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Consumers’ Price Elasticity of Demand Modeling
With Economic Effects on Electricity Markets Using

an Agent-Based Model
Prakash R. Thimmapuram and Jinho Kim

Abstract—Automated Metering Infrastructure (AMI) is a tech-
nology that would allow consumers to exhibit price elasticity of
demand under smart-grid environments. The market power of
the generation and transmission companies can be mitigated when
consumers respond to price signals. Such responses by consumers
can also result in reductions in price spikes, consumer energy bills,
and emissions of greenhouse gases and other pollutants. In this
paper, we use the Electricity Market Complex Adaptive System
(EMCAS), an agent-based model that simulates restructured
electricity markets, to explore the impact of consumers’ price
elasticity of demand on the performance of the electricity market.
An 11-node test network with eight generation companies and
five aggregated consumers is simulated for a period of one month.
Results are provided and discussed for a case study based on the
Korean power system.

Index Terms—Agent-based modeling, automated metering in-
frastructure, price elasticity of demand, smart grid.

I. INTRODUCTION

I N deregulated electricity markets, market power and/or im-
balances in the supply and demand associated with the mar-

ginal cost of the last unit dispatched have resulted in large fluc-
tuations in wholesale electricity prices. In many of the existing
electricity markets, only generation companies (GenCos) can
respond to the price signals through supply-side offers to the in-
dependent system and/or market operator (ISO). Themajority of
consumers in deregulated markets have contracts with load ag-
gregators or load-serving entities who, in turn, submit demand
bids to the market operator. If the contract is a pass-through
contract (i.e., the load aggregator charges the market price with
some fixed profit margin), there is no incentive for the load ag-
gregator to provide a mechanism for consumers to respond to
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prices. On the other hand, if it is a fixed price contract, con-
sumers do not see the market prices and will not respond to price
signals.
Moreover, because most consumers do not have access to

hourly or daily electricity price information, their responses
to price changes may lag behind. One potential consumer re-
sponse, reducing consumption, occurs when consumers receive
their monthly electricity bills. Another potential response,
switching suppliers, usually occurs on an approximately
monthly or annual basis, depending on the terms and conditions
of supply contracts.
There has been considerable research on consumer response

to electricity prices [1]. In addition, efforts have been under-
taken recently to model and simulate the price elasticity in elec-
tricity markets [2], [3]. Such studies have shown that reductions
in electricity consumption in response to prices, particularly by
residential customers, are relatively inelastic in the short term;
even high price increases produce fairly small changes in elec-
tricity usage. Large consumers, on the other hand, are relatively
price sensitive.
Recently, AMI and smart grid have become widely accepted

as promising technologies to provide increased awareness of
electricity usage and cost to consumers. As a result, those tech-
nologies could enable consumers to overcome the technical and
market barriers to participating in electricity markets through
improved price elasticity.
In this paper, we have set up a model for exploring con-

sumers’ price elasticity of demand (via demand-side bidding)
using EMCAS, an agent-based model that simulates the dereg-
ulated markets.
The remainder of this paper is organized as follows: Section II

presents demand-side response modeling with price elasticity.
Section III describes the experimental investigation and pro-
vides results and discussion. Section IV offers a real-world case
study based on Korean electricity markets. Section V presents
our conclusions.

II. DEMAND-SIDE RESPONSE MODELING WITH PRICE
ELASTICITY

In economics literature, price elasticity is defined as the
percentage change in demand or load (L) resulting from a per-
cent change in price (P). For infinitely small changes in price,
this can be expressed mathematically as:

(1)
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Fig. 1. Typical demand and supply curves.

