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Power System Stabilizers as Undergraduate
Control Design Projects

Joe H. Chow, George E. Boukarim, and Alexander Murdoch

Abstract—The use of power system stabilizers (PSS) to damp
power system swing mode oscillations is of practical importance.
The design of PSS is taught in graduate level courses on power
system dynamics and control, and has been the topic of numerous
M.S. and Ph.D. theses. This paper discusses the experience in as-
signing PSS projects in an undergraduate control design course to
provide students with a challenging design problem using three dif-
ferent techniques and to expose them to power system engineering.
The details of the PSS design projects using root-locus, frequency-
domain, and state-space methods are provided.

Index Terms—Frequency-domain compensation, power system
stabilizers, root-locus techniques, state-space methods, undergrad-
uate design projects.

1. INTRODUCTION

HE undergraduate level control systems engineering
T (CSE) course at Rensselaer Polytechnic Institute and
many other universities covers the root-locus technique, fre-
quency-response compensation, and state-space methods for
control design [1]. The prerequisite of the course is the signals
and systems course [2]. A course in modeling of dynamic
systems [3] is helpful but not required. In the Rensselear CSE
course, the students are required to do a sequence of design
projects, each corresponding to a different design technique.
Past projects included a ball-and-beam system and an inverted
pendulum system [4], which are challenging but tend to be
more of textbook- and laboratory-type problems. To introduce
the students to real-world design problems, in the Fall 2002
semester, three power system stabilizer (PSS) design problems
were assigned to about 40 students. As part of the projects,
the students were also required to design the voltage regu-
lator (VR). The MATLAB package, with the Control System
Toolbox and Simulink, was used for the design [5].

In assigning these problems, we needed to distill the PSS de-
sign methodologies into steps that the students could accom-
plish with basic design knowledge. Most of the CSE students
had not taken an introductory power system analysis course,
but did have notions of dynamic systems. In each project, the
same single-machine, infinite-bus system model in state-space
form, presented in Section II, was used. The VR was obtained
first using basic design guidelines offered in textbooks [1], [6],
[7]. Then with the VR loop closed, more specialized techniques
were used to design the PSS to add damping to the swing mode.
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In both the VR and PSS designs, realistic control specifications
such as the rise time and the overshoot of step responses were
given. The PSS structure and the lead-lag compensator formulas
were provided to allow students to concentrate on selecting the
PSS parameters. The final designs were verified by time sim-
ulation using Simulink. These design projects are described in
Sections III-V. Some observations on the projects are provided
in Section VI.

II. POWER SYSTEM MODEL

A single-machine infinite-bus system (Fig. 1) was used as the
design model. The machine, modeled with subtransient effects,
delivers the electrical power P, to the infinite bus. The voltage
regulator controls the input u to a solid-state rectifier excitation
system [8], which provides the field voltage to maintain the gen-
erator terminal voltage Vie ., at a desired value Vi.t. The states
for the machine are its rotor angle ¢, its speed w, and its direct-
and quadrature-axis fluxes E;, 14, E/), and 1),. The exciter is
modeled with the voltage state V. All of the variables are nor-
malized on a per-unit (p.u.) basis, except for ¢ which is in ra-
dians.

The power system model is linearized at a particular equilib-
rium point to obtain the linearized system model given in the
state-space form

Az = AAz + BAu, Ay=CAx €))
where A denotes the perturbation of the states, input, and out-
puts from their equilibrium values, with

z=[5 w B ¢a Ey v, V" ©
Yy = [Vvtcrm w Pe]T~ 3)

The matrices for (1) derived from typical machine parameters
are given in Appendix A. In the sequel, the A symbol will be
dropped to simplify notations. The dominant poles of (1) are the
real pole s = —0.105 associated with the field voltage response,
and the electromechanical (swing) mode s = —0.479 + 79.33
with a small damping ratio ( = 0.0513, representing the oscil-
lation of machine against the infinite bus.

