

Abstract—Over the past few years, XML (eXtensible Mark-up

Language) has emerged as the standard for information
representation and data exchange over the Internet. This paper
provides a kick-start for new researches venturing in XML databases
field. We survey the storage representation for XML document,
review the XML query processing and optimization techniques with
respect to the particular storage instance. Various optimization
technologies have been developed to solve the query retrieval and
updating problems. Towards the later year, most researchers
proposed hybrid optimization techniques. Hybrid system opens the
possibility of covering each technology’s weakness by its strengths.
This paper reviews the advantages and limitations of optimization
techniques.

Keywords—indexing, labeling scheme, query optimization,
XML storage.

I. INTRODUCTION

ML (eXtensible Mark-up Language) was primarily used
as a human consumable exchange format. However, the

amount of exchanged XML data often grows exponentially via
the Web medium. Web application such as search engine, e-
commerce, e-learning portals require advanced tools for
managing the data. Communities no longer use the search
engine just to retrieve the full-text queries but also request for
more specific data (structure queries). This drives the
requirement for storing and querying large-scale XML data as
efficient and reliable as possible. Several XML query
languages have been proposed such as Lorel [1], Quilt [2],
XML-GL [3], XPath [4], XQuery [5], XOM [6], XAL [7] and
YATL [8]. These query languages utilize regular path
expression, thus using the conventional approach such as tree
traversal may have performance degrade especially on
concurrent access.

This paper is mainly divided into three sections: XML data
model, XML storage, indexing techniques and labeling
techniques. Section II presents the XML structure and data
model. Section III describes the possible alternatives to store
XML. Being a semistructured data, there are three possible

Manuscript received January 28, 2005.
Su Cheng Haw is with Department of Information Technology,

Multimedia University, Malaysia. (phone: 603-83125410; fax: 603-
83125264; e-mail: schaw@mmu.edu.my).

G. S. V. Radha Krishna Rao is with Department of Information
Technology, Multimedia University, Malaysia (email :
gsvradha@mmu.edu.my).

ways. Section IV presents the optimization techniques via
indexing and labeling scheme techniques respectively. Section
V wrap-ups and suggest hybrid optimization techniques by
comparing the advantages and disadvantages of these
techniques. However, the mathematical and theoretical proofs
are omitted in this paper.

II. XML STRUCTURE AND DATA MODEL

In this paper, object exchange model (OEM) is used to
represent data in XML. Data in the OEM is represented as an
edge-labeled graph. XML elements are represented by node
while element-subelement, and element-attribute are
represented by the edge labeled with corresponding names.
The values of XML data are represented by leaf node in the
OEM. Fig. 1 shows an XML document and its corresponding
OEM representation. We assume that no element has attributes
other than the attribute ID and IDREF [9]. Thus, it may need
restructuring if there exists attributes other than ID and IDREF
for easier maintenance and reading. We replace the other
attribute as child element of the respective element. For
example, referring to Fig. 1, the attribute title will be replaced
by a child element title of the element category.

III. XML STORAGE

There are three main alternatives to store XML document.
The first approach is to develop a specialized data
management system, which is also known as native XML
database (NXD). The second approach is to employ object-
oriented database management system (OODBMS) as the
underlying database while the third approach is to map XML
data into relational database management system (RDBMS).

Each of these approaches has its own advantages and
limitations. The first approach may work best, especially on
scalability and handling huge amount of data. These data can
be stored and retrieved in their original structure, with no
mapping process require. Nevertheless, it is not suitable
especially when integration within heterogeneous XML
documents is needed. The second approach uses class
inheritance to protect database integrity and able to support
more complex relationships. However, they are vulnerable
especially of evaluating query of a very large database. The
third approach provides maturity, scalability, portability and
stability [10]. Since majority of the data on the web are
currently resides in RDBMS, the third approach seemed more
viable. Therefore, in this paper, we will be focusing only on
NXD and RDBMS as the instance storage.

Query Optimization Techniques for XML
Databases

Su Cheng Haw, and G. S. V. Radha Krishna Rao

X

International Journal of Information and Communication Engineering 2:6 2006

381

Fig. 1 A small XML document and its OEM representation

The main challenge of using RDBMS as instance storage is
that, one needs to resolve the conflict between the hierarchical
nature of XML data model and the two-level nature (row and
column) of relational data model [11]. There are two ways of
doing so : (1) using the graph-based approach and (2) by
inferring schema from Document Type Definition (DTD) [12].

(1) Using the graph-based approach
This is the simplest approach. Instead of generating relational
tables for each XML element, several XML elements are
combined into a single table named edge to reduce the number
of join operations incurred while querying the data. The edge
table stores the object identifiers (oids) of the source and target
objects of each edge, the label of the edge, the ordering of the
edge and a flag to shows whether the edge is a leaf or non-leaf
node. If the node is a leaf, then a corresponding record will be
stored in the value table. This table has the field of vid (storing
oids of values) and value of the string. Fig. 2 shows some
fragment of respective edge and value table based on Fig. 1.