TABLE I
ESTIMATES OF ELECTRICITY PRICE ELASTICITY

where is the consumer’s price elasticity of demand, is the
consumer’s change in load, is the price change, P is the fore-
casted energy price ($/MWh), and L is the consumer’s base load
(MWh).
The equation indicates that: a) a price elasticity of

means that a 1 percent increase in price will result in a 1 percent
decrease in load, b) that zero price elasticity means that the
consumers are insensitive to the price of electricity and that the
load is unaffected by the price. In the latter case, the demand
curve is a vertical line, as shown in Fig. 1. However, in elec-
tricity markets, the supply curve is more like a hockey stick, in
which prices increase moderately for most of the supply curve
except at the end, where prices increase dramatically with a
steep slope. The demand responsiveness provides the greatest
benefit in this region [4].

A. Estimates of Price Elasticity of Demand for Electricity

In general, measuring price elasticity is a complex task, and
estimated elasticity coefficients usually have a wide range of un-
certainty attached to them. It is common to differentiate between
short- and long-run elasticity. Short-run elasticity describes the
price-response from the system with its current infrastructure
and equipment; long-run elasticity takes into account the invest-
ments that can be made (e.g., in energy conservation or alterna-
tive energy supply) in response to higher prices.
Table I lists examples of ranges of estimates for short- and

long-run elasticity based on several studies [4]–[6]. However,
because the studies were carried out in regulated systems, they
might have limited validity for restructured markets. In general,
one would expect the price elasticity of demand to increase with
implementation of AMI and smart grid.

Fig. 2. Price elastic demand modeling.

B. Demand-Side Bidding and Market Clearing in the
Day-Ahead Market

In the agent-based EMCAS model, consumers submit their
demand to load aggregators who, in turn, submit the day-ahead
hourly demand bid to the ISO. Similarly, the GenCos submit
their day-ahead hourly offers to the ISO. The ISO runs the op-
timal load dispatch, optimal power flow, considering the trans-
mission network, and determines the hourly locational marginal
prices (LMPs) for every hour and for each bus in the system
[7]. (The agent-based modeling framework is described in de-
tail elsewhere [8], [9].) EMCAS offers an option to allow con-
sumers/load aggregators to submit either inelastic or elastic de-
mand bids. The shape of the demand curve that is bid into the
day-ahead market is modeled by adjusting the following param-
eters for each individual consumer:

Reference price

Limit for load reduction (percentage)

Limit for load increase (percentage)

Number of steps on demand curve for load
reduction

Number of steps on demand curve for load
increase

Fig. 2 shows a typical demand curve. The reference price,
, is user input and is fixed for all hours, whereas is

equal to the hourly loads and therefore changes from hour to
hour. The minimum and maximum loads are determined by the
parameters for the lower and upper limits.
If the price elasticity is constant for the entire demand curve,

then (1) can be written as:

(2)

where and (the elasticity) are constants, is a user input,
and can easily be calculated for each hour from and .
Equation (2) is used to represent the demand-side bidding in the
model. However, the continuous curve in Fig. 2 cannot be bid
directly into the market; a stepwise approximation is necessary
to calculate the market clearing as a linear programming (LP)
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Fig. 3. Day-ahead market clearing modeling.

problem. Therefore, the continuous curve is approximated with
a number of steps, as shown in Fig. 2.
The degree of match between the continuous curve and the

stepwise approximation depends on the number of steps on the
demand curve, as defined for each of the consumers. Step size
is constant for all the load-reduction steps and also for all the
load-increase steps. The corresponding prices are calculated for
the load at the midpoint of each step by using the following
formula, which is easily derived from (2):

(3)

Note that a maximum demand bid price is equal to the value
of lost load (VOLL).
The market clears where the supply curve intersects with the

demand curve, and the resulting price and load are set accord-
ingly. The actual load in the day-ahead market can therefore be
higher than, lower than, or equal to the reference load. Fig. 3
shows an example in which the market clears at a price lower
than , so that the actual load, , is higher than .
In the real-time market, there is no price elasticity of de-

mand. This is because we assume that consumers cannot re-
spond to prices in real time. Therefore, the resulting load from
the clearing of the day-aheadmarket, , is used as an inelastic
load in the real-time market. This is illustrated in Fig. 4, where
the demand curve is represented as a vertical line with a price
equal to VOLL.
Note that in Fig. 4, we assume that some of the generators are

on forced outage, causing the real-time price, , to be higher
than the day-ahead price, , although the load is the same in
the two markets.

