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Demand response to time-varying pricing of electricity is critical to a smart grid’s efficient management
of electrical resources. This paper presents a new approach to quantify residential demand respon-
siveness to (time-of-use) TOU rates, which does not entail an econometric estimation of TOU demand
equations. Based on one of the four smart grid pilots in China, our approach uses the survey data
collected in 2011 from 236 residents in Yinchuan to implement a Monte Carlo simulation to obtain the
minimum, expected and maximum demand responsiveness to four TOU rate designs. We find that
residents do not respond to TOU pricing when the TOU rate design only causes a 10% increase in their
existing electricity bills under non-TOU rates. However, their estimated peak demand responsiveness is
8.41% (21.26%) when the peak-time price increases by 20% (40%). Based on these findings, we conclude
that suitably designed TOU rates are useful to the efficient operation of a smart grid.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A smart grid is a network that can intelligently integrate the
actions of all users connected to it [1]. The key benefits of smart
grids are that they are more reliable, resilient, economical, efficient,
environmental friendly, and safer as compared to traditional elec-
tricity networks. It has significance in the achievement of targets
for promoting competition, increasing the safety of electricity
systems, and combating climate change [2].

(Demand response) DR is very important to the construction of
the smart grid. The U.S. (Department of Energy) DOE submitted
a report to the U.S. Congress in February 2006 on DR in the elec-
tricity market [3], pointing out the importance of DR and its role in
the power system. DR is useful for managing demand during
a system emergency, resulting in benefits that can be estimated
through various approaches [4e7]. With the development of the
smart grid, the number of types of DR programs is increasing [8].
The NYISO (New York Independent System Operator) in America
currently operates three kinds of DR programs: reliability-based DR
programs, an economic DR program, and ancillary services [9].
Horowitz and Woo [10] explored three voluntary service options
(real-time pricing, (time-of-use) TOU pricing, and curtailable/
x: þ86 010 80796904.
iuhe@126.com (Y. He).

All rights reserved.
interruptible service) in order to encourage residential customers
to alter their electricity usage in response to changes in the elec-
tricity price. In Australia, (dynamic peak pricing) DPP was imple-
mented to reduce peak electricity demand [11]. Faria and Vale [12]
presented a DR simulator called DemSi to study DR actions and
obtain load reduction under real-time pricing and the value of the
price elasticity of demand. Hartway et al. [13] refuted the common
belief and demonstrated that offering a TOU option can be profit-
able to a utility. Parks and Weitzel [14] used the data from an
experiment to measure the consumer welfare effects of time-
differentiated electricity prices.

Residential loads often contribute significantly to seasonal and
daily peak demand. In Europe, the long-standing programs
involving large industries have been increasingly complemented by
programs aimed at residential customer groups [15]. Torriti [16]
found that TOU tariffs bring about higher average electricity
consumption and lower payments by residential consumers. Many
studies analyzed the response of consumers from the econometrics
perspective [17e19]. Allcott [17] found that households are signif-
icantly (i.e., statistically) price elastic. Caves and Christensen [18]
indicated that price elasticities vary substantially with prices and
that peak and off-peak loads are partially substitutes. Caves et al.
[19] tested the hypothesis that the elasticities of substitution are
identical across TOU rates and created a model for predicting
residential responses to TOU rates.

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:heyongxiu@ncepu.edu.cn
mailto:yongxiuhe@126.com
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
http://dx.doi.org/10.1016/j.energy.2012.08.046
http://dx.doi.org/10.1016/j.energy.2012.08.046
http://dx.doi.org/10.1016/j.energy.2012.08.046


Table 1
The basic information describing the Yinchuan survey respondents.

Contents Items Survey results

Count Proportion
(%)

Cumulative
percentage (%)

Age 20e24 years old 43 18.22 18.22
25e30 years old 58 24.58 42.80
31e36 years old 62 26.27 69.07
37e45 years old 46 19.49 88.56
46 years old and above 27 11.44 100

Education
Background

Master and above 7 3.07 3.07
Undergraduate 103 45.18 48.25
Junior college 57 25.00 73.25
Senior high
school or technical
secondary school