Fig. 2 Fragment of Edge and Value Table

(2) Storing XML from a schema
Another way to map XML into RDBMS is to derive a
relational schema from either a XML schema or DTD. This
technique is not applicable for XML without a schema. This
limitation, however, has been overcome [13].

According to Garafalakis M. et al, a DTD graph GD = (V,E)
is a graph where V is a set of nodes, i.e. elements, attributes
and operators. E ⊆ V x V is a set of edges representing
relationships between nodes.

Below we extract some of their keys proposition:-
(1) Relations are created for element nodes that have an

in-degree of zero. Otherwise, the element cannot be
reached.

(2) Elements below a ‘*’ or a ‘+’ node are made into
separate relations. This is necessary for creating a
new relation for a set-valued child.

(3) Nodes with an in-degree of one are inlined.
(4) Among mutually recursive elements all having in-

degree one, one of them is made into a separate
relation.

(5) Element nodes having an in-degree greater than one
are made into separate relations.

Fig. 3(a) DTD graph derived from Fig. 1 (b) Relational schema

A DTD graph is created in Fig. 3(a) based on XML
document in Fig. 1. Based on Fig. 3(a) and Garofalakis M. et
al’s proposition, below are the extractions:

(1) library
(2) book, journal, book_author, journal_author
(3) book, category, title, book_author, publisher, journal,

journal_author
(4) & (5) Not applicable as in Fig. 3(a)

Traversing down from library on the left-side, we have ‘+’
edge follows by book element. Traversing further down, we
reach category element before reaching to title, author and
publisher element. All elements and attributes nested within
category occurs at most once, except the author elements.
Hence, we can store category, title, publisher in the same
relation as book. The resulting relational schema is shown in
Fig. 3(b).

In each relation, the ID field serves as the primary key,
while the parentID field serves as the foreign key to match
with the values in the primary key. For example, in the

<library>
<book id = “B001-05”>

<category title= “Computer Concepts 2005”>
<author>Gary Smith </author>
<author>Robert Wood </author>
<publisher>Thomson Learning</publisher>

</category>
</book>
<book id= “B002-02”>

<category title= “Introduction to Calculus”/>
</book>
<journal id= “J001-05” >

<author>S. C. Haw </author>
</journal>

</library>

S. C. Haw

1

library

journal id = “J001-05”

4

7

author

book
id = “B001-05”

2

5

8 9 10 11

author
author

title
publisher

category

Computer
Concepts
2005

Gary
Smith

Robert
Wood

Thomson
Learning

book
id= “B002-02” 3

6

12

title

category

Introduction
To Calculus

Edge Table
Source Target Label Order Flag
Root 1 library 1 Ref
1 2 book 1 Ref
1 3 book 2 Ref
5 v8 title 1 String
5 v9 author 2 String

Value Table
vid Value
v8 Computer Concepts 2005
v9 Gary Smith

library

journal

author

book

authortitle
publisher

category

+
*

+

+

(a) (b)

library (libraryID : integer, library.ParentID : integer,
library.ParentCode : integer)

book (bookID : integer, book.ParentID : integer,
book.ParentCode : integer, book.category : string,
book.category.title : string,
book.category.publisher : string)

book_author (book_authorID : integer,
book_author.ParentID : integer,
book_author.ParentCode : integer)

journal (journalID : integer, journal.ParentID : integer,
journal.ParentCode : integer)

journal_author (journal_authorID : integer,
journal_author.ParentID : integer,
journal_author.ParentCode : integer)

International Journal of Information and Communication Engineering 2:6 2006

382

relation journal, it has journal.parentID that joins journal with
library.

A NXD defines a logical model of an XML document. It
does not require any particular underlying physical storage
model. Thus, it can be built on a RDBMS, OODBMS,
hierarchical DBMS, proprietary model, or file storage [14].
Basically, a NXD fall into two main categories: (1) text-based
storage and (2) model-based storage.

(1) text-based storage
This will store the entire XML document in text form and
provide some database transaction support (indexing,
materialized view, etc) in accessing the document.

(2) model-based storage
This method model the XML document as the Document
Object Model (DOM) and map the DOM to relational tables
such as Entities, Elements, Values, Attributes, Levels, etc.

IV. QUERY OPTIMIZATION TECHNIQUES

There are many query optimization techniques discovered
and implemented by researchers. Among them are path
traversal, use of indexes, use of materialized views, pipeline
evaluation, structured join order selection, schema-based
optimization, reformulation of XML constraints, duplicate
removal, tree pattern matching and labeling scheme. In this
paper, we will review the path traversal, uses of indexes and
labeling scheme techniques.