III. EXPERIMENTAL STUDY

A. Experimental System

In the experimental simulations, we use an 11-node trans-
mission network configuration; this approach is based on the
method described in [10]. The technical specifications and the

Fig. 4. Real-time market clearing modeling.

Fig. 5. 11-Node network.

TABLE II
TRANSMISSION LINES IN 11-NODE NETWORK

topology for the transmission lines are listed in Table II and
shown in Fig. 5.
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TABLE III
GENERATING UNITS IN 11-NODE SYSTEM

TABLE IV
PRODUCTION AND INCREMENTAL BLOCK COSTS

We assume that there is only one transmission company
(TransCo) in the system, which owns the entire transmission
network. The transmission network is operated by an ISO.
There are eight GenCos in the system, located at various

nodes in the grid (Fig. 5). All of the GenCos have the same set
of generating units: one base load coal plant (CO), one com-
bined-cycle plant (CC) to cover intermediary load, and one gas
turbine (GT) peaking unit. For each GenCo, all three generating
units (CO, CC, and GT) are connected to the same node. The
parameters for the plants are listed in Tables III and IV. These
performance and cost parameters are only representative of the
technology and are not actual plant data.
Note that the bidding blocks for each generating unit are

based on the blocking of the heat rate curves described in
Table III. In the base scenario, the GenCos bid according to
their incremental production costs, as listed in Table IV. Forced
outages are not included in the simulations, making it is easy to
compare the profits for each of the GenCos.
We use an aggregate representation of the demand side of the

market. Five aggregate consumers are included, representing
total demand in the node where they are connected. The loads
are connected to nodes 1, 3, 4, 10, and 11. We are simulating
the month of July, which is assumed to be the peak-load month

Fig. 6. Hourly consumer load in 11-node case study.

of the year. The five hourly load series are shown in Fig. 6. The
highest load is clearly in node 11.
All of the consumers buy their electricity from a demand

company (DemCo). The transmission network is split into four
zones: A (nodes 1–3), B (nodes 4–7), C (nodes 8–10), and D
(node 11). We assumed that there is one DemCo in each of the
zones. Note that the consumers pay all charges to the DemCo,
including energy, as well as transmission and distribution
(T&D), charges.
The DemCo, in turn, passes the respective charges on to the

GenCos and T&D companies. A markup can be added to the
price paid by the consumers to represent DemCo profits. How-
ever, in this study, we focus on the GenCos and consumers
and set the DemCo markup to zero. Fixed costs, $10/MWh and
$18/MWh, are assumed for transmission and distribution, re-
spectively.

B. Scenarios and Price Elasticity Parameters

For the sake of simplicity, we assumed that all five consumers
exhibited price elasticity. A number of scenarios were run to
analyze the impact of price elasticity and the reference price of
consumers.
In all of these scenarios, we assumed that the GenCos bid the

incremental production cost of their units (as listed in Table IV).
In demand-side bidding, the consumers had a reference price of
$25/MWh or $30/MWh and various price-elastic coefficients. In
addition, the lower and upper load decrease and increase limits
were set at 90% and 105% of the base load, respectively. These
scenarios are summarized in Table V. The loads served in the
base case and in other scenarios for a typical day are shown in
Fig. 7, which shows that consumers increase their load when
prices are lower and decrease their load when prices are higher.

C. Results and Discussion

Tables VI, VII, and VIII, respectively, present the reductions
in peak load, total load served, and total energy cost under var-
ious scenarios. The overall peak load reduction is in the range
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Fig. 7. Change in consumer load under various scenarios.

