23),
although Spm is not present in the rest of the fungi including
filamentous fungi (24). In the case of flowering plants and
yeasts, the aminopropyltransferase spermine synthase (Spm-
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Syn) evolved independently in each case by duplication of the
gene encoding SpdSyn and subsequent change of substrate
specificity (25), whereas the metazoan SpmSyn appears to have
been acquired by horizontal gene transfer from a bacterial gene
encoding an AdoMetDC-SpdSyn fusion protein that evolved to
exhibit SpmSyn activity and lose AdoMetDC activity (21, 25).
The core eukaryotic polyamine biosynthetic pathway can be
seen to have diversified through biosynthetic extension in dif-
ferent phyla by evolution of a second aminopropylation step to
produce Spm.

Biosynthetic Diversification via Endosymbiotic and Horizontal
Gene Transfer

An additional and fundamental biosynthetic diversification
step occurred when the Archaeplastida (glaucocystophytes, red
and green algae, and plants) evolved from a heterotrophic sin-
gle-celled eukaryote through the assimilation of a cyanobacte-
rial endosymbiont that became the chloroplast. It has been
determined, by analysis of the genome of the flowering plant
Arabidopsis thaliana, that about 4,000 genes were transferred
from the chloroplast progenitor to the host nucleus, and some
2,000 proteins encoded by those genes are now relocalized to
the chloroplast (26). In the algal and plant lineage, an alterna-
tive Put biosynthetic pathway (Fig. 2) was acquired from the
chloroplast cyanobacterial progenitor, consisting of arginine
decarboxylase (ADC), which produces agmatine (Agm) from
arginine, agmatine iminohydrolase/deiminase (AIH), which
produces N-carbamoylputrescine from Agm, and N-carbam-
oylputrescine amidohydrolase (NCPAH), which produces Put
from N-carbamoylputrescine (27-30). In addition, the same
endosymbiotic source appears to have been the origin of the
aminopropyltransferase thermospermine synthase (TspmSyn)
(25, 31), which produces the tetraamine Tspm (Fig. 2), an iso-
mer of Spm, and because of the identical masses of spermine
and thermospermine, was originally misidentified as a SpmSyn
(32). Homologues encoding TspmSyn-like proteins are found
throughout the plant and algal lineage (25, 33) and also in mem-
bers of the SAR supergroup that have undergone secondary
endosymbiosis events (25), including some species that are no
longer photosynthetic, such as oomycetes. It is not known
whether the TspmSyn-like proteins produce Tspm in these
species.

An additional, and phylogenetically more limited, polyamine
biosynthetic diversity in eukaryotes is found mainly in plants.
Some plants decarboxylate lysine to form the diamine Cad (Fig.
1), destined for quinolizidine alkaloid biosynthesis (34). The
enzyme responsible for lysine decarboxylation in quinolizidine-
producing plants is an alanine racemase fold bifunctional
lysine/ornithine decarboxylase (L/ODC) that has coevolved
with alkaloid production in leguminous plants (35). This
bifunctional L/ODC has evolved independently in plants from
ODC, and has acquired a chloroplast-targeting sequence to
localize it in the plastid where lysine is produced (35). Plants
have also evolved an alternative homospermidine synthase
(DHS-like HSS) to produce Hspd (Fig. 1) used in pyrrolizidine
alkaloid biosynthesis (36, 37). This enzyme has evolved inde-
pendently several times in flowering plants through duplication
of the gene encoding DHS (38), and unlike the bacterial HSS,
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FIGURE 2. Evolutionary diversification of polyamine biosynthesis in eukaryotes. The ancestral polyamine biosynthetic pathway in eukaryotes synthesized
Spd. Spm biosynthesis evolved independently at least three times, and Tspm biosynthesis was acquired from the cyanobacterial ancestor of the chloroplast.
Hspd biosynthesis evolved independently multiple times in flowering plants by gene duplication of deoxyhypusine synthase. Dap and Nspd are products of

Spm/Spd and Tspm catabolism, respectively.

which is a completely different enzyme (Fig. 2), the plant
enzyme must use Spd as a co-substrate.