A. Path Traversal
McHugh and Widom proposed three approaches that

process the path traversal: top-down, bottom-up and hybrid
traversal [15]. Top-down approach starts the traversal from
root to each node along each path, and pick out the target
nodes matching the path expression. It requires search each
children of a node to find a match each time. Conversely,
bottom-up approach begins traversing from the bottom of the
tree, which contains leaves and traverse up to match the
parents. The hybrid evaluation combines both the top-down
and bottom-up traversal, and stops when a convergence is
found. In the worst cases, all of these approaches need to
search the whole data graph for regular path expressions with
wildcard ‘//’ comprehensively, hence are inefficient.

B. Use of Indexes
Index structures have been introduced to address the

problem of performance degradation due to excessive
traversal. These techniques certainly reduce the portion of the
XML tree to be scanned during query processing. Among
them are DataGuide [16], 1-index, 2-index, T-index [17],
A(k)-index [18], Index Fabric [19], APEX Index [20] and
extension of inverted list [21].

B.1. DataGuide
DataGuide were first introduced by Goldman and Widom

by modeling XML data as OEM [16]. DataGuides are general

path indexes that summarize all paths in the OEM (source) that
start from the root.

Similar to automata theory, single non-deterministic finite
automation (NFA) may have several equivalences
deterministic finite automation (DFAs). A single source may
be converted into multiple dataGuides. Thus, it is important to
decide what kind of dataGuide should be built and maintained.
Intuitively, a minimal dataGuide might seem desirable, as it is
most compact in size, thus less traversal path. Yet, a minimal
dataGuide (as shown in Fig. 4(a)) is hard to maintain
especially during insertion of new node. A strong dataGuide as
shown in Fig. 4(b) is created based on the intention that label
path that reach the same set of objects in the source is the same
as the label path that reach the same object in dataGuide.

Each node in a dataGuide has an extent for the
corresponding nodes. For example, the extent in the node p4
is the set of {5,6}, where each element can be reach by the
path book.category.title in Fig. 4(b).

However, dataGuide is not feasible in the multiple path
expressions. For example, consider the following query Q1:

(Q1) : //book//title = “Introduction to Calculus”

This query wants to retrieve all books where the title is
“Introduction to Calculus”. If we traverse the dataGuide, the
returned result are nodes p2 and p6 and the corresponding
extent are {2,3} and {8,12} respectively. Since there is no
path information between nodes p2 and p6, the result of the
query cannot be returned by only traversing the dataGuide
alone. We need to traverse the original data source and
dataGuide simultaneously. In the worst case, a strong
dataGuide grows linearly for a tree-structured and
exponentially for a graph.

Fig. 4(a) Mimimal dataGuide (b) Strong dataGuide

B.2. 1-index, 2-index and T-index
Milo and Suciu introduced on index family that consists of

1-index, 2-index and T-index [17]. The 1-index technique is
somehow similar to dataGuide. 1-index is restricted to simple
path queries only. To support multiple path expression
processing, the 2-index and T-index are proposed. The 2-
index can be useful for a query, which has branching

library

journal

p4 p5 p6

authortitle publisher

category

p1

{1}

{2,3,4}
p2

{5,6} p3

{8,12} {7,9,10} {11}

library

journal

author

book

p6 p7 p8

authortitle
publisher

category

p1

{1}

{4}

{7}

{2,3}p2 p3

p5{5,6}p4

{8,12} {9,10} {11}

(b)(a)

International Journal of Information and Communication Engineering 2:6 2006

383

(multiple) path expressions. In the worst case, 2-index grows
quadratic to the size of a data graph [22]. However, T-index
can only be used in the case where appropriate templates to be
built in advance.

B.3. A(k)-index
Kaushik et al introduced A(k)-index which reduces the size

of index graph [18]. The key observation exploited by A(k)-
index is that not all structure is interesting. This technique only
indexes paths that have a length that is less than k. As a result,
only approximation is used for answering longer queries [23].
This index graph is never larger than the source in size;
however, it may not be precise. Increasing the parameter k,
results in more accurate representation. For example A(1)-
index guarantee that there is no false path of length 1 while
A(2)-index guarantee that there is no false path of length 2 in
any of the edges of a particular node.

B.4. Index Fabric
Index Fabric is a structure that scales gracefully to large

numbers of keys and is insensitive to the length of inserted
strings. These features are necessary to treat XML
semistructured data paths as strings. Index Fabric’s data
structures are based on tries [19]. A trie is a tree that uses
parts of the key to navigate the search. Each key is a sequence
of characters, and a trie is organized around these characters
rather than entire keys [24]. Patricia trie (PT) is a simple form
of compressed trie which merges single child nodes with their
parents.

Each data path are encoded using unique designators
(special characters) starting from the root element. For
example, for the XML in Fig. 1, library is represented by L, B
for book, C for category and so on. Thus, the path
library/book/cateogry is encoded by LBC.