TABLE V
OVERVIEW OF SIMULATED SCENARIOS FOR 11-NODE SYSTEM

Fig. 8. Price (LMP) exceeding curve in base case.

of 5% to 8%. However, the peak load reduction for Consumer
10 is only in the range of 1% to 5%. The lower peak load re-
duction for Consumer 10 can be attributed to the LMPs at node
10. The LMPs at node 10 exceed the consumers’ reference price
85% of the time; at other nodes, it exceeds the reference price
91% of the time (Fig. 8). Therefore, the peak load reduction for
Consumer 10 is much less than that of the other consumers.
Except for Consumer 10, all of the other consumers reduced

their total energy cost by reducing their total load. For Con-
sumer 10, higher price elasticity and higher load reduction were
required for a reduction in the total energy cost. In fact, the
LMPs that Consumer 10 pays are higher when exhibiting price
elasticity than in the base case; therefore, the reduction in total

TABLE VI
PEAK LOAD AND ITS REDUCTION IN 11-NODE SYSTEM (MW)

TABLE VII
TOTAL LOAD SERVED IN 11-NODE SYSTEM (GWH)

TABLE VIII
TOTAL ENERGY COST IN 11-NODE SYSTEM (MM$)

TABLE IX
IMPACT OF CONSUMER PRICE ELASTICITY IN 11-NODE SYSTEM

energy cost comes solely from a reduction in the load. How-
ever, other consumers benefit from a reduction in both load and
prices. Table IX presents the impact of the consumers’ price
elasticity on GenCos and TransCos. When consumers exhibit
price elasticities in the range of to , the GenCos’
profits are reduced by 3.50% to 6.87% and the TransCo’s con-
gestion revenues are almost eliminated.
We also studied the impact of the consumers’ reference prices

[Tables X and XI(a), (b), and (c)].
As expected, when the reference price increases from

$25/MWh to $30/MWh, the load reduction is only 0.11% to
0.27%—for price elasticity in the range of to . The
small change in load is because the reference price is now close
to the average price in the base case. Also, there is a slight
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TABLE X
IMPACT OF CONSUMER PRICE ELASTICITY AND REFERENCE PRICE

TABLE XI
(A) GENCO PROFITS WITH HIGHER CONSUMER REFERENCE PRICE (MM$),
(B) CONSUMERS’ LOAD SERVED WITH HIGHER CONSUMER REFERENCE
PRICE (GWH), (C) CONSUMERS’ TOTAL COSTS WITH HIGHER CONSUMER

REFERENCE PRICE (MM$)

increase in the GenCos’ profits, because even though they are
generating less energy compared with the base case, the startup
costs decrease; whereas there is a significant reduction in the
congestion charges. Tables XI(a), (b), and (c) present the profits
of each GenCos, individual consumers’ load served, and total
cost, respectively, when consumers have a higher reference
price. When the price response is reduced because of a higher
reference price, the total cost for consumers at nodes 3 and
10 increases compared with the base case. This shows that
all consumers do not benefit equally, and some of them may
actually face a higher cost.

Fig. 9. Hourly consumer load in Korean power system (2006).

TABLE XII
OVERVIEW OF SIMULATED SCENARIOS FOR KOREA POWER SYSTEM

IV. KOREAN POWER SYSTEM

A. Korean Power System

An aggregated representation of the Korean electricity trans-
mission network developed in 2006 is used to perform an eco-
nomic study on this power system. The Korean power system
has a total capacity of 72 000 MW, and it includes 126 transmis-
sion lines, 97 busses, 9 zones, and 152 generators. The zones are
Seoul, Nam Seoul, Suwon, Jechun, Deajon, Kwangju, Daegu,
Busan, and Changwon. There are five pumped-storage hydro
plants in the system. KEPCO is the only transmission and dis-
tribution company.
The hourly consumer loads by zone for the month of August

2006 are shown in Fig. 9. Zone Suwon has the highest load;
zone Nam Seoul has the lowest load in the system.