Starting from (1), the students were required to first use
the terminal bus voltage signal Vieyn to design a high-gain
VR Ky (s). Because the VR destabilized the swing mode, a
PSS K,(s) using the machine speed signal w was used to add
damping to the swing mode. The feedback control system block
diagram implemented in Simulink is shown in Fig. 2. Note that
the gain N is set to 1 for the root-locus and frequency-response
designs. The input signal to a speed-input PSS is derived from
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Fig. 1. Single-machine infinite-bus system.

the machine speed passed through a washout filter and several
banks of torsional filters [9]. The washout (derivative) filter
10s/(10s + 1) is a high-pass filter having a dc gain of 0, such
that in steady state, the PSS path is not active. The aggregate
phase lag effect of the torsional filters is represented by

1
" 14 0.061s + 0.0017s2

Note that the conventional PSS path comes into the Vo sum-
ming junction with a positive sign. Here, we use a negative sign,
balanced by a sign inversion in the feedback path, because the
MATLAB root-locus function assumes negative feedback. The
open- and closed-loop transfer functions required in various de-
sign stages are generated from the Simulink diagram by opening
appropriate connections.

The P. output was not used in the projects. It can be used if
an instructor wants to extend the designs to a dual-input PSS
with both the machine speed and the output power as the input
signals [10]-[12].

Detailed discussions of PSS design techniques based on
the synchronizing and damping torque concept can be found
in many excellent references such as [13]-[15]. In the PSS
projects, these ideas were translated into procedures that could
be followed by students with basic control system design skills.

Gtor (5) (4)

III. RooT-LOCUS DESIGN
A. Design Tasks

The first project in the sequence was the design of the VR and
the PSS using root-locus techniques, which are usually taught
first in a control systems course. The process was specified in
several tasks:

(R1) ForaO0.1-p.u. step in Vief, simulate the Viepy, response
of the open-loop system (1) up to 10 s. Then with
the PSS-loop open, repeat the simulation for (1) con-
trolled by a proportional VR Ky (s) = K, with K, =
10,20, ...,50.

Make a root-locus plot of the voltage regulation loop
using the proportional controller and find the gain K,
when the lightly damped swing mode becomes un-
stable.

Apply a PI controller for the VR

(R2)

(R3)
K
Ky (s) = Kpi(s) = K, <1 + f) 5)

and plot the closed-loop Vierm response to a 0.1-p.u.
Viet step input. Select the parameters from 0 < K, <

:IVterm|
w

numVR(s) o X = Ax+Bu
denVR(s) 7|y = Cx+Du
Vref Normalization Voltage Regulator Power System
Step Gain KV(s) State-Space Model

Clock -

time

humPSS(s)| , WI' [numTor(s) 10s
denPSS(s)| denTor(s) 10s+1

PSS torsional  Washout Sign
Kd(s) filter Filter Inversion

Fig. 2. Control structure of the single-machine infinite-bus system.
K, and 0.1 < Kj; < 10 such that the rise time
t, is less than 0.5 s and the overshoot M, is about
10%. These specifications reflect the requirements of
modern high-gain VRs.
Close the voltage regulation loop with Kp1(s) and per-
form a root-locus analysis of the PSS loop using the
transfer function from V¢ to wy, the output of the
torsional filter, assuming K,(s) to be a proportional
gain control. Find the angle of departure ¢gep, of the
root-locus branch leaving the swing mode with the pos-
itive imaginary part.
Based on ¢, design a second-order phase-lead com-
pensator

(R4)

(R5)

S —Z S —Z
Kq(s) = Kiq |:041d1 " pijl] |:041d2 " pijz] (6)
- 1 - 2

Pldi = idiZdi, oadi > 1, 1=1,2 @)

using the phase-lead properties described in Ap-
pendix B, such that the angle of departure of the
compensated system is about 180°. Perform another
root-locus analysis for (6) and select K14 to achieve a
damping ratio ¢ > 15% for the swing mode.
Implement K4(s) in the Simulink diagram and simu-
late the closed-loop Vierm response to a 0.1-p.u. Vies
step input. Check if ¢, < 0.5 s and M,, < 10% have
been satisfied.