PT can become large and unbalanced structures thus
resulting in significant performance degradation. To balance
the tries and support large XML, Cooper et al, proposed
building multiple layers of tries, and conducting searches by
proceeding from layer to layer. Index Fabric do not contain
parent-child relationship among elements since it does not
keep the information of XML elements which do not have data
values. Thus, it is inefficient for processing partial matching
queries [20].

B.5. APEX Index
Adaptive Path indEX (APEX) is a method to manage

adaptive path indexes for XML data [20]. While the strong
dataGuide, T-index, A(k)-index and Index Fabric maintains all
paths from the root, APEX does not keep all paths starting
from the root. However, it utilizes frequently used paths by
applying sequential pattern mining technique [25].

APEX consists of two structures, a graph structure (GAPEX)
to represent the structural summary of frequently used paths of
XML data and a hash tree structure (HAPEX) that consists of
required paths to nodes of the graph structure. The hash tree is
used to find nodes of the structure graph for a given label path.
For example, using the following query Q3,

(Q2) : //book/category

The query processor looks up the hash tree with book.category
in reverse order. That is, the hash tree enables efficient
finding of nodes for partial matching path queries.

B.6. Extension of Inverted List
Zhang et al proposed using inverted list to process

containment query of XML data stored in RDBMS.
Containment queries are a class of queries based on
relationships among elements, attributes and their contents
[21]. To support processing semistructured XML document,
the inverted index is extended to text index (T-index) and
element index (E-index). T-index is similar to the traditional
index in information retrieval system while E-index maps
element to inverted lists. Fig. 5 illustrates the structure of the
two indexes based on the sample XML in Fig. 1.

Each inverted list records the occurrences of a word or an
element known as term. Each occurrence is indexed by its
document number, position and depth within the document,
which is denoted as (docno, begin : end, level) for E-index and
(docno, wordno, level) for T-index. The position (begin, end,
wordno) are generated by counting word numbers in the XML
document. This position can be generated by doing a depth-
first traversal. The limitation of this approach is it assumes
that once a position is assigned, it is never changed, which is
not suitable in handling updating of XML data.

Fig. 5 Extension of Inverted List

C. Numbering Scheme
Several numbering scheme have been proposed to replace

the structural indexing. They can be categorized into range-
labeling scheme and prefix-labeling scheme. In range-labeling
scheme, the label of a node is interpreted as a pair of numbers
(start position, end position). When a new node is inserted,
the label usually needs to be regenerated. Thus, range-labeling
scheme is also known as non-persistent labeling scheme.
However, in the prefix-labeling scheme, the label of a node is
single number. Under heavy update, prefix-labeling scheme
may not need to be recomputed. It is therefore also known as
persistent labeling scheme [26]. Some of the methods in these
categories are discussed below.

C.1. Tree traversal order
Dietz introduced the first numbering scheme based on tree

traversal order [27]. This is in the category of range-labeling

<library> (1, 1:45,0)

Computer (1,7,3)

Fragment of E-index

Fragment of T-index

<category> (1, 5: 23, 2) (1, 28:34,2)

Calculus 1,32,3)

International Journal of Information and Communication Engineering 2:6 2006

384

scheme. Each node is labeled with a pair of unique integer
consist of preorder and postorder traversal sequence as shown
in Fig. 6(a). His proposition was : for two given nodes x and
y of a tree T, x is an ancestor of y if and only if x occurs before
y in the preorder traversal of T and after y in the postorder
traversal.

As in Fig. 6(a), we can tell that node (2,6) is an ancestor of
node (3,5) because node (2,6) comes before node (3,5) in the
preorder traversal (i.e, 2 < 3) and after node (3,5) in the
postorder traversal (i.e, 6 > 5). By using this approach, we can
determine the ancestor-descendant relationship easily. But,
this method is inefficient for a dynamic XML document.
Whenever a new node is inserted or deleted, the preorder and
postorder value may needs to be recomputed.

Fig. 6(a) Tree traversal order numbering (b) Extended Preorder numbering

C.2. Extended Preorder Traversal
To overcome the limitation of Dietz’s numbering scheme,

Li and Moon proposed a numbering scheme integrated with
indexing mechanism for XML documents, elements and
attributes, which enables efficient search by value and
structure [28]. This numbering scheme also enables quick
determination of the ancestor-descendant relationship between
elements and/or attributes in the hierarchy of XML data. It is
designed based on the notion of extended preorder traversal to
accommodate future insertion gracefully. Each node in the
XML tree is labeled with a pair of numbers <order, size> as
shown in Fig. 6(b).

Their propositions were:

(1) For a tree node y and its parent x, order(x) <
order(y) and order(y) + size(y) <= order(x) + size(x).
In other words, interval [order(y), order(y) + size(y)]
is contained in interval [order(x), order(x) + size(x)].
For example, consider a tree in Fig. 6(b), assume that
node y is (5,40) and node x is (1,100). In this case, 1
< 5 and 45 <= 101, thus interval [5, 45] is contained
in interval [1, 101].