B. Scenarios and Price Elasticity Parameters

We assumed that all consumers exhibit price elasticity. A
number of scenarios were run to analyze the impact of price
elasticity and the reference price of consumers. In all of these
scenarios, GenCos bid the incremental production cost of their
units. In demand-side bidding, the consumers had a reference
price of 50 kWon/MWh or 55 kWon/MWh (1 kWon is approx-
imately equivalent to U.S. $1) and various price elastic coeffi-
cients. In addition, the lower- and upper-load decrease and in-
crease limits were set at 90% and 110% of base load, respec-
tively. These scenarios are summarized in Table XII.

C. Results and Discussion

Because there are several consumers in the system, the re-
sults are presented here at the zonal level. Tables XIII, XIV, and
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TABLE XIII
PEAK LOAD AND ITS REDUCTION IN KOREA POWER SYSTEM (MW)

TABLE XIV
TOTAL LOAD SERVED IN KOREA POWER SYSTEM (GWH)

TABLE XV
TOTAL CONSUMER ENERGY COST IN KOREA POWER SYSTEM (MILLION WON)

XV, respectively, present the reduction in peak load, total load
served, and total energy cost under various scenarios. There is
a 2% to 4% reduction in the peak load in all zones as the con-
sumers increase their price elasticity from to . Sim-
ilarly, there is a 1% to 2.5% reduction in the total load. By ex-
hibiting price elasticity, consumers were also able to reduce their
total cost in the range of 2.0% to 4.4%.
Fig. 10 shows the price-exceeding curve in the base case. In

all zones, prices exceed the reference price (50 kWon/MWh)
nearly 80% of the time, which means that, on the average, con-
sumers decreased their load 80% of the time and increased their
load only 20% of the time during the simulation period.
Table XVI presents the impact of the consumers’ price elas-

ticity on GenCos and the TransCo. When consumers exhibited

Fig. 10. Zonal price exceeding curve in base case for Korean power system.

TABLE XVI
IMPACT OF CONSUMER PRICE ELASTICITY IN KOREAN POWER SYSTEM

price elasticities in the range of to , GenCos’ profits
were reduced by 1.9% to 3.2%, and the TransCo’s congestion
revenues were reduced by 18% to 55%.
To understand the impact of the reference price, simulations

were run with a higher reference price of 55 kWon/MWh. As
shown in Fig. 10, the zonal prices exceeded the reference price
nearly 56% of the time.
It can be expected that the amount of load increase and de-

crease would be almost equal in these simulations. The results
from the simulations are presented in Tables XVII and XVIII(a)
and (b). The total system load is almost identical to the base
load with a minor change—in the range of % to 0.19%.
The small change in load is because the reference price is now
closer to the average price in the base case.
Also, there is a slight increase in GenCos’ profits, because

even though they are generating less energy compared with the
base case, the startup costs decreased; whereas there is a signif-
icant reduction in the congestion charges.
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TABLE XVII
IMPACT OF CONSUMER PRICE ELASTICITY AND REFERENCE PRICE

TABLE XVIII
(A) CONSUMERS’ LOAD SERVED WITH HIGHER CONSUMER REFERENCE
PRICE (GWH), (B) CONSUMERS’ TOTAL COSTS WITH HIGHER CONSUMER

REFERENCE PRICE (BILLION WON)

V. CONCLUSION

This paper describes a study in which an agent-based model
was used to demonstrate and quantify the economic impact
of price elasticity of demand in electricity markets when
consumers are well equipped with smart grid technologies to

increase their awareness of responsiveness of demand. While
the impact depends on the price level at which consumers
exhibit price responsiveness, price-elastic consumers could
benefit by a reduction in energy usages and prices. In addi-
tion, they could significantly reduce congestion charges and,
potentially, reduce the market power of GenCos. While some
consumers may face a higher cost because of their location
in the network, most benefit by exhibiting price elasticity of
demand. We will investigate these results more specifically in
the next phase of the study.
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