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We address the problem of how to determine control parameters for the inventory of spare parts of an energy
company. The prevailing policy is based on an (s, S) system subject to a fill rate constraint. The parameters are
decided based mainly on the expert judgment of the planners at different plants. The company is pursuing to
conform all planners to the same approach, and to be more cost efficient. Our work focuses on supporting these
goals. We test seven demand models using real-world data for about 21 000 items. We find that significant differ-
ences in cost and service level may appear from using one or another model. We propose a decision rule to select an
appropriate model. Our approach allows us to recommend control parameters for 97.9% of the items. We also
explore the impact of pooling inventory for different demand sources and the inaccuracy arising from duplicate
item codes.
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1. Introduction

This research has been motivated in the context of Statoil ASA,
one of the world’s largest net sellers of crude oil and the second
largest exporter of natural gas to Europe. This company holds
inventory of about 200 000 spare part items in a number of
locations spread in the Scandinavian region. Some of these
parts are highly critical to assure safety and production at
offshore platforms. At the same time, the storage of spare parts
entails an important binding cost for the company. The prevail-
ing inventory control policy is based on the min-max or (s, S)
system. Despite several approaches have been proposed for this
inventory policy early in the literature (eg, Veinott and Wagner,
1965; Ehrhardt, 1979; Federgruen and Zipkin, 1984), in
practice the values of the control parameters are usually set in
a rather arbitrary fashion (Silver et al, 1998, p 239). Recent
work by Bacchetti and Saccani (2012) reveals the existence of
a considerable gap between research and practice in spare
parts management, pointing out that managers usually prefer to
rely on their judgment or on simple models. The company in
our case does not differ much from this, but it is in process
of automating inventory management practices, in order to be
more uniform across locations, to speed up the evaluations
and to become more efficient. Our article describes the
inventory management of spare parts at the company and

focuses on how to select demand models and how to determine
the inventory control parameters.
An overview of related literature on spare parts inventories

can be found in Kennedy et al (2002). Applications in several
contexts include air force organizations and commercial airlines
(Eaves and Kingsman, 2004; Sherbrooke, 2004; Muckstadt,
2005), the service support of IBM in the US (Cohen et al,
1990), a chemical plant in Belgium (Vereecke and Verstraeten,
1994), a white goods manufacturer in Italy (Kalchschmidt et al,
2003) and a distributor of castors and wheels in Greece (Nenes
et al, 2010). In the oil industry, we have found only one recent
article, by Porras and Dekker (2008). Characterized by high
service levels, customized equipment specifications with long
lead times, and facility networks spread onshore and offshore,
we believe the problem of inventory management of spare parts
in this industry deserves attention from the research community
and our article contributes by addressing a practical problem in
this industry. Although a number of distributions have been
discussed in the literature for modelling demand for spare parts,
empirical evidence is lacking (Syntetos et al, 2012). We provide
insights of how demand distributions behave in a real-world
data set of about 21 000 items and propose a decision rule to
select an appropriate distribution for each item. In order to carry
out this selection, we test seven demand distributions using
the chi-square goodness-of-fit test. We find that significant
differences in cost and service level may appear from using
one or another distribution. We also use the decision rule to
analyse the impact of two main sources of savings: pooling
and correcting inventory inaccuracy arising from having regis-
tered a same item with two different codes (a duplicate).
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The remainder of this article is organized as follows. In
Section 2 we provide background of the company under study
and its current practice on inventory of spare parts. In Section 3
we outline our problem settings. In Section 4 we present the
different demand models used in this study. In Section 5 we
propose the decision rule. In Section 6 we summarize
our main numerical results. An evaluation of the impact of
pooling and duplicates is presented in Section 7. Our conclud-
ing remarks are provided in Section 8.

2. Background

Statoil ASA is an international energy company headquartered
in Norway, with presence in 42 countries. Its activities include
extraction of petroleum, refinement, and production of gas
and methanol. Several types of equipment are used in these
activities. Inventory of spare parts is held to replace equipment,
in order to assure proper operating conditions.
The company has operational responsibility for seven ware-

houses located along the Norwegian coast, which serve offshore
installations. Within this structure of warehouses, there are
24 inventory plants (or license inventories). Statoil ASA is
the majority owner of these, but there is also a set of other
companies owning a share of them. Each offshore platform is
assigned to one of the 24 plants. The inventory of spare parts
for each platform is managed separately, even in the case
where two different platforms are assigned to a same plant or
to two different plants placed in the same warehouse. In the
inventory system of the company, there are also other ware-
houses involved, serving on-shore installations.
The acquisition of spare parts is driven by consumption

requirements triggered at the installations. The frequency of the
requirement for a given spare part and the number needed
are, in general, uncertain. For example, a spare part may not be
required in 5 years but it may sometimes be needed a couple
of times in few days.
The type of items can be anything from high value items

required for production (eg, valves and compressors) to con-
sumable products (smaller tools, such as gaskets, bolts and
nuts). Some of these items are highly critical to assure safety
and production. Some of them are also highly customized, with
requirements specified on frame agreements with suppliers;
thus, their construction could involve relatively long lead times.
All information of the spare parts is managed by the