46 20.17 93.42

Junior high school
and below

15 6.58 100

Occupation Civil servants 27 11.64 11.64
Public institution
staff members

24 10.34 21.98

State-owned enterprise
staff and workers

77 33.19 55.17

Private company
staff and workers

23 9.91 65.08

Self-employed
individuals

18 7.76 72.84

Managers of private
companies

44 18.97 91.81

Others 19 8.19 100
Average annual

income
Under 20 thousand RMB 20 8.55 8.55
20e50 thousand RMB 54 23.08 31.63
50e100 thousand RMB 87 37.18 68.81
100e150 thousand RMB 48 20.51 89.32
150e20 thousand RMB 17 7.26 96.58
200e300 thousand RMB 3 1.28 97.86
300 thousand RMB
and above

5 2.14 100

Time when
somebody is
at home

Throughout the day 53 25.48 25.48
Evening (after work) 99 47.60 73.08
Noon and night 56 26.92 100

Residential
square footage

Less than 60
square meters

19 8.08 8.08

60e90 square meters 90 38.30 46.38
90e144 square meters 106 45.11 91.49
More than 144
square meters

20 8.51 100

House type High-rise apartment
(more than 8 floors)

47 20.43 20.43

Regular apartment
(2e8 floors)

171 74.35 94.78

Bungalow 12 5.22 100

Table 2
Categories of respondents based on total demand of house appliances.

Categories Total demand
of home appliances

Features

Category 1 10 kW and below The home appliances are for the
basic necessities of living.

Category 2 11e13 kW Several more appliances to
improve quality of life besides
the basic appliances.

Category 3 14e17 kW The home appliances are similar
to the second category but the
electrical demand of appliances
is larger than the second.

Category 4 18 kW and above The household electrification is
of high degree and there are
many appliances of high
electric demand.

Y. He et al. / Energy 47 (2012) 230e236 231
The magnitude of residential response depends on several
factors. Some experiments showed a statistically significant
average participant response to (critical peak pricing) CPP: partic-
ipants saved up to 13% of energy but did not respondmore to higher
CPP rates [20,21]. Moore et al. [22] indicated that an incentive
payment based on the option value alone is likely insufficient to
attract customer participation. Mountain and Lawson [23] found
that peak reductions in the summer are marginally larger than
those in the winter. Herter [24] indicated that large customers
responded significantly more in kW reduction, whereas small
customers saved more in percentage reduction. Faruqui and Segici
[25] observed that the magnitude of price increase, the presence of
central air conditioning, and the availability of enabling technolo-
gies can influence the response. Faruqui and Malko [26] indicated
that residential responses vary with several conditioning variables
such as level of total (daily) electricity use, composition of appli-
ance portfolio, and duration of pricing periods. Vassileva et al. [27]
sent a questionnaire to 2000 Swedish households and showed clear
differences in the response rates from different types of residences,
different income areas of the city, and in the methods respondents
preferred most for receiving information and feedback.

Although experimental methods are used in most of the studies
on the response of residential consumers to prices, Aigner [28]
pointed out the uncertainty in using experimental results. Due to
the lack of data, we cannot perform an econometric analysis of
residential DR in China. Therefore, this paper presents an alternative
method to analyze residential DR based on both the survey results
andMonte Carlo simulation, which needs less information and thus
can solve the problem of lacking statistical samples. The results of
this paper can provide recommendations for the implementation of
DR programs in different areas. Our findings demonstrate how
residential consumption responds to time-varying pricing, thereby
aiding the formulation of a rational electricity pricing policy.

2. Survey

To determine residential DR in the context of the smart grid,
a survey was conducted in Yinchuan, one of the four smart grid
construction pilot cities of State Grid Corporation. Of the 250
questionnaires that were distributed, 236 valid responses were
received. The survey respondents included residents of different
ages, educational backgrounds, household incomes, and household
structures. The basic information pertaining to the respondents is
shown in Table 1.

We also surveyed the appliances portfolio, including bulbs,
televisions, refrigerators, washing machines, electric fans, electric
cookers and so on, in every household. Then, according to the
average load of each appliance, the total load of home appliances in
each household can be calculated. On the basis of the survey results,
the minimum value of the total load of home appliances is about
3 kW, while the maximum is about 23 kW. Considering the
distribution of the total load of household appliances, we divide the
residents into four categories. For category 1, the household
appliances are for the basic necessities of living. The upper limit of
the total demand is about 10 kW. For the other three categories, the
number of household appliances increases and the total demand is
also higher. All the categories are shown in Table 2.

