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ABSTRACT: R/C cooling towers are used for many kinds of industrial and power plants. These are huge 
structures and also show thin shell structures. R/C cooling towers are subjected to its self-weight and the 
dynamic load such as an earthquake motion and a wind effects. Especially, dynamic analyses of these 
structures are important factor to design R/C cooling tower structures.  In this paper, dynamic behavior of 
R/C cooling tower shell under an earthquake loading is analyzed by use of FEM focused on the column 
arrangement systems. To reduce the computational efforts to solve such problems, the technique for a parallel 
computing is applied. To solve the nonlinear dynamic response of a huge cooling tower with local deviation, 
the element by element (EBE) parallel approach is adopted by using of PC cluster. From the numerical 
analyses, the effects of the combination of R/C shell and column systems are examined. 
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1. INTRODUCTION  
 
R/C cooling towers are used for many kinds of 
industrial and power plants. These are huge structures 
and also show thin shell structures. R/C cooling 
towers are subjected to its self-weight and the 
dynamic load such as an earthquake motion and a 
wind effects. Especially, dynamic analyses of these 
structures are important factor to design R/C cooling 
tower structures constructed around the region of a 
frequent earthquake. However, it is difficult to solve 
these problems because R/C structure composes of a 
concrete and reinforcements and both materials show 
nonlinear behavior. In particular, nonlinear behavior 
of concrete is complicate to represent mathematically.  

A quasi-static loading is applied to design R/C 
cooling tower instead of dynamic response analysis 
because of the difficulty of representing the dynamic 
material properties. In addition, these structures have 
huge surfaces of concrete with increasing its 
constructional height and also, R/C shell structure is 

usually placed on the supporting columns to take a 
cold air into it. R/C cooling tower represents the 
combinations of R/C shell and R/C column 
structures. Consequently, the huge R/C shell 
structural behavior with local deviations must be 
solved.  

To solve such problems, many numerical 
schemes have been proposed combining the 
axisymmetric analyses or modal analyses [Hara et.al 
2002, Lang et. al. 2003]. However, it is difficult to 
represent the local behavior of these structures by 
such numerical scheme. To overcome these problems, 
the finite element method (FEM) is one of the useful 
schemes. On the other hand, to apply FEM to such 
problems, there must be a numerical effort to solve 
these structures under a dynamic loading. 

In this paper, dynamic behavior of R/C cooling 
tower shell under a earthquake loading is analyzed 
by use of FEM focused on the column arrangements 
and column systems. To reduce the computational 
efforts to solve such problems, the technique for a 



parallel computing is applied. To solve the nonlinear 
dynamic response of a huge cooling tower with local 
deviation, the element by element (EBE) parallel 
approach is adopted by using of PC cluster. The 
efficiencies of applying EBE parallel algorithms to 
R/C structures were discussed (Hara et. al. 2004 and 
Hara 2005). 

From the numerical analyses, the nonlinear 
dynamic response of R/C cooling tower is examined 
and the effects of the combination of the shell and 
column structural systems are examined. 

 
2. FEM PROCEDURE 
2.1 Finite Element 
In order to investigate the failure mechanisms of R/C 
cooling tower under dynamic loading, a finite 
element procedure is adopted. In this analysis, the 
isoparametric hexahedral element with 20 nodes is 
adopted. Each node has three translation degrees of 
freedom. To evaluate the volumetric integration, 15 
points selective integration is adopted (Hinton 1988). 
R/C cooling tower is divided into such three 
dimensional elements. 

 

2.2 Material Properties of Concrete 
Reinforced concrete is composed of concrete and 
reinforcements. To represent the concrete material, it 
is assumed that the concrete behaves as linear 
material before stresses do not exceed the yield 
stress defined by the yield function. After yielding of 
the material, the inelastic behavior of concrete is 
assumed to possess the recoverable and irrecoverable 
strain components. 