enterprise resource planning system SAP. In total, there are
about 950 000 codes of items in the system, including ware-
houses serving onshore and offshore operations. Currently, the
items in stock correspond to about 245 000 of those codes.
A code in the system intends to serve as unique identifier of
each type of items, but in practice a same type of item can
actually appear in the database with more than one code.
This may be, for example, because units of this type were
obtained from different suppliers. A rough estimation indicates
that between 10 and 30% of the item codes correspond to

duplicates, and the number of distinct items actually in stock is
around 200 000.
As a spare part is required at a platform and the correspond-

ing inventory plant provides it, replenishment occurs based on
an inventory system with either min or min and max allowable
levels. Setting s equal to the min level minus 1 and S to the max
level, this system can be described by a continuous review (s, S)
policy, that is, every time the inventory drops to the reorder
point s or lower, a new order is placed so as to reach the order-
up-to level S. When only the min level is used, an order is
placed every time there is a demand event in order to achieve
a base-stock level, which is a particular case of the (s, S) known
as (S− 1, S) policy.
The inventory control parameters s and S are determined

separately for each platform. When a spare part is required at
a given platform, it is provided from the corresponding
plant. However, when the part is required in such number that
it is not available from the stock assigned to this platform,
the requirement can be fulfilled from stock assigned to another
platform. This type of fulfilment occurs based on an informal
agreement between the planners at the license inventories,
but this is not considered when they decide the control
parameters. If no plant has stock, the number of the spare part
needed is ordered directly from the supplier (even when the
parts are taken from stock assigned to another platform, an
order is placed with the supplier so as to raise the corresponding
inventory position to the order-up-to level).
In practice, the expert judgment of the inventory planners

currently play a key role in the decision making rather than that
of structured quantitative approach. Although the experience
is essential, two members of the staff may provide different
inventory control parameters for the same item. Furthermore,
each inventory planner decides the control parameters sepa-
rately; thus, the company lacks a more integrated approach that
considers the possibilities of pooling the inventory for different
platforms.

3. Problem settings

The primary problem is to find inventory control parameters
of a continuous review (s, S) system, considering different
demand models. For a given item stored for a given platform,
the problem setting is characterized as follows:

● The goal is minimizing expected carrying cost plus ordering
cost, subject to a service-level constraint.

● The service-level constraint we utilize is a lower bound
β such that

1 -
average shortage per replenishment cycle

average demand per replenishment cycle
⩾ β: (1)

The left-hand side above is the expression traditionally utilized
to compute the fill rate, a performance measure defined as the
fraction of demand that is fulfilled directly from the stock
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on-hand. As pointed out by Guijarro et al (2012), while this
expression is an approximation to the fill rate, it is the most
common method to compute it. Based on simulation, their
numerical experiments reveal that this traditional approximation
underestimates the simulated fill rate and, therefore, in our
purpose to set inventory control parameters it would lead to
a more conservative approach. It has been agreed in our pro-
ject that this conservative approach is acceptable. The lower
bound β represents the target fill rate, which depends on the
item and the context in which it is used. The target values have
been predefined by the company, based on the criticality of
the items. Each criticality index is associated with a target
value. For items appearing with different criticality indexes
(because of the different contexts in which they can be used),
the company prefers to consider the highest of the associated
service levels.

● The demands for different spare parts are independent
random variables.

● Unmet demand is backordered.
● The lead time is fixed. The procurement of spare parts

is obtained from external suppliers, with whom the delivery
times are agreed beforehand by frame agreements. The
company also has knowledge on the setup time of the
equipment. These times are reasonably fulfilled, thus sup-
porting the fixed lead time assumption.

● Replenishment is carried out only with new parts acquired
from the supplier; thus, in this paper, we do not study
the possibility of repairing.

Note that the motivation to use the service-level constraint
instead of a penalization cost on backorders comes from our
discussion with managers and planners of Statoil ASA.
Minimizing the average carrying and ordering costs, subject
to such service-level constraint is a popular strategy in practice,
since the shortage costs are usually difficult to assign. On
the other hand, the service-level criterion is generally easier
to state and interpret by practitioners. A number of references
point out this fact, such as Cohen et al (1988, 1989), Bashyam
and Fu (1998), and Chen and Krass (2001).

4. Demand modelling and fill rates

In the literature, there has been large interest on demand
modelling and forecasting motivated for the intermittent and
slow-moving consumption patterns observed in spare parts
inventory (eg, Croston, 1972; Willemain et al, 2004; Syntetos
and Boylan, 2006). Considering one or another demand
behaviour affects the tractability of the fill rate. In order to deal
with this, we distinguish between unit-size demand items (only
demand events for one unit of the same item at a time can
occur), lot-size demand items (events for either one or more
units of the same item can occur) and binary demand items
(each time a demand event occurs the amount demanded is
the same). For unit-size demand, we test Poisson, negative

binomial, gamma and gamma with probability mass at zero
distributions; for lot-size demand, we test normal and gamma
distributions; and for binary demand we test a package Poisson
distribution. We choose these traditional distributions that have
proven to be effective in case studies (Dunsmuir and Snyder,
1989; Kalchschmidt et al, 2003; Boylan et al, 2008; Porras
and Dekker, 2008; Nenes et al, 2010). They are also easy to
communicate to practitioners and to implement in software
packages of common use.
Let A be the fixed cost per order, μ the average demand

per unit of time, σ the standard deviation of demand, v the
unit cost, r the carrying charge and β the target fill rate.
For a given item at a given plant following a given demand

distribution, we determine s and S levels in two main steps.
First, we set the difference S− s as the economic order
quantity (EOQ) Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2AμÞ=ðvrÞp