Residential DR behaviors describe the customers’ responses to
prices and are reflected in a series of adjustments in power
consumption. The assumption is that residents will make various
responses when the electric bill increases by a certain level. Five
scenarios are assumed in the investigation, inwhich the level of the
increases in the electricity bill varies, in order to analyze how
responsive the residents in Yinchuan are to the electricity prices.
The scenarios are shown in Table 3.



Table 3
Classification of residents’ preferences and responses to prices.

No. Response preferences

1 Make consumption adjustments when the electricity costs rise by 5%.
2 Make consumption adjustments when the electricity costs rise by 10%.
3 Make consumption adjustments when the electricity costs rise by 15%.
4 Make consumption adjustments when the electricity costs rise by 20%.
5 Do not make power consumption adjustments no matter how

much electricity costs rise.
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According to the survey in Yinchuan, when the electricity cost
rises by 10% or below, residents will not make a response (i.e.,
change their consumption behaviors); however, when the elec-
tricity cost rises by 10% andmore, some residents will start to make
adjustments in their power usage. The main reason for a low
response is that the household electricity cost is only a small
proportion of household total income, and thus a small increase in
electricity cost will not stimulate residents to make adjustments in
their consumption of power.

Currently, depending on the time of power consumption,
Ningxia Power Grid Corporation, which is the electricity supplier
for the city of Yinchuan, divides the 24 h in one day into three
periods: the peak time (8:00e12:00, 18:00e22:00), the normal
time (7:00e8:00, 12:00e18:00) and the off-peak time (22:00e
7:00). According to the survey, we have obtained the electricity
consumption information in each period for every category of
residents, and the average proportion of electricity consumption in
each period can be derived, as shown in Table 4.

3. Simulation

3.1. Monte Carlo simulation

The Monte Carlo simulation method associates the problem of
uncertainty with a probabilistic model, which is based on the esti-
mated statistics produced by a large number of random tests as the
approximated solution to the original problem. The Monte Carlo
simulation method can solve many problems where it is normally
difficult to determine the distribution patterns of variable param-
eters [29]. On the basis of the historical statistical distribution or
a certain kind of probability distribution, a random variable
parameter model is obtained. The cumulative probability can then
be generated by using a computer program, which repeatedly
simulates the random variable and produces the possible values of
all randomvariables based on the computer simulationmodel. After
thousands of sampling simulations without repeated statistics, the
algorithm can achieve as much accuracy as possible for simulating
all of the possible values, calculate the results of the statistical
simulation, and determine the Eigenvalue of the random variable.

This paper analyzes the changes in residential electricity
consumption and the responsiveness of electricity consumption
based on the TOU price policy according to the patterns of resi-
dential power consumption and use of household electric appli-
ances. Because of the lack of sufficient statistical data for China, an
Table 4
Proportion of residential electricity consumption in each period.

Total consumption
of home appliances

Proportion of
peak time

Proportion of
normal time

Proportion of
off-peak time

Category 1 65.53% 10.14% 24.33%
Category 2 71.70% 5.97% 22.34%
Category 3 68.97% 8.86% 22.18%
Category 4 71.01% 9.03% 19.96%
econometric analysis may not be appropriate for this purpose.
Hence, the Monte Carlo simulation method discussed above can be
used to cope with less information and produce some meaningful
results at the same time. As every resident has his or her own
attitude and response to price signals, this paper estimates the
maximum, the most likely, and the minimum values of the
responsiveness of residential electricity consumption based on the
survey results. Thus, the distribution of residential response can
be established. Therefore, according to the probability theory,
a triangular distribution can be used to approximate the actual
distribution of residential electricity consumption responsiveness.
The probability distribution of the triangular distribution is shown
in Fig. 1.

The triangular distribution function is shown as follows:

F
�
x
� ¼

8>>>>>>>>>><
>>>>>>>>>>:

0; x � a
ðx� aÞ2

ðc� aÞðb� aÞ; a � x � c

1� ðx� bÞ2
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1; x � b

(1)

where a represents the minimumvalue, b represents the maximum
value and c represents the most likely value.