(2) For two sibling nodes x and y, if x is the predecessor
of y in preorder traversal, order(x) + size(x) <
order(y)

For example, consider a tree in Fig. 6(b), assume that
node y is (50,20) and node x is (5,40). Using the
preorder traversal navigation, node x is predecessor
to node y (node x is reached before node y), thus, 45
< 50.

(3) For a tree node x, size(x) >= �y size(y) for all y’s
that are direct child of x.
For example, assume that node x is (6,30), thus, 30
>= 5+5+4+1

To enable future insertions gracefully, size(x) can be an
arbitrary integer larger than the total number of current
descendant of x. However, a global reordering is necessary
when all the reserved spaces have been consumed. Moreover,
it is not clear how one assigns a large enough value for “size”,
based on the three propositions.

Three major index structures are proposed, namely, element
index, attribute index and structure index; and two other
components are name index for storing name strings and value
table for storing values (i.e. attribute value and text value).
Besides that, they also proposed three path-join algorithms
based on the idea of decomposing complex path expression
into several simple path expressions. These are (1) EE-Join
for searching paths from an element to another element, (2)
EA-Join for scanning sorted elements and attributes to find
element-attribute pairs and (3) KC-Join for finding Kleene-
Closure on repeated paths or elements. The results of the
simple path expression are then investigated to determine the
type of join. These are then combined and processed by the
query processor.

For example, decomposition steps of a complicated query
(Q3) are illustrated in Fig. 7.

(Q3) : (E1/E2) * / E3 [@A =v]

Fig. 7 Decomposition of a path expression Q4

C.3. Tree Location Address
Kimber proposed an approach of using “tree location

address” to locate a node in a tree by selecting an ancestor
node at each level of the tree [29]. Each identifier of an
ancestor node is a prefix of its descendant. A node id (nid) is
the concatenation of the nid’s through the path from the root to
the respective node. For example, from Fig. 8(a), node 1112
means the second child of the first child of the first child of the
root. With this, a parent-child relationship can be easily

2

(1,12)

1

(2,6)

(8,9) 3

(11,11)

4

(12,10)(9,8)

6

(10,7)

12

(3,5)

5

(4,1) (5,2) (6,3) (7,4)

7

8 9 10 11

2

(1,100)

1

(5,40)

(50,20) 3

(80,20)

4

(82,5)(55,5)

6

(57,4)

12

(6,30)

5

(7,5) (13,5) (19,4) (24,1)

7

8 9 10 11

(b)(a)

E1 E3E2 @A = v

EE-
Join

/ EA-
Join

[]

KC-
Join

*

EE-
Join

/

International Journal of Information and Communication Engineering 2:6 2006

385

detected. However, using this methodology, it requires
variable space to store the identifiers. Thus, the time to
determine the ancestor-descendant relationship is not constant
as it depends on the length of identifiers. As a result, this
method may not be practical for large databases.

C.4. Simple Prefix
Cohen E. et al proposed a simple prefix-labeling scheme.

Each label inherits its parent’s label as prefix [30]. The root is
labeled with an empty string (“”). The first child of the root is
labeled with “0”, the second child with “10” and followed by
the third and fourth with “110” and “1110” respectively. For
any node L(v) denotes the label of v the first child of v is
labeled with L(v)“0”, the second child of v is labeled with
L(v)“10” and the ith child with L(v)“(1..1)i-10”. Referring to
Fig. 8(b), for example, node 2 is an ancestor of node 7, for “0”
is a prefix of “000”. The limitation of this technique is, when
the number of fan-out is large, the total length of labels scales
up quadratically with increasing depth of the tree.

C.5. Compressed prefix scheme
To reduce the size required for the labeling scheme, Kaplan

H. et al introduced a compressed prefix scheme. Using this
approach, the tree is first transformed into a balance tree. The
tree is partitioned into several paths. Then a collection of
prefix free binary strings is assigned to the edges of the
compressed tree outgoing of each virtual node. The nodes of
the original tree are then labeled using the assignment as in the
compressed tree [31]. The drawback of this is a complicated
ancestor test, which incorporates another comparison in
addition to the prefix decision. This scheme is practical for
tree with many levels, but it is still impractical in the case of
tree with large fan-out.

Fig. 8(a) Tree location address (b) Simple prefix labeling

C.6. Group Based Prefix Labeling Scheme (GRP)
Lu. J & Ling T.W. introduced grouping the XML tree into

subtree to enhance the labeling scheme. Each node contains
the label with groupID and a group prefix label, where
groupID is an integer and group prefix label (similar to
convention proposed by Cohen E. et al) is a binary string. All
nodes within the same subtree will have the same groupID, but
with different prefix label. For example, a root node has a
fixed label: (1, “0”). They defined the maximum number of
nodes in group i to be i, i.e, group 1 will contains at most 1
node and similarly group 3 will contains at most 3 nodes. If the
number of nodes in one group reaches the maximal value, the
group is defined as full. Using this approach, any new inserted
node will firstly check whether their parent’s node is full. If it
is not, it will be group with their parent, else the node further
checks whether the group of node youngest sibling is full. If it
is not, it will be labeled with the group of its youngest sibling,
else it will be assigned into a new group.