, rounded to the closest
positive integer. Fixing the order quantity, either by this or
another formula, is commonly accepted as a reasonable approx-
imation to keep the computational tractability of the problem
(eg, Tijms and Groenevelt, 1984; Silver et al, 1998, p 331).
Second, given that value of S− s, we try to obtain the mini-

mum reorder point s such that the fill rate β is satisfied. Then,
we get S= s+Q. At the second step we evaluate the fill rate
consecutively, starting from s= 0. Let us call ~βs the approxi-
mated fill rate achieved for a given reorder point s. If the service
level β is not satisfied, that is, if ~βs < β, we try s= s+1 and so
on, until we find the lowest value of s such that ~βs ⩾ β.
Choosing s and S through this sequence of two steps does

not necessarily drive to optimal values (in terms of expected
costs). For achieving optimality, the problem should run in
both variables simultaneously, but such an exact approach
would highly complicate the problem. In fact, despite several
decades of inventory research on (s, S) systems, finding
optimal control parameters s and S subject to the fill rate
service-level constraint remains as an open problem in the
general case; most of the applications utilize approximation
techniques specialized in particular settings (eg, Cohen
et al, 1988; Schneider and Ringuest, 1990; Bashyam and
Fu, 1998). The sequential computation of s and Q= S − s
as we use is a common approach in inventory control
(eg, Vereecke and Verstraeten, 1994; Silver et al, 1998;
Porras and Dekker, 2008).
In what follows, we will briefly overview how to

calculate the fill rates for the seven demand models used in
this study.

4.1. Unit-size demand

In the unit-size demand case it is relatively easy to compute ~βs.
Note that the denominator equals the order quantity Q=S− s
and the numerator depends on the lead time demand distribution.

4.1.1. Poisson distribution. Let us call X the demand per unit
of time and assume it follows a Poisson distribution of
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parameter μ, that is, P(X= k)= (μke − μ)/k! for all non-negative
integer values of k. Then,

~βs ¼ 1 -
P1

k¼s + 1 k - sð ÞP XL ¼ kð Þ
Q

; (2)

where L is the lead time, and XL and μL= μL are the demand
during the lead time and its mean, respectively. Hence,
P(XL= k)= ((μL)ke− μL)/k!. In the particular case where Q= 1,
instead of approximating the fill rate by Equation (2), we use
the well-known formula of the exact fill rate for (S− 1, S)
systems with Poisson demand (eg, Muckstadt, 2005, p 52)
as follows:

~βs ¼
XS - 1
k¼0

P XL ¼ kð Þ: (3)

4.1.2. Negative binomial distribution. The negative
binomial distribution is defined (see, eg, Graves, 1985) as

PðX ¼ kÞ ¼ r + k - 1
k

� �
prð1 - pÞk for all non-negative inte-

ger values of k, where r and p are parameters (0< p< 1).
Empirical and theoretical support for this distribution in the
context of spare parts has been provided in several articles,
such as Syntetos and Boylan (2006), Boylan et al (2008) and
Syntetos et al (2012). When lead time demand follows a
negative binomial distribution, the parameters satisfy p= μ/σ2

and r=Lμ2/(σ2− μ), while for the fill rates we can use expres-
sions (2)–(3) in analogous way as we did for the Poisson
distribution.

4.1.3. Gamma distribution. The density function of a gamma
random variable with scale parameter α> 0 and shape para-
meter k> 0 is defined as g(x)= αkxk− 1e − αx/Γ(k), 0⩽ x<∞,
where Γ(k)= ∫

0

∞vk − 1e− vdv. Its use on inventory control dates
back to early years (Burgin, 1975; Snyder, 1984). If the lead
time demand follows the gamma distribution, the approxi-
mated fill rate can be expressed as

~βs ¼1 -

R1
s x - sð Þg xð Þdx

Q

¼1 -
k
α 1 -G1;k + 1ðαsÞ
� �

- s 1 -Gα;k sð Þ� �
Q

; ð4Þ

where Gα,k(x)= ∫
0

x
g(u)du, x> 0. The parameters of the gamma

distribution in the lead time are estimated as α= μ/σ2 and
k= Lμ2/σ2.

4.1.4. Gamma distribution with mass probability at zero. As
suggested by Dunsmuir and Snyder (1989), the approximated
fill rate in this case can be expressed as

~βs ¼ 1 -

R1
s x - sð Þg + xð Þdx� �

p

Q
; (5)

where p is a weight representing the probability of having

positive demand in a unit of time, estimated from the data as
the quotient between the number of months where demand
was positive and the total number of months; and g+ is the
density function of a gamma random variable, for which we
estimate scale parameter α+ = μ + /σ+

2 and shape parameter
k= Lμ +

2 /σ+
2 , considering only the data for months with posi-

tive demand to calculate the mean μ + and the variance σ+
2 .

Then, the term in brackets at the numerator of Equation (5) can
be computed in the same way as we did in Equation (4).