This study undertakes the Monte Carlo simulation, according to
the characteristics of the triangular distribution, through simu-
lating changes in residential electricity consumption. Random
numbers that follow a uniform distribution can be produced at first,
and then they can be converted to the triangular distribution. These
random numbers of uniform distribution are assumed as x and
then, the random numbers u, which obey the triangular distribu-
tion, are produced by using equation (2).

u ¼

8>><
>>:

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðb� aÞðc� aÞ

p
0 � x <

c� a
b� a

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞðb� aÞðb� cÞ

p c� a
b� a

� x � 1
(2)

The accuracy of Monte Carlo simulation is proportional to 1/N
(N represents the total number of samples). Therefore, a large
amount of computation is required to achieve higher levels of
Fig. 1. The probability distribution of residential electricity consumption
responsiveness.



Table 5
Changes in residential electricity costs without behavioral changes.

Items Fixed price Scenario 1 Scenario 2 Scenario 3 Scenario 4

Electricity price
change ratio

0 10% 20% 30% 40%

Average power
price (Yuan/kWh)

0.4486 0.4706 0.4925 0.5145 0.5365

Monthly electricity
costs increase value

0 4.89% 9.78% 14.68% 19.57%

Table 6
Maximum electricity consumption responsiveness of four categories of residents in
Yinchuan.

Response period Category 1 Category 2 Category 3 Category 4

Peak responsiveness 42.40% 70.36% 67.03% 73.33%
Normal time responsiveness 32.88% 11.57% 64.42% 75.84%
Off-peak responsiveness 12.96% 27.03% 18.35% 11.95%
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accuracy. This study entailed running the simulation 2000 times,
which could truly reflect the response of residents under the TOU
rates.

3.2. Simulation method

As mentioned previously, the TOU rates divide the 24 h in a day
into three sections: the peak time T1, the normal time T2, and the off-
peak time T3. The corresponding electricity prices during the three
sections are represented by P1, P2, and P3. This paper assumes that P
represents the residential electricity price before the implementa-
tion of TOU rates, and that the daily electricity consumption of
residents is represented by Q, such that the electricity consumption
at the peak time, the normal time, and the off-peak time is repre-
sented by Q1, Q2, and Q3 respectively. Suppose that C represents the
daily cost of electricity; then C can be calculated by equation (3).

C ¼ PQ (3)

Assume that the electricity price at the normal time is equal to
the original residential electricity price, and a, b represent the rate
of price increase at peak time and the rate of price decrease at off-
peak time, respectively; then the electricity prices in the three
periods can be calculated by equation (4).
8<
:

P1 ¼ Pð1þ aÞ
P2 ¼ P
P3 ¼ Pð1� bÞ

(4)

It is assumed that residential power consumption behaviors
remain the same as they were originally at the beginning of the
implementation of TOU rates; that is, the electricity consumption at
each time is equal to that before the implementation of TOU rates.
C0 represents the daily cost of electricity at this time and can be
calculated by equation (5).

C0 ¼ P1Q1 þ P2Q2 þ P3Q3 (5)

Therefore, the cost difference DC between the two different
price strategies can be expressed as follows:

DC ¼ C0 � C ¼ ðaQ1 � bQ3ÞP (6)

After the implementation of TOU rates, the average household
power price P can be expressed as follows:

P ¼ P1Q1 þ P2Q2 þ P3Q3

Q1 þ Q2 þ Q3
¼ P

�
1þ aQ1 � bQ3

Q1 þ Q2 þ Q3

�
(7)

The survey results indicate that the household responds to the
TOU rates if

C0>SC (8)

where S ¼ scalar, which may be 1.1, 1.2, 1.3, or 1.4.
After a period of time after the implementation of the TOU price

policy, some residents will adjust their consumption behaviors
accordingly. This adjustment takes two main forms: single-time
response and multi-time response. Single-time response refers to
the behavior where users decide how much power they will
consume based on the level of the electricity price at that time.
They respond to higher prices simply by reducing their (overall)
electricity consumption. A multi-time response refers to the
behavior where users respond by transferring the consumption
from the high-price periods to lower-price periods, in addition to
reducing their (overall) electricity consumption.