(R6)

B. Discussion of Design

Tasks R1 and R2 reveal important properties of the system
and the proportional control. Fig. 3 shows the open-loop step
response and the responses for the different K, values. Note the
slow open-loop response which settles to 0.0747 p.u., yielding
a 25% steady-state error. As K, increases, the closed-loop step
response becomes faster and the steady-state error smaller, but
the oscillation due to the swing mode becomes less damped. At
K, = 50, the feedback system is unstable with a growing oscil-
lation. The instability can be studied with a root-locus plot, as
shown in Fig. 4. As K, increases, the voltage mode moves left
from s = —0.105, thus improving ¢,.. The swing mode, how-
ever, is destabilized, and crosses the imaginary axis at K, ~ 47.
Although the system becomes stable again as K, is increased
beyond 1260, such a high gain is nonrobust because any re-
duction in the system gain due to changing operating condition
would pull the swing mode back into the right half-plane. Thus,
the proportional gain has to be kept below 47.

A good way to approach task R3 is to set up a grid of K, and
K7 values and simulate the step response by sweeping through
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Fig. 4. Root-locus plot of voltage regulation loop.

the grid values. Note that new commercial digital VRs have inte-
gral actions, although older analog VRs usually have a high pro-
portional gain for tighter steady-state regulation and a lag-lead
block for transient gain reduction. One set of values that will
satisfy the design specifications is K, = 35 and K; = 0.4,
whose step response is shown as the dashed curve in Fig. 5,
with ¢, = 0.446 s and M,, = 12.5%. The integral action has
removed the steady-state error. We leave some margin in ¢, be-
cause a PSS will slow down the time response. On the other
hand, with a PSS providing additional damping, the overshoot
will be reduced.

In task R4, we close the VR loop and add in the washout filter
and Gio(s) to generate the transfer function from V¢ to the
PSS input. Taking the PSS to be a proportional controller, the
departure angle of the root-locus branch leaving the swing mode
is about 60° (Fig. 6). To add purely damping to the swing mode,
the departure angle should be 180°. Thus, for task RS, we need
to add a 120° compensation at the swing-mode frequency in the
feedback loop using a phase-lead controller. From Fig. 17, this
120° compensation requires two first-order phase-lead compen-
sators in series. Setting the two compensators to be identical, we
obtain alg = 14, with the swing mode frequency of 9.33 rad/s
as the center frequency w.. The root-locus analysis is repeated
with the phase compensation in the feedback loop. Fig. 7 shows
the swing mode having a departure angle close to 180°, allowing
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Fig. 7. Root-locus plot of swing mode with PSS (8).

the selection of the PSS gain at 1.13 to achieve a 15% damping
ratio. The PSS thus has the form

®)

Kafs) = 113 [Mr

s+ 34.9
When the PSS loop is closed, the Vie,, response to a 0.1-p.u.

step in Vief, shown as the solid curve in Fig. 5, has ¢, = 0.456
s and M, = 6.81%, satisfying the design specifications.
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IV. FREQUENCY-RESPONSE DESIGN
A. Design Tasks

The second project required the use of frequency-response
design techniques. The VR design was quite standard, whereas
the PSS design required decomposing the accelerating torque on
the synchronous machine into its synchronizing and damping
components. To guide the design process, the following tasks
were specified.

(F1) Plot the frequency response of the system from u to

Vierm- Find the dc gain and the gain and phase margins
of the uncompensated system.

(F2) Design a phase-lag controller Ky (s)

S — Zlg

g
§—DPig

Kv(s) = K )
such that the dc gain of the compensated system is at
least 200 and the phase margin is at least 80°. Plot the
compensated system frequency response and find the
gain and phase margins.

Close the voltage regulation loop and simulate the
Vierm response of the closed-loop system to a 0.1-p.u.
Viet step input. Find ¢,., M, and the steady-state error.
Generate the state-space model G, (s) from Vies to w
with the lag controller Ky (s) loop closed. Regarding
the power system model as a second-order mass-spring
system, decompose the model to isolate the Q(s) path
from the speed to the electrical torque, as shown in
Fig. 8. The resulting system A,, matrix has the struc-

(F3)

(F4)

ture
0 376.99 0
Aw = -K -D a23 (10)
a3l a32 Ass

where K = 0.2462, D = 0.1563, as3 is a row vector,
a3 and agy are column vectors, and Ag3 is a square
matrix. Construct the state-space model ()(s) with the
machine speed w as the input and the electrical torque
T as the output

€ = Azzé + azow, (11)

T = a23f.