For example, referring to Fig. 1, supposed the inserting
sequence is 1,2,3,4, …, 12, a GRP is derived as in Fig. 9. The
root itself (node 1) is label as (1, “0”). Since node 2 is the
child of the root and group 1 (root) is full, node 2 is grouped
into group 2 and labeled as (2, “0”). The next node is node 3,
since its youngest sibling (node 2) is not full, node 3 is
grouped into group 2 and labeled as (2, “10”). However, when
node 4 is inserted, group 2 is full at this point. Thus, node 4
forms a new group and labeled as (3, “0”). This process
continues for the rest of the nodes.

This labeling scheme has much smaller size as compared to
simple prefix scheme. It is believed to be practical for XML
tree with many fan-outs and levels.

C.7. Using Prime Number
Wu X. et al proposed using prime numbers to label the

XML tree via top-down and bottom-up approach [32]. Below
are some of the prime number properties:

(1) In an integer A has a prime factor, which is not a
prime factor of another integer B, then B is not
divisible by A.

(2) In a bottom-up prime number labeling scheme, for
any nodes x and y in an XML tree, x is an ancestor of
y if and only if label(x) mod label(y)=0.

Fig. 9 GRP labeling scheme

(5,“10”)

2

(1,“0”)

1

(2,“0”)

(2,“10”)
3

(3, “0”)

4

(4,“110”)(4, “10”)

6

(4,“0”)

(4,“00”) (5,“0”) (5,“110”) (6,“0”)

7

8 9 10 11 12

5

2

(1)

1

(11)

(12) 3

(13)

4

(131)(121)

6

(1211)

(111)

5

(1111) (1112) (1113) (1114)

7

8 9 10 11 12

5

2

(“”)

1

(0)

(10) 3

(110)

4

(1100)(100)

6

(1000)

(00)

(000) (0010) (00110) (001110)

7

8 9 10 11 12

(b)

(a)

International Journal of Information and Communication Engineering 2:6 2006

386

Fig. 10(a) illustrates the basic bottom-up approach. Prime
number is assigned to each leaf nodes. Then for each
subsequent level, the parent’s label is a product of their
children’s labels. Based on property (2), the ancestor-
descendant relationship can be determined quickly. This
approach has two drawbacks. Firstly, it will cause a relatively
large numbers being assigned to the node at the tops.
Secondly, it is not possible for nodes with a single child only.

To overcome the weakness of bottom-up approach, top-
down approach was proposed. With this, the root will be
labeled with the first prime number 1. Each non-leaf node will
be given a unique prime number. The label of each node is the
product of its parent nodes’ label (parent-label) and its own
assigned number (self-label). This approach is good for
dynamic updates. When a new node is inserted, an unassigned
self-label prime number is allocated. Thus, no re-labeling is
required.

However, one disadvantage of the prime number labeling
scheme is that each prime number can only be used once.
Thus, the size of label is increases as it reaches the bottom of
the tree. The size storage of the label has direct impact on the
performance of XML query processing. It is therefore, not
suitable for a tree with many levels. They also suggested
three optimization techniques:

(1) Assign small prime number to the root and level right
after the root so that the value inherited will be smallest
possible.

(2) Use number 2 and its sequence (21, 22,…,2n), the only
even prime number to label the self-labels of the leaf
nodes and the odd numbers for the non-leaf nodes.

Combine those paths which occur multiple times (similar to
dataGuide concept) can reduce redundancy and further
decrease the size of the labels.

V. CONCLUSION

The optimization of queries on small documents seems not
very useful. But, as the usage of XML shifts towards the data-
oriented paradigm, more efforts need to be done to allow the
efficient retrieval and processing of query.

This survey shown, there are three methods to store XML
data, i.e via RDBMS, OODBMS and native database. The
type of storage will determine the possible indexing
mechanism.

Various indexing technologies have been developed to solve
the query retrieval and updating problems. A problem with
path traversal methods is that traversing is only possible in the
constrained set of path. However, for the structure summary
indexing, most of it has the problem of large index size growth
in the worst case and not supporting partial queries path
matching. Labeling scheme allow quick determination of the
relationships among the element nodes and reduce the index
size, but fails to support dynamic XML data. Towards the later
year, most researchers proposed hybrid-indexing techniques.
Hybrid system opens the possibility of covering each
technology’s weaknesses by its strengths.