This paper assumes that all residents make rational decisions.
Normally, the residents will save electricity by reducing their
power consumption during the peak time and the normal time, by
transferring part of the power consumption to the off-peak time.
Suppose that DQ1 represents the change in residential electricity
consumption at the peak time, DQ2 represents the change in resi-
dential electricity consumption at the normal time, and DQ3
represents the change in residential electricity consumption at the
off-peak time, such that:

8<
:

DQ1 ¼ DQ 0
1 þ DQ12 þ DQ13

DQ2 ¼ DQ 0
2 þ DQ23

DQ3 ¼ DQ 0
3

(9)

where DQ 0
1 represents the single-time response value at the peak

time; DQ 0
2 represents the single-time response value at the normal

time;DQ 0
3 represents the single-time response value at the off-peak

time; DQ12 represents the consumption transferred from the peak
time to the normal time; DQ13 represents the consumption trans-
ferred from the peak time to the off-peak time; and DQ23 represents
the consumption transferred from the normal time to the off-peak
time. Here, the residential response can be measured by the net
flow of electricity.

In order to assess the response behaviors of residents, this paper
introduces a relative measurement indicator, which is electricity
consumption responsiveness, lj (j ¼ 1, 2, 3), calculated as follows:

lj ¼ DQj=Qj (10)

Simulating the DR based on the survey results entails the
following steps:

Step 1: Assume the minimum, the most likely, and the
maximum values of residential electricity consumption
responsiveness for each category of residents.
Step 2: Input the original residential electricity prices and the
new TOU rates.
Step 3: Use equation (3) to compute the electricity bill for
a household in the survey prior to TOU.
Step 4: Use equation (5) to compute the electricity bill for the
same household in the survey after TOU.
Step 5: Test whether equation (8) holds. If “yes,” go to Step 6;
otherwise, repeat Steps 3 and 4 for the next household.
Step 6: Use the triangular distribution function to generate
numbers randomly based on the assumptions for residential
electricity consumption responsiveness in Step 1.
Step 7: Compute the household’s consumption change by TOU
period based on the responsiveness.



Table 7
The most likely electricity consumption responsiveness of the four categories of residents in Yinchuan.

Electricity price change ratio Category 1 Category 2 Category 3 Category 4

Scenario 1 0 0 0 0
Scenario 2 Peak responsiveness: 17% Peak responsiveness: 13% Peak responsiveness: 5% Peak responsiveness: 0

Off-peak responsiveness: 10% Off-peak responsiveness: 10% Off-peak responsiveness: 0 Off-peak responsiveness: 0
Scenario 3 Peak responsiveness: 17% Peak responsiveness: 13% Peak responsiveness: 5% Peak responsiveness: 4%

Off-peak responsiveness: 12% Off-peak responsiveness: 10% Off-peak responsiveness: 1% Off-peak responsiveness: 0
Scenario 4 Peak responsiveness: 22% Peak responsiveness: 17% Peak responsiveness: 5% Peak responsiveness: 4%

Off-peak responsiveness: 12% Off-peak responsiveness: 13% Off-peak responsiveness: 5% Off-peak responsiveness: 0
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Step 8: Repeat Steps 6 and 7 for a total of 2000 times for the
same household.
Step 9: Store the results form Step 8.
Step 10: Go to Step 3.

4. Results

We then analyze residential response behaviors at different
levels of price change ratios at the peak times and the off-peak
times, assuming that the price change ratios at the peak
time and the off-peak time are equal, which means a ¼ b in
equation (4). In this paper, we use four scenarios to simulate
residential responsiveness under different electricity price
change ratios.

If the residents maintain their existing power consumption
behaviors under different TOU rates, their monthly electricity bills
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Fig. 2. The simulation results of residen
will be changed according to equation (6), and the results are
shown in Table 5. When the price change ratio is 20%dthat is,
a ¼ b ¼ 20%dthe residential monthly average electricity cost
increases by 9.78%, close to 10%, and some of the residents will
make power usage adjustments.
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of the typical residents, the minimum, the maximum, and the most
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Table 8
Simulation of residential electricity consumption responsiveness in Yinchuan.

Electricity price
change ratio

Peak responsiveness Normal
responsiveness

Off-peak
responsiveness

Scenario 2 (20%) 8.41% 0 2.69%
Scenario 4 (40%) 21.26% 0 7.10%
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maximum responsiveness of each category of residents is calcu-
lated, as shown in Table 6.

As can be seen, there is a noticeable difference when a user
identifies the stimulus based on the consumer’s preference. When
the monthly electricity cost increase is below a certain threshold,
residents will not take actions or the responsiveness will be very
small. However, when themonthly electricity cost increase is above
this threshold, residents will take response actions, and their
responsiveness has a relationship with the degree of increase. The
most likely value of residential electricity consumption respon-
siveness will increase with the increase in price difference between
the peak time and the off-peak time. Of the four scenarios of
electricity price change ratios, residents do not take response
actions for price changes occurring at normal power consumption
time. Based on the survey results, the most likely responsiveness
can be calculated, as shown in Table 7.