Connect Q(s) in series with the washout and torsional
filters to form F'(s). Plot the frequency response of
F(s), using a frequency range of 1 to 100 rad/s.

(F5) Design a phase-lead controller K,(s) (6) such that
the phase of F'(s)K (s) is between 0 to —20° from
2 to 12 rad/s (approximately 0.3 to 2 Hz). The ra-
tional is that if the phase of F'(s)K4(s) is close to zero
and slightly negative, the speed feedback loop will add
mostly damping. Furthermore, the root-locus depar-
ture angle from the swing mode will be slightly less
than 180°, such that the swing mode frequency will in-
crease, improving the synchonizing torque. By speci-
fying a frequency range, improved damping is possible
whenever the swing frequency, which can change ac-
cording to the operating condition, falls in this range.
Again, the phase-lead compensator characteristics in
Appendix B will be helpful. For the designed K4(s),
plot the frequency response of F'(s)K4(s) with Kjq =
1.

Connect G, (s) in series with K4(s), the washout
filter, and Gior(s). Use this system to perform a
root-locus analysis to select K4 to achieve a damping
ratio ¢ = 15% for the swing mode.

Implement K4(s) in the Simulink diagram and simu-
late the Ve response due to a 0.1-p.u. V¢ step input.
Find t,., M,,, and the steady-state error.

As a final check, in the Simulink diagram, disconnect
the feedback path from Vg(s) into the input summing
junction, and generate the linear model from V¢ to the
output of V() with the K;(s) loop closed. Find the
gain and phase margins of the compensated system.

(F6)

(F7)

(F8)

B. Discussion of Design

The uncompensated system frequency response plot in Fig. 9
shows that the magnitude of the open-loop system is less than
unity, with the dc gain at 0.747 and a local magnitude peak
at w = 9.33 rad/s due to the lightly damped swing mode.
This swing mode also determines the gain margin to be 33 dB
(44.67). We set the high-frequency gain K, of Ky (s) at 40, so
that the new gain-crossover frequency wg. of the compensated
system is about 3.6 rad/s, with a phase of about —90°. Using the
phase-lag design procedure in [1, p. 405], we set the controller
low-frequency gain, the zero, and the pole to be

200
Kip=—" 12
M 0747 K, (12)

wgc Zlg
= — & = 13
Zlg 10 Dig Kir (13)
such that
s+ 0.36

Ky (s) =401 14
v(s) s+ 0.0538 (14

The frequency-response plot of the compensated system is
also shown in Fig. 9, indicating a low-frequency gain of 200
and a phase margin of 85.5°. Due to the local magnitude peak
of the swing mode, the gain margin is only 0.85 dB, which will
be improved by the PSS. The closed-loop system response to
a 0.1-p.u. step in Vier is shown as the dashed curve in Fig. 10,
with ¢, = 0.414 s and M,, = 11.4%.

In task F4, we construct F'(s) and plot its frequency response
in Fig. 11. Note that the phase of F(s) is —40.3° at 2 rad/s
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and drops to —133° at 12 rad/s. According to the phase spec-
ifications, we need to add at least 113° at 12 rad/s. The center
frequency of the desired lead controller will be higher than the
value of 9.33 rad/s used in (8). After a few design iterations,
the values ajq = 13.7 and w. = 20 rad/s are selected for both
lead stages. To set the gain, we perform a root-locus analysis,
as shown in Fig. 12, obtaining a gain of 3.75 to achieve a 15%
damping ratio of the swing mode. Thus, the PSS has the form

15)

13.7(s + 5.40) ]

When the PSS loop is closed, the system response to a 0.1-p.u.
step in Vier is shown as the solid curve in Fig. 10. Note that in
this response, ¢, = 0.468 s and M,, = 4.24%, which are similar
to those obtained from the root-locus design.

In task F8, with the PSS adding damping and reducing the
local magnitude peak due to the swing mode, the gain margin
in the voltage loop improves to 10 dB.