In some single-celled heterotrophs, including the ciliate
Paramecium tetraurelia (SAR supergroup), heterolobosean
amoeba Sawyeria marylandensis (Excavata), and slime mold
Physarum polycephalum (Amoebozoa), Hspd is produced
using a horizontally acquired bacterial HSS (7, 39, 40). The bac-
terially derived HSS is from an entirely different fold and evo-
lutionary origin from the DHS-like HSS (39). Many single-
celled parasites have lost their polyamine biosynthetic pathway,
usually those with an intracellular parasitic lifestyle, and even
multicellular schistosome worms have discarded polyamine
biosynthesis (7). These Spd-auxotrophic organisms must ac-
quire Spd from their host.

An enigmatic area of polyamine metabolism in eukaryotes is
the production of triamine Nspd and tetraamine Nspm (Fig. 1).
Both of these unusual polyamines have been detected in lower,
single-celled eukaryotes including dinoflagellates, crypto-
phytes, haptophytes, Euglena species, and diatoms (41, 42).
Nspd is also present in the green alga phylum Chlorophyta,
where it is prevalent in classes Trebouxiophyceae, Chlorophy-
ceae, including Chlamydomonas and Volvox, and Ulvophyceae
but absent in Prasinophyceae (43). Mosses and the flowering
plant alfalfa were also found to contain Nspd and Nspm (44,
45). Little is known about the biosynthesis of Nspd and Nspm in
eukaryotes, and there is no equivalent of the Nspd biosynthetic
pathway found in the y-proteobacterium Vibrio cholerae. It is
also noticeable that Dap, the precursor of Nspd in V. cholerae, is
rarely detected in eukaryotes. Intriguingly, production of Dap
from radiolabeled Spd was demonstrated in the leguminous
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plant alfalfa (46), and it is known that plant polyamine oxi-
dases can produce Dap (Fig. 2) as a co-product of the oxida-
tion of Spd (47). However, the alfalfa aminopropyltransferase
did not recognize Dap as a substrate, although it was able to
produce Spd, Spm, and Tspm from Put (48). Production of
Nspd in eukaryotes therefore was a mystery until very recently,
when it was shown that a plant polyamine oxidase produces
Nspd as a catabolic product from Tspm (49). It is possible that
Nspm could be biosynthetically produced from the catabolic
product Nspd by standard aminopropylation; however, there is
no published evidence for this route of Nspm biosynthesis.
There is a correlation between the presence of homologues of
the A. thaliana acl5-encoded TspmSyn in genome sequences
(25) and the identification of Nspd in the corresponding
organisms.

An unusual group of polyamines is present in the biosilica
glass-containing diatoms. They contain species-specific long
chain polyamines (LCPAs), based on a single Put, Spd, or Dap
unit to which is added multiple repeating aminopropyl units,
which may or may not be N-methylated on each repeating unit
(50, 51). It is thought that the LCPAs participate in the conden-
sation of silicic acid to form silica through a phase separation
process that also involves proteins that are modified by a sepa-
rate class of LCPAs linked through a lysine residue (52, 53).
From genome analysis, it appears likely that the diatom LCPAs
are synthesized by a set of horizontally acquired bacterial
AdoMetDC-aminopropyltransferase fusion proteins occasion-
ally containing methyltransferase (SET) domains (54). LCPAs
that are similar but lack N-methylation are found in glass
sponges where they may also be involved in biosilica formation
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(55). LCPAs have been detected in the silicifying haptophyte
coccolithophore Prymnesium neolepis, consisting of multiple
N-methylated aminopropyl repeat units extending from the
e-amino group of lysine (56).