We believe there are still many opportunities for query
optimization area. We are planning to implement a hybrid
optimization technique comprising both indexing and labeling
scheme in future. The advantages and disadvantages of
indexing and labeling technologies is summarized as in Table I
and II.

Fig. 10 (a) Bottom-up prime (b) Top-down prime

TABLE I
ADVANTAGES AND DISADVANTAGES OF INDEXING

TECHNOLOGY

Type of
Index

Advantages Disadvantages

1. Path
 traversal
 (NXD)

Direct traversal.
No insertion/update
problem.

Whole graph may need to
be traverse to search a
node.
Not supporting partial
queries path matching.

2. Strong
 dataGuide
 (NXD)

Simplify traversal
path.
No insertion/update
problem (set of extent
can be extended).

Index graph size grows
exponentially.
The source and dataGuide
may need to be traverse
simultaneously in some
cases.
Not supporting partial
queries path matching.

3. Index
 Family
 (NXD)

Simplify traversal
path.
No insertion/update
problem (set of extent
can be extended or
created to support new
node).

Index graph size may grow
quadratically (2-index).
Many templates must be
build in advance (T-index).
Not supporting partial
queries path matching.

4. A(k)-
 index
 (NXD)

Size never grow larger
than the source.
No insertion/update
problem (set of extent
can be extended).

Not accurate as only
approximation is used to
answer long queries.

5. Index
 Fabric
 (RDBMS)

Index size controllable
as it can be partitioned
horizontally and
vertically.

Not supporting partial
queries path matching.
Encoding keys may need
to be regenerated.

6. APEX
 index
 (NXD)

No insertion/update
problem .
Supporting partial
queries path matching.

Workload info needs to be
collected to determine the
frequently used queries.

7. Extension
 of
 Inverted
 List
 RDBMS)

Supporting partial
queries path matching
Size never grow larger
than the source

Not supporting
insertion/update (label
need to be regenerated)

(b)

 1155
(15x77)

 15
(3x5)

 77
 (7x11)

3 7 5 11

 65
(5 x 13)

 33
(3 x 11)

 3
(1 x 3)

2

 1
(1 x 1)

1 2
(1 x 2)

4

6 5

 238
(14 x 17)

7

 label
(parent-label x self-label)

3

 5
(1 x 5)

 14
(2 x 7)

 266
(14 x 19)

8

 322
(14 x 23)

10 9

 406
(14 x 29)

 1023
(33 x 31)

11 12

(a)

International Journal of Information and Communication Engineering 2:6 2006

387

TABLE II
ADVANTAGES AND DISADVANTANGES OF LABELING SCHEME

Type of
Labeling
Scheme

Advantages Disadvantages

1. Tree
traversal
order

Easy traversal (pre and
post) labeling
Supporting partial
queries path matching
Maximum size
determine by the
number of nodes

Not supporting
insertion/update (label
needs to be regenerated)

2. Extended
preorder

Efficient to determine
structural join and
value join
Support
insertion/update as
long as the reserved
spaces have yet been
consumed

Hard to determine the
correct “size” for each
node

3. Tree
location
address

Efficient to determine
ancestor/descendant
relationship

Length of the
identifier/label grows as
the level of tree increases
Not supporting dynamic
XML, label might need to
be regenerated if new
node is inserted into the
left leaf.

4. Simple
prefix

Efficient to determine
ancestor/descendant
relationship

Label’s length scales up
quadratically as number
of fan-out and level
increases.

5.
Compressed
prefix

Shorter label length
(reduce storage size)
Suitable for skewed
tree and tree with
many levels as
balancing will be
carried out

Extra cost needed to test
for ancestor/descendant
relationship in the
original tree.
Not practical for tree with
lots of fan-out

6. GRP Small size
Suitable for tree with
many fan-out and
levels

Extra cost needed to
check for grouping
criteria.
Not fully supporting
insertion/update as label
may needs to be
regenerated

7. Prime
number

Supporting dynamic
update; no re-labeling
required
Size unaffected by
number of fan-out and
levels

Each prime number can
be used only once.

REFERENCES

[1] S. Abiteboul et al, “The Lorel Query Language for Semistructed Data,
Journal of Digital Libraries”, Vol 1, No 1, 1997, pp. 68-88.

[2] J. Robie, J. Lapp, D. Schach, XML Query Language (XQL). Available
http://www.w3.org/TandS/QL/QL98/pp/xql.html

[3] S. Ceri et al, XML-GL : A Graphical Language for Querying and
Reshaping XML Documents. Available
http://www.w3.org/TandS/QL/QL98/pp/xml-gl.html

[4] W3C, XML Path Language (XPath). Available
http://www.w3.org/TR/xpath-datamodel/

[5] W3C, XML Query (XQuery). Available
http://www.w3.org/XML/XQuery

[6] D. Zhang, Y. Dong, “A Data Model and Algebra for the Web”,
Proceeding 10th International Workshop on Database and Expert System
Application, IEEE Computer Society, 1999, pp. 711-714.