V. STATE-SPACE DESIGN
A. Design Tasks

In the third project, full-state feedback laws and observers
derived from pole placement were used to design and implement
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Fig. 12. Root-locus plot of swing mode for (15).

the VR and PSS [16]. State-space design is not commonly used
for PSS design because the controller order may be high. Thus,
in this project, it was essential that some model reduction steps
be taken to obtain low-order controllers. The design tasks were
as follows:

(S1) With the PSS-loop open, use u as the input and Vierm,
as the output, to obtain a single-input, single-output
model. Design a full-state feedback control to place
the closed-loop voltage regulation pole at the desired
location to reduce the voltage control time constant,
leaving all of the other poles unchanged. Then, design
an observer so that the system states can be estimated
from Vierm by ensuring that the voltage control tran-
sient due to the observer pole decays faster than the
full-state feedback pole. Implement the observer-based
controller Ky, (s) and the scalar gain N such that for a
0.1-p.u. step input Viet, the closed-loop V;erm, response
achieves t, < 0.5, M), < 5%, and zero steady-state
voltage regulation error.

The controller Ky,(s) obtained from task S1 is sev-
enth order, with much of its dynamics not important.
In this task, we will preserve only its voltage regulation
function. First, plot the frequency response of Ky ,(s).
Then, express Ky,(s) in the zero-pole-gain form and

(82)
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perform approximate pole-zero cancellations to retain
only a first-order reduced controller Ky (s)
K,

Kvs) = s —I;?d

(16)

where K, is selected so that Ky (s) and Ky ,(s)
have the same dc gain. Plot the frequency response
of Ky (s) versus that of Ky ,(s). Close the voltage
loop with Ky (s) and perform a step response with
a 0.1-p.u. Vier step input. Compare it to the step
response using Ky ,(s).

Generate the state-space model G, (s) from Vi to
wy with Ky (s) (16) implemented. The controller
K4,(s) is designed to improve the damping ratio of
the swing mode to 15% by first obtaining a full-state
feedback control to add damping to the swing mode
and then an observer so that the states of the system
can be estimated using wy. Construct the 11th-order
observer-based controller Kg4,(s), which also has
some dynamics that are not important. Apply the min-
imal realization function minreal in the MATLAB
Control System Toolbox to obtain a controller K4(s).
Do a root-locus analysis of the damping controller
loop using Kg4(s). Close the damping control loop
with K;(s) and simulate the Vie,, response of the
overall closed-loop system to a 0.1-p.u. Vi step
input. Find ¢, and M,,.

(83)

B. Discussion of Design

Because the open-loop voltage pole is at s = —0.105, it is
essential that this pole be made faster in order to improve the
voltage response. In task S1, this pole will be shifted to s =
—4 for the full-state feedback design and to s = —8 in the
observer design. The resulting seventh-order Ky, (s) is given in
Table I, whose frequency response is shown in Fig. 13. For zero
steady-state voltage error, we set N = 1.037. The closed-loop
response to a 0.1-p.u. step in Vi shown as the dot-dashed plot
in Fig. 14 processes only a small amount of oscillations, with
t, = 0.433 s and M, = 4.6%. The frequency response of
Kv,(s) exhibits a notch filter characteristic at the swing mode,
reducing its effect on the swing mode. This design strategy is not
robust, because the swing frequency can vary with the operating
condition.

Table I shows that the zeros and poles form approximate pairs
except for the pole at s = —13.19. This pole will be retained in
(16) such that

483.5

Ky (s) = —22
v®) = T3

a7
whose frequency response no longer has a notch filter char-
acteristic, as shown in Fig. 13. Thus, the time response of the
closed-loop system, shown as the dashed plot in Fig. 14, is os-
cillatory.