Eukaryotic Synopsis

In conclusion, the core eukaryotic polyamine biosynthetic
pathway consists of the production of Spd from ornithine, with
the aminobutyl group of Spd used for the essential hypusine
modification of translation factor e[F5A. The Last Eukaryotic
Common Ancestor very probably encoded the same core path-
way, consisting of an alanine racemase fold ODC, AdoMetDC,
and the aminopropyltransferase SpdSyn. Through endosymbi-
otic gene transfer, the cyanobacterial ancestor of the chloro-
plast contributed the ADC, AIH, and NCPAH pathway from
arginine to Put, found now mainly in terrestrial plants, and also
TspmSyn, found in the Archaeplastida and species that have
undergone secondary and tertiary endosymbiotic acquisition of
a red or green alga. In addition to these enzymes acquired by
endosymbiotic gene transfer, polyamine biosynthesis has
expanded either by duplication of the gene encoding SpdSyn to
form SpmSyn in flowering plants and yeasts or by horizontal
acquisition of a bacterial fusion gene that evolved to encode the
metazoan SpmSyn. In some plants, Cad can be produced by an
ODC that has evolved to recognize lysine as well as ornithine,
and Hspd is produced by an enzyme that evolved from a gene
duplication of gene encoding DHS to form a DHS-like HSS.
Some single-celled eukaryotes have horizontally acquired a
bacterial HSS. Dap and Nspd are products of catabolism of
Spd/Spm and Tspm by polyamine oxidases. The LCPAs of
diatoms are very likely synthesized by bacterially derived
AdoMetDC-aminopropyltransferase fusion proteins that have
evolved through acquisition of methyltransferase and chroma-
tin modification domains.

Polyamines in Bacteria

The bacterial analogue of elF5A, elongation factor EF-P, is
modified by lysine rather than by an aminobutyl group from
Spd (57, 58), and there is no known conserved function of any
polyamine in bacteria. Reflecting these observations is the pres-
ence of a more varied polyamine repertoire in bacteria. Spd is
the most commonly found triamine, although many bacteria
from diverse phyla produce only Hspd, and a much smaller
number of bacteria produce only Nspd (59). There is also a
diversity of diamines found in bacteria, and by far the most
common is Put, but Cad is also widespread in Proteobacteria,
and Dap is found sporadically in diverse phyla.

Diamines are mainly produced biosynthetically, but in a
much more phylogenetically limited group of bacteria, they are
produced as a response to acid stress, through specific acid-
induced decarboxylation of arginine, ornithine, and lysine and
subsequent export of Agm, Put, and Cad (60, 61). Dap is pro-
duced as a precursor of Nspd in the Vibrionales (62— 64) and is
also produced in the absence of Nspd production in species
such as Acinetobacter baumannii (63). Biosynthesis of Dap
involves two enzymes: L-2,4-diaminobutyrate:2-ketoglutarate
4-aminotransferase (DABA AT) and L-2,4-diaminobutyrate de-
carboxylase (DABA DC). There are several pathways for Put
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production in bacteria: directly through ODC activity or indi-
rectly by ADC to form Agm, and then directly from Agm to Put
using agmatinase/agmatine ureohydrolase (AUH), or indirectly
from Agm via N-carbamoylputrescine to Put using AIH and
NCPAH. The most prevalent route, decarboxylation of argi-
nine, is performed by ADC enzymes that have convergently
evolved from at least four different protein folds (65). Cad and
Dap can be produced by dedicated genes encoding lysine decar-
boxylase (LDC), and by DABA AT/DABA DC that are incorpo-
rated into gene clusters of siderophore biosynthetic enzymes,
and in these cases, the diamine is incorporated into the sidero-
phore structure (66). A phylogenetically limited diamine, found
almost exclusively in B-proteobacteria, is 2-hydroxyputrescine
(59), but the hydroxylating enzyme has not yet been identified.