4.2. Lot-size demand

As far as we know, in the general case of lot-size demand there
are no exact methods to compute the left-hand side of constraint
(1). In contrast to the unit-size case, the undershoot distribution
makes the lot-size case more complex. We use the following
approximation for the fill rate, taken from Tijms and Groenevelt
(1984):

~βs � 1 -
MðsÞ

2μ S - s + σ2 + μ2
2μ

� � ; (6)

where the function M(s) depends on the demand distribution.
They derive this approximation by expressing the undershoot as
the excess variable of a renewal process (Ross, 1996, p 120).
The approximation is made under the assumption that the
difference S− s is sufficiently large compared with the average
demand per unit of time (say, S− s⩾ 1.5μ). The experiments by
Moors and Strijbosch (2002) confirm that this approximation
behaves satisfactorily if the condition S− s⩾ 1.5μ holds.

4.2.1. Normal distribution. For this distribution, Tijms and
Groenevelt (1984) show that M(s)= ση

2J((s − μη)/ση)− σξ
2J

((s − μξ)/σξ), where μη and ση are the mean and standard
deviation of demand in the lead time plus a unit of time; μξ and
σξ are the mean and standard deviation of demand in the lead
time; and J(x)= ∫

x

∞(u− x)2φ(u)du= (1 + x2)[1 −Φ(x)]− xφ(x)
is an expression in terms of the standard normal density
φðxÞ ¼ e - x

2=2ffiffiffiffi
2π

p and its cumulative function Φ(x)= ∫
−∞

x φ(u)du.

4.2.2. Gamma distribution. For this distribution, Tijms and
Groenevelt (1984) show that

MðsÞ ¼ σ2η aη + 1
	 


1 -Faη + 2 bηs
	 
� �

- 2suη 1 -Faη + 1 bηs
	 
� �

+ s2 1 -Faη bηs
	 
� �

- σ2ξ aξ + 1ð Þ 1 -Faξ + 2 bξsð Þ� �

+ 2sμξ 1 -Faξ + 1 bξsð Þ� �
- s2 1 -Faξ bξsð Þ� �

;

where aη= μη
2/ση

2 and bη= μη/ση
2 (analogously for aξ and bξ)

and Fk(x) is the distribution function of a gamma with scale
parameter 1 and shape parameter k= μ2/σ2, that is, Fk(x)=
[1/Γ(k)]∫

0

xe − uuk − 1du, x> 0.
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4.3. Binary (or clumped) demand

Some items in our database correspond to items that have
historically presented binary or clumped demand, defined by
Boylan et al (2008) as intermittent items for which demand,
when it occurs, is constant. In order to deal with the clumped
items, we use a package Poisson distribution (Vereecke and
Verstraeten, 1994; Nenes et al, 2010), in which the demand
events per unit of time are modelled by a Poisson distribution
and the size of each demand event corresponds to a fixed value.
Let us call μ this fixed demand value when a demand event
occurs and define the modified order quantity Q ¼ μd Q

μ e. This
modified order quantity Q is the actual order quantity under
demand events of constant size μ. Let us call h the undershoot,
which is computed as h ¼ Q -Q. Also, let us define a modified
reorder point s ¼ maxð0; s - hÞ, which is the actual stock
on-hand when a replenishment order is placed.
Let us assume the lead time L is a positive integer; when the

actual lead time is fractional, we round it up to the closest
greater integer.
Let us assume there are k periods with demand during the

lead time; thus kμ units are demanded. There is shortage if
kμ⩾ s + 1. Let us define k ¼ d s + 1

μ e. If k⩽L, when there are
k demand events such that k⩽ k⩽ L, the shortage is equal

to kμ - s. Therefore, the expected shortage during the lead time
is
PL

k¼kðkμ - sÞPðXL ¼ kÞ, where XL is the number of demand
events during the lead time, modelled by a Poisson distribution.
Assuming that the number of demand events per unit of time
follows a Poisson distribution with parameter p, we get

~βs ¼ 1 -
PL

k¼k kμ - sð Þ pLð Þke - pL
k !

Q
: (7)

5. Selecting a demand model

Seven alternatives to model demand can provide seven highly
different outcomes. Table 1 presents data on nine items over
a period of 67 months. ND> 0 denotes the number of months
with demand greater than zero and ND> 1 the number of months
with demand greater than one. The resulting values of s and S
in each case are reported in Table 2.
From this example, we emphasize that important differences

can arise for some items depending on the demand model used.
For instance, the Poisson model leads to a reorder point s= 1 for
item M9, which is the one with highest volatility, while the
other models lead to much higher reorder points, in
a range from 8 to 65. Among the two lot-size demand models,
the normal distribution leads to lower reorder points than the
gamma distribution for all items, which is expected since
the normal allows negative values. In other cases, different
demand models lead to equal or similar results. For instance, the
four unit-size models produce the same results for items M1,
M4 and M5, while the Poisson, unit-size gamma and package
Poisson distributions produce the same results for items M2
and M4.
A natural question is then how to select only one demand

model for each item. The suggestions in the literature are rather
fuzzy. Silver et al (1998) refer to a number of distributions and
as a rule of thumb they recommend: the Poisson distribution
for slow-moving items; the normal distribution for items such

Table 2 Results of the illustrative data example

Unit-size Lot-size Binary

Item Poisson NBinomial Gamma Gamma0 Normal Gamma Package

s S s S s S s S s S s S s S

M1 0 4 0 4 0 4 0 4 1 5 2 6 — —

M2 0 1 — — 0 1 — — 1 2 2 3 0 1
M3 0 1 0 1 0 1 0 1 1 2 3 4 — —

M4 2 3 — — 2 3 — — 2 3 3 4 2 3
M5 0 1 0 1 0 1 0 1 1 2 4 5 — —

M6 5 6 5 6 8 9 14 15 6 7 9 10 — —

M7 1 2 1 2 2 3 — — 2 3 3 4 2 3
M8 0 1 0 1 0 1 1 2 1 2 4 5 — —

M9 1 9 5 13 10 18 8 16 14 22 65 73 — —

‘—’ indicates that the distribution could not be applied because the data is not consistent with the definition of such distribution.