In task S3 for the full-state feedback design, the swing mode
is shifted to —1.5 £ 79.06 to achieve a slightly higher than 15%
damping ratio, and for the observer design, the swing mode is
shifted to —4.5 £ 59.06 to ensure fast tracking. All of the other
poles are fixed. The frequency response of the 11th-order ob-

TABLE 1
ZEROS, POLES, AND GAIN OF Ky, (s)

Zeros —114.7,-35.4,-26.8,-3.08, —0.479 +j9.33
poles | —114.6,-34.6,-26.8,~13.19,-2.243 -0.609 + j9.59
gain 392.6
3 R
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Fig. 13. Frequency responses of Ky ,(s) and Ky (s).
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Fig. 14.  Vierm responses to step in Vier for Kv,(s) and K (s).
server-based controller K 4,(s) is shown in Fig. 15. Note the
phase-lead characteristic of K4,(s). Using the minreal func-
tion with a tolerance of 0.001, a fifth-order controller K4(s) is
obtained. Fig. 15 shows that the frequency responses of Ky, ($)
and K ;(s) match closely.

An interesting aspect of the state-space design is that in the
root-locus plot using K4(s), the root-locus branch (Fig. 16)
moves from the swing mode almost parallel to the negative real
axis, providing purely damping enhancement. When the PSS
loop is closed, the Vierm response to a 0.1-p.u. step in Vier is
shown as the solid curve in Fig. 14. Note that this response has a
fastrise time ¢,, = 0.350 s, but a higher overshoot M), = 10.5%.

VI. PEDAGOGY

In a typical undergraduate control systems course, each of
the three design techniques are covered in about three weeks.
At Rensselaer, these design projects were assigned concurrently
with their lecture discussions. One lecture was spent on a de-
tailed discussion of each design project. Students were allowed
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to form two-person teams and had about two to three weeks to
complete each project.

Feedback and closed-loop systems are among the hardest
concepts for many engineering students to have a good grasp.
Good design projects with powerful simulation tools can be
very helpful in reinforcing theoretical analysis. In addition,
applying different techniques to the same design problem
provides insights into the linkage of the design concepts. Many
students were amazed at how well their VRs and PSSs per-
formed, and the design experience became a favorite discussion
topic in their job interviews. Many students also included these
design projects on their resumés.

In the design projects, we provided a Simulink diagram
for the students to implement the controllers, considering that
the design required closing two single-input, single-output
loops, one for regulation and the other for stabilization.
Although the projects could be accomplished solely using
the MATLAB command language, operations with Simulink
diagram removed most of the drudgery of keeping track of the
feedback structure, reducing the possibility of errors. This was
an important consideration when most of the students were not
proficient MATLAB users before taking this control systems
course.

Toward the end of the semester, one of the co-authors (GEB)
of this paper gave a lecture to the students on PSS design tools
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used in industry and PSS tuning during commissioning. Al-
though such industry interactions can be readily arranged at
Rensselaer because of her proximity to a turbine-generator man-
ufacturer, with advance planning, it is possible for other schools
to do likewise.

VII. CONCLUSION

In this paper, we have presented three PSS design projects,
based on the root-locus, frequency-response, and state-space
methods, for an undergraduate control systems course. The
projects provided students with some realistic and challenging
design experience and exposed them to a well-known power
system design problem. The course survey indicated that the
students were generally pleased with the design activities.

Any one of the PSS design projects can be adopted for use
with modifications by instructors of similar courses. A satura-
tion block can be added to the output of the PSS to limit its
contribution in the voltage regulator input. The design specifi-
cations can be either relaxed or tightened. For a graduate-level
design course, a PSS design for multiple-machine systems or
the dual-input PSS design can be addressed. In addition, PSS
designs for systems with multiple operating conditions can be
considered. More advanced techniques such as fuzzy logic [17]
and genetic algorithms [18] can also be applied, depending on
the needs of the course.

APPENDIX

VIII. STATE-SPACE MODEL

The matrices for the state-space model (1) are shown in the
equation at the bottom of the top page.

The system data can also be downloaded from the web site
www.brookscole.com, which provides resources for the text [4].

IX. PHASE-LEAD COMPENSATION

The single-stage phase-lead controller

G(s) = aua 4 pa = ez, g > 1 (18)
bia

has its zero s = zjq closer to the origin of the s-plane than its

pole s = piq. At low frequencies, its gain is unity and its phase

is zero. At high frequencies, its gain is «1q and its phase is zero.

At the center frequency defined as w. = /ziapia, it has the

maximum phase lead of

(19)
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Fig. 17 shows ¢,, as a function of «q, which is useful for se-
lecting the appropriate «q to achieve a desired phase lead [6].
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