The most prevalent triamine in bacteria is Spd, and in
contrast to eukaryotes, there are two alternative pathways
for Spd biosynthesis: the AdoMet-dependent pathway using
AdoMetDC and SpdSyn found in all three domains of life (67),
and a bacteria-specific aspartate 8-semialdehyde-dependent
pathway (Fig. 3) that uses carboxyspermidine dehydrogenase
(CASDH) and carboxyspermidine decarboxylase (CASDC) (64,
68, 69). A variant AdoMet-dependent pathway is present in
some bacteria such as the extreme hyperthermophile Thermus
thermophilus, where Agm is aminopropylated to form amino-
propylagmatine, the substrate for an AUH homologue that then
produces Spd (70). There is inherent biosynthetic flexibility in
both alternative pathways. When Put supply was made limiting
by growing an Escherichia coli AUH mutant in arginine-con-
taining medium, aminopropylcadaverine (Fig. 1) was formed
(71), and it was later shown that aminopropylcadaverine is as
effective as Spd in restoring normal growth to a polyamine aux-
otroph (72). Production of aminopropylcadaverine by the
AdoMetDC/SpdSyn pathway has also been demonstrated with
mammalian and fungal cells (73, 74).

The CASDC/CASDH pathway was shown to produce Nspd
from Dap and Spd from Put in V. cholerae (64); and Spd from
Put, and aminopropylcadaverine and bis(aminopropylcadaver-
ine) from Cad in the a-proteobacterium Agrobacterium tume-
faciens (75). Triamine Hspd can be produced either by HSS, an
enzyme related to CASDH, or from the DHS homologue DHS-
like HSS (39). The HSS enzyme of Bradyrhizobium japonicum
is able to aminobutylate Cad to form 4-aminobutylcadaverine
(39, 76), and it was later demonstrated to be a common feature
of HSS from diverse phyla expressed in E. coli (39). It should be
pointed out that although the plant DHS-like HSS enzymes
have been functionally confirmed, the evidence for the bacterial
DHS-like HSS activity is still circumstantial.

It had been accepted dogma that bacteria do not produce
Spm (77); however, that supposition was incorrect, and in fact
Spm has been detected in diverse bacteria (25). No specific bac-
terial SpmSyn has been identified, and it is likely that in some
species the Spd biosynthetic machinery can recognize Spd as a
substrate to synthesize Spm (75). It has also been claimed that
homologues of the plant A. thaliana acl5-encoded aminopro-
pyltransferase TspmSyn found in bacteria are also specific for
Tspm synthesis (77); however, it is more likely that those ho-
mologues encode agmatine aminopropyltransferase (70),
because there are no reports of Tspm in the bacteria that pos-
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FIGURE 3. Bacteria-specific polyamine biosynthetic pathways. Enzyme names are indicated in red. Carboxyspermidine (C-Spd) and carboxynorspermidine
(C-Nspd) do not accumulate in wild type bacteria. Two different proteins, HSS or DHS-like HSS, can produce Hspd. The S-adenosylmethionine-dependent
pathway for Spd biosynthesis is found in all three domains of life and is not shown. Similarly, the aminopropylagmatine variant pathway is also found in archaea
and is not shown. The aspartate B-semialdehyde-derived aminopropyl group is shown in purple.

sess Acl5 homologues. In some bacteria such as the a-proteo-
bacterium Rhodothalassium salexigens, Hspd is aminopropy-
lated to form the tetraamine aminopropylhomospermidine
(78). Aminopropylated Nspd, i.e. the tetraamine Nspm (Fig. 1),
is found in diverse hyperthermophiles (79), but the biosynthetic
pathway is uncharacterized. The wide repertoire of tetraamine
and longer chain polyamines found in the extreme hyperther-
mophile T. thermophilus is likely to be synthesized by the
agmatine aminopropyltransferase, as this enzyme can also rec-
ognize Nspd and Spd as substrates (80). It is not known how
Nspd is produced in T. thermophilus, but it is possible that
Nspd may be a product of Tspm oxidation.

Polyamines in Archaea

Archaea possess a version of elF5A that is also modified by
hypusine formation (81), and inhibition of DHS by N'-guanyl-
1,7-diaminoheptane causes cell cycle arrest in the crenarchae-
ote Sulfolobus acidocaldarius (82). Because all archaeal ge-
nomes encode a DHS homologue, it can be reasonably assumed
that Spd will be required for cell growth in all archaea. It was
discovered that Agm is essential for cell growth of Thermococ-
cus kodakaraensis (83) and cannot be substituted by Put or Spd.
Subsequently, it was shown that Agm is used to modify a cyti-
dine in the anticodon of archaeal tRNA(Ile) and that the agma-
tine modification (agmatidine) is essential for decoding AUA
(84, 85). The hypusine and agmatidine modifications mean that
archaea must synthesize Spd or Hspd (Hspd can donate an ami-
nobutyl group for deoxyhypusine formation) and that it must
be through the ADC pathway to produce Agm. Although Spd is
the most common triamine in archaea, Hspd is prevalent in the
Methanobacteria, Methanococci, and Methanomicrobia (86).