Table 1 Illustrative data

Item μ σ μ+ σ+ ND> 0 ND> 1 L β

M1 0.16 0.48 1.22 0.63 9 1 0.33 0.95
M2 0.03 0.17 1.00 0.00 2 0 0.50 0.95
M3 0.04 0.27 1.50 0.50 2 1 0.33 0.95
M4 0.03 0.17 1.00 0.00 2 0 10.20 0.97
M5 0.15 0.55 1.43 1.05 7 1 0.17 0.95
M6 0.28 0.73 1.73 0.86 11 6 6.47 0.97
M7 0.04 0.21 1.00 0.00 3 0 6.67 0.97
M8 0.04 0.27 1.50 0.50 2 1 1.17 0.95
M9 1.73 7.57 29.00 13.00 4 4 0.47 0.95
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that the coefficient of variation σ/μ is less than 0.5; if this
coefficient is greater than 0.5 it might be desirable to use
another distribution such as the gamma. In a recent case study,
Nenes et al (2010) suggest the use of the chi-square goodness-
of-fit test to ensure that the Poisson or gamma with mass at zero
distributions give acceptable representations of the demand
behaviour for some items. Given the large amount of items in
our case and the variety of demand behaviours that they present,
we proceed through some classification criteria before selecting
a distribution. First, we check whether the EOQ is either equal
to or greater than one. Second, we classify the item according to
its historical demand behaviour. If there was at most one period
per year with demand greater than one (ie, if ND> 1⩽ 1), then
we classify the demand as unit-size behaviour; if there were two
or more periods per year with demand greater than one (ie,
ifND> 1⩾ 2), then we classify the demand as lot-size behaviour;
if there was no variation in the size of demand events (σ+ = 0),
then we classify the demand as clumped behaviour. Third, we
consider the ratio r= |σ2−μ|/μ, which gives a measure of the
relative difference of the variance σ2 with respect to the mean μ.
Fourth, we consider the empirical support for each distribution,
by performing a chi-square goodness-of-fit test over the
historical data. Then, we propose the following decision rule.

1. If EOQ> 1, then:

(1.1) If the demand has historically behaved as clumped,
choose the package Poisson model if it was not
rejected in the test.

(1.2) If the demand has historically behaved as unit-size,
then: (1.2.1) choose the Poisson model if r⩽ 0.1 and if
it was not rejected in the test and obtained higher
p-value than the other three unit-size distributions;
otherwise (1.2.2) choose the negative binomial dis-
tribution if it was not rejected in the test and obtained
higher p-value than the other three unit-size distribu-
tions; otherwise (1.2.3) choose from the gamma
distribution and the gamma with mass at zero the
distribution such that it was not rejected in the test and
it obtained the highest p-value among them.

(1.3) If the demand has historically behaved as lot-size and
S− s⩾ 1.5μ, then choose one of the two lot-size
demand models such that it was not rejected in the test
and it obtained the highest p-value among them.

(1.4) If neither of the previous steps leads to the selection of
a demand model, then leave the item for further
managerial revision.

2. If EOQ= 1, then:

(2.1) Choose between the Poisson and negative binomial
distributions the one that was not rejected in the test
and achieved the highest p-value between the two of
them; otherwise:

(2.2) if r⩽ 10, then follow the rules 1.2.3, 1.3 and 1.4;
(2.3) if r> 10, then leave the item for further managerial

revision.

Step 1 addresses the items with EOQ> 1. Steps 1.1, 1.2 and 1.3
discern on the demand behaviour of these items, according to
unit-size, lot-size and clumped definitions. Steps 1.2.1, 1.2.2
and 1.2.3 discern on the fitness of the four unit-size distribution
to the data. In the chi-square goodness-of-fit test, the null
hypothesis is that the data follows a given distribution. Since it
is possible that this hypothesis is not rejected for more than one
distribution, we use the p-value as a measure of how much
agreement there is between the data and the null hypothesis
(see, eg, Wonnacott and Wonnacott, 1985, p 263). Step 1.3
incorporates these fitness criteria for items with lot-size beha-
viour. The condition S− s⩾ 1.5μ is incorporated for ensuring
the approximated fill rate for lot-size demand (expression (6)) is
well behaved. Step 1.4 is stated for those items which did not
fulfil any of the previous conditions.
Step 2 addresses the items with EOQ= 1. These usually

correspond to the most important items, in terms of cost and
criticality, and present unit-size behaviour. Therefore, we
attempt to treat them with more accurate calculation. This is
pursued in step 2.1, where only the discrete distributions and
the exact fill rate expression (3) are allowed. In step 2.2 we
allow these items to be modelled by continuous distributions
and their corresponding fill rate approximations, as far as r⩽ 10.
This inequality is incorporated for avoiding these continuous
distributions being selected for items with extremely high
variance in comparison with the mean. In these cases, which
rarely occurred, we rather leave the item for managerial revision
as stated in step 2.3.