The Monte Carlo simulation was conducted on the basis of the
above analysis, and the changes in the total electricity consumption
levels and the residents’ responsiveness to each period at different
levels of price change ratios can be obtained from the simulation.
Scenario 2 (where the price change ratio is 20%) and Scenario 4
(where the price change ratio is 40%) are taken as examples for the
analysis of residential responses at peak and off-peak times, and
the results are shown in Fig. 2 and Table 8.

Based on the research of Faruqui and Segici [25], TOU rates
induce a drop in peak demand that ranges between 3% and 6%.
Comparing the responsiveness results from the Monte Carlo simu-
lation in this paper, it is clear that the percentage drop in this paper
is higher. This is because Yinchuan is located in the western area of
Chinawhere the economic development is poor comparedwith the
other more developed regions in China. Increasing the electricity
bill will stimulate residents to change their power consumption
behaviors more easily. Therefore, their response is a little higher.

According to the Monte Carlo simulation, the peak responsive-
ness is significantly higher than the off-peak responsiveness at
a certain level of price change ratio. Table 8 shows that the peak
responsiveness is about three times the value of off-peak respon-
siveness. The main reason is that at peak time, the high electricity
price prompts residents to consider their household electricity cost.
They will accordingly reduce the use of electric appliances and shift
the use of some household appliances to normal and off-peak
times. However, the off-peak time is always at night with low
power consumption and low adjustment capability. It is observed
that the higher the ratio of electricity price change, the higher the
responsiveness of residents. Table 8 also shows that when the price
change ratio is 40%, residential peak or off-peak responsiveness is
about 2.5 times the value of the responsiveness when the price
change ratio is 20%. This result shows that the price incentive on
residential power consumption behaviors increases with the rise in
electricity price change ratio.

5. Conclusion

Based on the questionnaires and extensive interviews with the
residents in Yinchuan, combined with the use of the Monte Carlo
simulation method, we simulated the electricity consumption
responsiveness of the residents in Yinchuan, China. We believe the
results are of great significance to the implementation of DR
programs and the design of electricity-related interactive mecha-
nisms in the context of the smart grid.

The degree of residential demand responsiveness is attributed
to the level of household energy usage and the change ratio of TOU
rates. Residents will begin to adjust their consumption behaviors
when their monthly electricity costs rise by 10%. In other words, in
a business-as-usual case, residents mainly take energy-saving
measures or shift some power usage of electric appliances to the
off-peak time. Under the TOU price policy, residential demand
responsiveness at the peak time is higher than it is at the off-peak
time for a specific price adjustment range. The degree of the
effectiveness of DR is bounded by the adjustment in the range of
prices in each period accordingly. The larger the peak-time price
adjustment, the higher the responsiveness of residents. When the
electricity price change ratio of TOU rates is 20%, the peak resi-
dential responsiveness is 8.41%, and the low responsiveness is
2.69%. If the equivalent proportion of price increases is 40%, the
responsiveness values are about 2.5 times larger.

Residential power consumption is influenced by both internal
and external factors. The price level is an important factor in the
response. At the same time, household incomes, residential square
footage, and other factors will be important as well. Therefore, the
division of the price levels by peak/low periods should be consid-
ered alongside local environmental conditions, weather conditions,
local economic development and household characteristics.

Residents are themost important players in the DR programs for
a smart grid. Although individual power consumption rates are
small, the overall power consumption is tremendous. During the
construction of a smart grid, the actual situation and the fact that
the economic development gap between eastern and western
regions in China will remain must be taken into account. Reason-
able price policies should be developed for the stability of operation
of the power system, depending on the load characteristics of
different regions.

In the context of the smart grid, electricity DR programs are
being implemented in various countries. For other types of energy,
several DR programs are gradually being introduced, such as TOU
rates and seasonal tariffs of natural gas in order to avoid the peak
times of the usage of natural gas. Moreover, the Monte Carlo
simulation method can be applied to a variety of DR programs to
simulate the users’ behavior in order to make references to the
formulation of energy price policy.
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