[7] F. Frasincar, G. Houben, C. Pau, “XAL : An Algebra for XML Query
Optimization”, 13th Australasian Database Conference, 2002, pp. 49-56.

[8] V. Christophides, S. Cluet, J. Simeon, “On Wrapping Query Languages
and Efficient XML Integration”, ACM SIGMOD International
Conference on Management of Data, ACM Press, 2000, pp. 141-152.

[9] T. Bray, J. Paoli, C. Sperberg-McQueen, Extensible markup language
(XML) 1.0, Technical report, W3C Recommendation, 1998

[10] L. Shan, Y. Rao, “A Performance Evaluation of Storing XML Data in
Relational Database Management Systems”, WIDM 2001, pp. 31-38.

[11] M. Atay, Y. Sun, D. Liu, S. Lu, F. Fotouhi, “Mapping XML Data To
Relational Data : A DOM-Based Approach”, Proc. of the 8th IASTED
International Conference on Internet and Multimedia Systems and
Applications, 2004, pp. 59-64.

[12] T.S. Chung, H-J Kim, “Techniques for the evaluation of XML queries :
a survey”, ACM Data And Knowledge Engineering 46, 2003, pp. 225-
246.

[13] M. Garafalakis, A. Gionis, R. Rastpgo, S. Seshadri, K. Shim, “XTRACT
: a system for extracting document type descriptors from XML
documents”, Proceeding of the ACM SIGMOD Int. Conference on the
Management of Data, 2000, pp. 165-176.

[14] R. Bourret, XML Database Products. Available
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

[15] J. McHugh & J. Widom, “Query Optimization for XML”, Proceeding
25th International Conference on Very Large Databases, 1999, pp. 315-
326.

[16] R. Goldman & J. Widom, “Data Guides : enabling query formulation
and optimization in semistructured database”, Proceeding of VLDB,
1997,pp. 436-445.

[17] T. Milo & D. Suciu, “Index structures for path expression”, Proceeding
of 7th Int. Conference on Database Theory, 1999, pp. 277-295.

[18] R. Kaushik, D. Shenoy, P. Bohannon, E. Gudes, “Exploiting Local
Similarity to Efficiently Index Paths in Graph-Structured Data”,
Proceeding of Int. Conference on Data Engineering, 2002, pp. 129-140.

[19] B. F. Cooper, N. Sample, M.J. Franklin, G.R. Hjaltason, M. Shadmon,
“A Fast Index for Semistructured Data”, Proceeding of 27th VLDB
Conference, 2001, pp. 341-350.

[20] C.W. Chung, J.K. Min, K. Shim, “APEX : An Adaptive Path Index for
XML data”, ACM SIGMOD, 2002, pp. 121-132.

[21] C. Zhang, J. Naughton, D. DeWitty, Q. Luo, G. Lohman, “On
Supporting Containment Queries in Relational Database Management
Systems”, ACM SIGMOD, 2001, pp. 425-436.

[22] J. Kim & H-J Kim, “Efficient processing of regular path joins using
PID”, Information and Software Technology 45, 2003, pp. 241-251.

[23] K. Michal, P. Jaroslav, S. Vaclav, “Indexing XML Data with UB trees”,
ADBIS, 2002, pp. 155-164.

[24] D. Adam, Data Structures and Algorithms in C++, 2001, Thomson
Learning

[25] R. Agrawal, R. Srikant, “Mining sequential patterns”, Proceeding of the
11th Int. Conference on Data Engineering, 1995, pp. 3-14.

[26] J. Lu & T.W. Ling, “Labeling and Querying Dynamic XML Trees”,
APWeb, LNCS 3007, 2004, pp. 180-189.

[27] P.F. Dietz, “Maintaining order in a linked list”, Proceeding of the 14th

Annual ACM Symposium on Theory of Computing, 1982, pp. 122-127.
[28] Q. Li & B. Moon, “Indexing and Querying XML Data for Regular Path

Expressions”, Proceeding of 27th VLDB Conference, 2001, pp. 361-370.
[29] W.E Kimber, “HyTime and SGML : Understanding the HyTime HYQ

Query Language”, Technical Report Version 1.1, IBM Corporation,
1993.

[30] E. Cohen, H. Kaplan, T. Milo, “Labeling Dynamic XML Trees”,
Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, 1992, pp. 272-281.

[31] H. Kaplan, T. Milo, R. Shabo, “A Comparison of Labeling Schemes for
Ancestor Queries”, Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, 2002, pp. 954-963.

[32] X. Wu, M.L. Lee, W. Hsu, “A Prime Number Labeling Scheme for
Dynamic Ordered XML Trees”, Proceedings of the 20th Int Conference
on Data Engineering, 2004.

International Journal of Information and Communication Engineering 2:6 2006

388