6. Numerical results

We present a summary of the results obtained, using a data-
base with historical demand on 21 448 items over a period of
78 months. Our computational implementation is coded in
Matlab R2011b on an Intel Core2 Duo 2.27GHz processor
with 8GB of RAM, supported by a spreadsheet in Excel. The
implementation runs reasonably fast, providing results in
few minutes for the whole set of 21 448 items. The results
of applying the chi-square goodness-of-fit test are summarized
in Table 3. A first observation is that the normal distribution
is rejected for the majority of the items, except for a 0.4% of
them. There is previous literature pointing out the limitations
of the normal distribution to model demand of spare parts

Table 3 Outcome of the chi-square goodness-of-fit test over a set
of 21 448 items

Distribution Non-rejected Percentage

Poisson 16 059 74.9
Negative binomial 16 070 74.9
Gamma 20 669 96.4
Gamma mass zero 3806 17.7
Normal 82 0.4
Package Poisson 2686 12.5
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(eg, Dunsmuir and Snyder, 1989; Vereecke and Verstraeten,
1994; Dolgui and Pashkevich, 2008; Syntetos et al, 2009) and
our work with real-world data provides additional evidence of
that. In contrast to the normal, the Poisson distribution, the
negative binomial distribution and the gamma distribution are
not rejected for the majority of the items, accounting for 74.9,
74.9 and 96.4%, respectively. For only 0.1%, equivalent to
24 items, all the distributions were rejected.
We then apply our selection criteria for demand models.

Table 4 presents a summary of the frequency in which each
distribution is selected. The negative binomial distribution
is the one selected for most of the items, with a frequency of
41.5%. It is followed by the Poisson and gamma distribu-
tions, selected with a frequency of 20.7 and 18.2%, respec-
tively. We select the lot-size demand behaviour with gamma
distribution for 11.9% of the items and the package Poisson
for 5.5%. A significantly lower number of items are selected
for normal distributions, equivalent to only 0.2%, while
the gamma with mass at zero is selected for none of the
items. Note that we have been able to recommend control
parameters for 21 001 items, while for only 447 items,
which corresponds to 2.1%, our approach does not
result in any recommendation and rather leaves the items
for further managerial evaluation. Most of these 447 items
presented a lot-size demand behaviour and both the normal
and gamma distributions were rejected by the test or, if at
least one of these two distributions was not rejected, the
coefficient (S − s)/μ was less than 1.5, thus not sufficiently
large to apply the approximated fill rate of the lot-size
demand case.

After the demand models have been selected for each item,
we determine the inventory control parameters. We compare
the performance of our recommendations in terms of costs and
service level with another four alternatives, as shown in Table 5.
Alternative A1 corresponds to setting the inventory control
parameters assuming for all items that the demand follows a
Poisson distribution, while alternatives A2 and A3 assume for
all the items gamma and normal distributions, respectively.
Alternative A4 corresponds to a mixed selection strategy, where
slow-moving items are modelled by a Poisson distribution,
while fast-moving items with low coefficient of variation
(namely, σ/μ⩽ 0.5) are modelled by a normal distribution and
fast-moving items with high coefficient of variation (σ/μ> 0.5)
are modelled by a gamma distribution. We define the slow-
moving items as those having an average demand per year
lower than three units, while fast-moving items as those having
an average demand per year equal or greater than three units.
Based on their criticality, the items are divided in four main
categories that we will call C1, C2, C3 and C4, where a higher
index category means higher criticality.
In order to quantify the impact on inventory costs, we use

some standard definitions from the inventory literature (see, eg,
Silver et al, 1998). We calculate the safety stock κ as the reorder
point s minus the expected demand during the lead time.
We also calculate the expected number of orders per year NA

as μ/[S− s+E(U)], where E(U) is the expected undershoot
which can be approximated by (σ2 +μ2)/2μ, and for the average
inventory on-hand I, we use the rather simple approximation
κ+ (S− s)/2 (see, eg, Strijbosch et al, 2000).
Then, we calculate the total expected cost as CT=Cr+CA,

where Cr is the expected carrying cost and CA is the expected
ordering cost, calculated respectively as Cr ¼ Ivr and CA=
ANA. Owing to confidentiality reasons, we have normalized the
total cost results by setting at 100 the cost of our recommenda-
tion and expressing the cost achieved by the other alternatives
in relative terms to ours. The service levels, on its hand, are
calculated assuming that the actual demand follows the dis-
tribution as selected by our rule. Similarly, the number of
violations by each alternative corresponds to the number of
items such that the service-level constraint is violated if the
inventory control parameters would be set by such alternative
and the actual demand follows the distribution as selected by
our rule. The outcomes reveal that assuming a Poisson

Table 4 Number of items for which each demand model is selected

Distribution Recommendations Percentage

Poisson 4429 20.7
Negative binomial 8906 41.5
Gamma 3899 18.2
Gamma mass zero 0 0
Gamma lot-size 2541 11.9
Normal 43 0.2
Package Poisson 1183 5.5