There are two forms of ADC, a trimeric pyruvoyl-dependent
enzyme (87, 88), and mainly in the Crenarchaeota, a paralogue
of AdoMetDC that has acquired the ability to recognize argi-
nine as a substrate (89). Two forms of agmatinase in archaea
have been identified: the enzyme from Pyrococcus horikoshii is
dependent on manganese, cobalt, or calcium (90), whereas that
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from Methanocaldococcus jannaschii is dependent on iron (91).
Production of Spd from Put is by the activity of AdoMetDC and
aminopropyltransferase SpdSyn (92, 93). The aminopropyl-
transferase of Sulfolobus solfataricus was found to recognize a
range of diamines and triamines (92). The variant AdoMet-de-
pendent aminopropylagmatine pathway for Spd biosynthesis,
previously identified in the bacterial extreme hyperthermo-
phile T. thermophilus, was found in the euryarchaeote 7. koda-
karaensis (94).

Although there is no biochemical characterization of the
Hspd biosynthetic enzymes in archaea, homologues of the bac-
terial HSS are present in Methanosarcina species (39), and
genomic analysis of DHS homologues in archaea indicates that
some genomes encode two homologues, suggesting that one
may act as a DHS-like HSS. Many halophilic archaea (Halobac-
teria) do not appear to accumulate any polyamine except Agm
(95), and yet every halobacterial genome encodes DHS. It may
be that DHS is able to transfer the aminobutyl group of Agm to
the archaeal alF5A, or that the DHS is involved in a novel mod-
ification to alF5A. Archaeal extremophiles may contain a very
diverse polyamine repertoire including Nspd and Nspm, and
longer aminopropylated versions (caldopentamine, caldohex-
amine) (96). Some of these species encode one or two homo-
logues of the plant Acl5 thermospermine synthase, and in vitro
analysis indicates that these aminopropyltransferases have a
relaxed substrate specificity and are able to produce a range of
longer chain polyamines (97). What controls the products pro-
duced in vivo is unknown.

Conclusions and Future Perspectives

Although the search term “polyamine” will retrieve more
than 93,000 publications from PubMed, there has been rela-
tively little effort to systematically address the function of poly-
amines, particularly in bacteria. Most of the major routes for
polyamine biosynthesis appear to have been identified, but for
the most part, the regulation and function of polyamine biosyn-
thesis in bacteria are an extant mystery. It is clear that poly-
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amines are essential for growth in some bacterial species and
influence biofilm formation in others. Furthermore, poly-
amines are prominent in many natural products produced in
bacteria, particularly siderophores. A more systematic and
comparative approach to reveal conserved and specialized
functions of polyamines in bacteria is required, especially at the
molecular level. This is pertinent to medically relevant patho-
gens, where polyamines have been implicated in pathogenesis
and virulence.

An important question that requires addressing in eu-
karyotes is whether there are functions of Spd in addition to
modifying elF5A and serving as a precursor of tetraamine bio-
synthesis. In addition, the in vivo molecular functions of Spm
and Tspm are still unknown, although Spm is essential for
mouse development (98) and Tspm is essential for normal
growth and development of A. thaliana (32). Intriguingly, Spm
is not required for normal laboratory growth of yeast and
A. thaliana. With these major gaps in our knowledge, there are
still profound questions to be answered in eukaryotic poly-
amine biology. Finally, the study of polyamines is a multidisci-
plinary field that affords an opportunity to consider life in its
biologically widest and evolutionarily deepest extent, and has
immediate biomedical and biotechnological relevance.
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