Total 21 001 97.9

Table 5 Performance of our recommendation and other four alternatives in terms of costs and four service-level categories

Total cost Average service level Nr. of violations

C1 C2 C3 C4 C1 C2 C3 C4

Recommendation 100 96.1 97.1 97.8 98.5 0 0 0 0
A1: All Poisson 93.2 93.8 95.6 96.4 96.5 1443 114 247 895
A2: All gamma 122.8 94.1 96.5 97.2 97.6 1414 96 205 643
A3: All normal 108.5 96.5 98.3 98.7 98.7 1276 95 207 717
A4: Mixed 118.5 94.1 96.5 97.2 97.6 1415 96 205 676
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distribution for all the items implies 6.8% lower costs, but at the
risk of 2699 items with unsatisfied service levels. In particular,
for the items in category C4 (those with highest criticality
indexes) violations to the service-level bounds are incurred for
895 items, achieving an average of 96.5% of service level,
while our recommendation achieves a 98.5% for this category
of items. On the other hand, assuming that all items follow
gamma or normal distributions lead to total cost 22.8 and 8.5%
higher than our recommendation. The amount of items whose
service-level bound is violated by using alternative A2 corre-
sponds to 2358, of which 643 belong to category C4, while for
alternative A3 the number of violations is 2295, of which 717
belong to category C4. The mixed alternative A4 drives to 2392
items with violations and 18.5% higher total cost. Our recom-
mendation also outperforms alternative A4 in terms of average
service level, achieving greater percentages in all categories; in
particular, for category C4 our recommendation achieves
98.5% of average service level, while alternative A4 achieves
97.6%.
These comparisons highlight the relevance of setting inven-

tory control parameters by using one or another demand model.
Especially when a large number of items are involved, some of
them very expensive and critical to assure safety and produc-
tion, small percentage of savings or gain in service levels can
become significant.

7. Duplicates and pooling

Determining the control parameters by our quantitative
approach instead of the expert judgment does not only allow
us to evaluate the trade-off between service levels and inventory
costs, but also to analyse the impact of certain projects as we
will study in this section.

7.1. Duplicates

A duplicate means that the same item has been registered in the
database with different codes. In the event of there being few
items to manage, it would be relatively easy to identify which
items correspond to duplicates and the inventory staff could
quickly realize any discrepancies between the information in
the system and the actual stock. However, when the number of
items is in the order of a hundred thousand and several people
access the system in different locations, the duplicates could
create a more difficult puzzle to deal with. Evidence from the
retail sector (DeHoratius et al, 2008) has pointed out that
inventory record inaccuracy is a significant problem in practice,
and the elimination of inventory inaccuracy can reduce supply
chain costs as well as the out-of-stock level (Fleisch and
Tellkamp, 2005). In these references, the inaccuracies refer to
discrepancy between the recorded inventory quantity and the
actual inventory quantity physically available on the shelf.
In our case, the discrepancies arise from the duplicated
codes, which have been estimated to be roughly between

10 and 30% of the item codes in the system. This may lead to
inventory levels higher than desirable when, for example, one
item with a given code in the system reaches its reorder point,
triggering a replenishment order while the same item with
different code is still available. On the other hand, when a
stockout of an item occurs, the realized service level could have
been better if the item was actually available but with a different
code and it was not realized by the staff.
We implement a procedure in order to analyse the cost

impact of the spare parts duplicated in the system. Assessing
this impact is relevant in practice, since the company is
pursuing to implement a system to identify and fix the
duplicates. Let us assume there is 10% of duplicates. Then, our
procedure is based on aggregating one out of each 10 items in
the system. First, we sort the database by prices, from the most
expensive item to the cheapest one. Then, we merge the 10th
item with the 9th item, the 19th with the 20th and so on, as if
they would correspond to the same item. The merging of two
items consists of aggregating their historical demand (obtaining
the resulting average, standard deviation, etc) and calculating
for the merged item a new lead time, unit cost and order cost as
the average of the corresponding values from the two separate
items. As for the criticality index, if the two items appeared with
different values, we use the highest one. We implemented this
procedure for 1639 items stored for one of the main platforms.
In total, 318 of these 1639 items were merged into 159 items.
Then, we use our approach to compute the inventory control
parameters and compare the results obtained with the case
where the items were not merged. We found that in the merged
case the safety stock decreased by 3% and the average number
of orders decreased by 15% (while the inventory on-hand
increased 7%, but mainly for low value items). These figures
translate into savings of 10% of the expected cost per year.
We performed a similar analysis varying the percentage of

merged items from 0 to 30%, increasing it by 5% in each run.
This analysis is motivated by the lack of knowledge of exactly
how many items are duplicated in the system. If we assume that
a certain percentage of items are duplicated and that they
are corrected by merging them, we can compute the savings
compared with the total expected cost when all the original
items in the database are considered per separate. As shown in
Figure 1, the merger of up to 30% of the items led to savings of
about 14% in total expected cost.
If there are between 10 and 30% of duplicates in the system,

our computations indicate on average there would be 12% of
savings if they would be corrected.
Other than the relative order in the sorted-by-price list, one

could add more conditions when merging items, such as their
similarity in other attributes. We have performed additional
runs, merging two consecutive items in the sorted-by-price list
only if their unit prices differ by no more than 0.1% and their
lead times differ by no more than 0.1%. Under these criteria,
386 items (equivalent to 23%) are merged into 193 items,
resulting in savings of 8.2% in comparison with the total
expected costs when they are not merged. If instead we would
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consider the cost of the case with merged items as basis, the
impact of duplicates corresponds to an increase of 9.0% in total
expected costs.

7.2. Pooling

Pooling is a traditional mechanism of collaboration among
inventory managers, although not necessarily taken into
account when deciding the inventory control policies. Kukreja
and Schmidt (2005) and Kranenburg and van Houtum (2009)
report problems where different warehouses do not consider
collaboration when deciding their policies but in practice they
supply each other, which is the same practice at the company in
our case. Our situation is similar to the one of Kukreja and
Schmidt (2005), namely a single-echelon problem with a multi-
location, continuous-review inventory system in which com-
plete pooling is permitted and each location utilizes an (s, S)
policy. However, in our case, some of the different inventory
locations can actually be placed in the same warehouse, but
just keeping stock for different platforms as we described in
the introduction. Particularly these separate stocks at a same
warehouse present an important opportunity for pooling. In
order to analyse the potential savings of pooling, we carry
out computations for 10 platforms, which are served by six
inventory plants located in the same warehouse. We focus on
952 items that presented consumption in at least two of these
10 platforms.
We first determine inventory control parameters s and S for

each platform separately. Then, we also solve the case where
the warehouse would be managed centrally as one inventory
pool serving the demand from the 10 platforms, instead of
separating the stocks for different platforms. The data we use
for the pool case is the aggregated demand data from the 10
platforms. For a given item, we use the same service-level
bound in the separated planning and the integrated planning.
If the item presents different service-level bounds for differ-
ent platforms, in the pool planning we round-up the levels,
that is, we use the greatest of these service-level bounds for
this item.
From the results so obtained, we summarize important

measures in Table 6. The pooling approach results in 9% less

safety stock, 26% fewer expected number of orders and 25%
less average inventory on-hand. These reductions mean total
annual savings of about 21% when comparing the pool to the
separated planning case. Since we have rounded-up the service-
level bounds and have limited the analysis to only 952 items
in only one of the seven warehouses, the potential savings
by pooling for the whole problem appear to be promising.

8. Concluding remarks

We have studied a problem of spare parts inventory in Statoil
ASA, a large energy company. Our attention focused on how
to set control parameters for the (s, S) continuous review
system, subject to the fill rate service-level constraint. Selecting
an appropriate demand model plays a relevant role when
solving this problem. We have studied the fitness of seven
demand models to the data of about 21 000 items. Based on
this fitness, we have proposed a decision rule to select
a demand model for each item. The demand models selected
have proved to be useful for modelling a vast amount of items,
while at the same time keeping the computations reasonably
simple and quick. Our approach allowed us to recommend
control parameters for 97.9% of all tested items.
Although our article has been inspired in the case of Statoil

ASA, our contribution connects with the more general research
agenda on inventory, which we would like to summarize in
four main points. First, we have used seven demand models
and defined rules to select one of them for each item based
on the support provided from the data, rather than setting
a demand model beforehand. In line with Syntetos et al
(2012), we believe that the development of goodness-of-fit tests
for application in inventory control of intermittent demand
items is an interesting future research issue. They use the
Kolmogorov-Smirnov test, which is not appropriate when the
parameters are estimated from the sample (as it is in our case)
and it only applies to continuous distributions. The chi-square
goodness-of-fit test, on its hand, may fail on discerning whether
a distribution is rejectable or not when the demand values
have presented small frequencies in the history. Developing
a specialized test for spare parts could help to bridge the gap
between practice and literature.
Second, we have explored the benefits of pooling in a prob-

lem with a single-echelon, multi-location, continuous-review
inventory system in which complete pooling is permitted and

Table 6 Safety stock (κ), expected number of orders (NA) and
average inventory on-hand (I) under separated planning and pool

planning

κ NA I

Separated 11 009 1424 23 869
Pool 9979 1047 17 872
Difference − 9% − 26% − 25%2%
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Figure 1 Percentage of savings in total expected cost as a
function of the percentage of duplicated items, if the duplicates are
corrected.
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each location utilizes an (s, S) policy. As noted by Kukreja and
Schmidt (2005), this problem has not received special attention
from the literature, despite its complexity and relevance
in practice. A related problem is how the costs of the pool
should be shared. Recent literature has introduced the use of
game theory to address this issue (Wong et al, 2007; Karsten
et al, 2012), opening a promising research line within the
literature on spare parts inventories.
Third, we have introduced the correction of duplicate

codes as another issue in large inventory data systems. To our
knowledge, this has not been addressed in previous literature
and we believe it is worthy of in-depth exploration in the
context of spare parts, as has been done with related issues of
record inaccuracy on retail inventories (Fleisch and Tellkamp,
2005; DeHoratius et al, 2008).
Fourth, our work has highlighted the importance of the

inventory management of spare parts in the oil and gas industry,
which so far has not been a main protagonist in related
literature. Characterized by high service levels, geographical
networks with interaction between onshore and offshore facil-
ities and items with customized specifications and long lead
times, we believe there are important chances of improving
the inventory practices in the industry, with opportunities for
achieving great impact on savings while at the same time
maintaining or increasing service levels.
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