Under triaxial stress state, the yield function 

depends not only on the mean normal stress 1I  but 
also on the second deviatoric stress invariant 2J . 
The yield condition of triaxial compressive concrete 
is expressed as follows: 

01221 )3(),( σαβ =+= IJJIf             (1) 

where α and β are material parameters. Referring to 
Eq. (1) the three dimensional stress states and the 
yield functions are shown in Figure 1. When the two 
dimensional experimental results reported by 

Kupfur’s (Kupher 1966) are employed, α=0.355 α0 
and β=1.355 are defined. Also, in Eq.(1), σ0 is the 
equivalent effective stress. 
To define the hardening rule, the relationship 
between the accumulated plastic strain and the 
current ‘loading surface’ (Figure 1) is assumed to be 
conventional ‘Madrid Parabola’ (Figure 2) (Hinton 
1988) 

2

0

0
0 2

1 ε
ε

εσ EE −=                        (2) 

where 0E and 0ε  represent the initial elastic 
modulus and the total strain at peak stress, 
respectively.  

It is assumed that the initial yield begins when 
the equivalent stress exceeds 0.3fc (fc: compressive 
strength of concrete) 
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Figure 1 Concrete in compression 
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Figure 2 Madrid Parabola 



The crushing condition of concrete is described 
as a strain control phenomenon and the crushing 
condition is defined as like as the yield condition in 
Eq. (1). 

The response of concrete in tension is modeled as 
a linear-elastic brittle material and maximum tensile 
stress criteria are employed. Three dimensional stress 
space representations in tension-compression status 
are shown in Figure 3.  
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Figure 3 Crack condition 

After cracking, to evaluate the tension stiffening 
of reinforced concrete, the stress reduction of the 
concrete normal to the cracked plane is assumed as 
shown in Figure 4.  
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Figure 4 Concrete in Tension 

In Figure 4, the stress in degradation zone is 
defined as follows.   
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where 'tf is maximum tensile strength of concrete, 
γ is the tension stiffing parameter, 'iε  is crack 
strain, fG is the fracture energy of concrete, cl is the 
cubic root of volume in Gaussian point and crε  is 
the strain in crack. γ  =0.2 is adopted in this paper. 

When the strain reversal appears, the relation 
between the stress and the strain is defined using the 
modulus iE . 
 

2.3 Material Properties of Reinforcements 
The reinforcing bars are considered as steel sheets 
that possess equivalent thickness and has uniaxial 
behavior resisting only against the axial force in the 
bar direction (see Figure 5). The bilinear idealization 
is adopted in order to model the elasto-plastic stress 
strain relationship and both the tensile and the 
compressive state are governed by the same 
relationship. These steel layers are assigned into 
each shell element. 

The material properties of concrete and 
reinforcements are shown in Table 1. 
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Figure 5 Local coordinate and location of steel layer 

Table 1 Material Properties 

 

2.4 Dynamic Analyses 
For each element, the element stiffness k  and the 
element mass matrices m  are defined under the 
assumption mentioned above. Assembling these 
matrices, the dynamic equilibrium equations are 
derived. During the time increment, the dynamic 
equilibrium equation is represented as follows:  

Concrete 
Elastic Modulus 
Poisson’s Ratio 
Density 
Compressive Strength 
Tensile Strength 

34Gpa 
0.167 

0.0023kg/cm3 
36MPa 
2.7MPa 

Reinforcement 
Elastic Modulus 
Tangent Modulus 
Yield Stress 

206GPa 
2.1GPa 
500MPa 
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where M  is the mass matrix, C  is the damping 
matrix, K  is the stiffness matrix. y∆ , y&∆  and 

y&&∆  are the response displacement, the response 
velocity and the response acceleration vector, 
respectively. 0y&&∆  is the ground motion acceleration 
and ∆  denotes the incremente. In this analysis, 
Raileigh damping is adopted to define the damping 
matrix. 

KMC 21 aa +=                        (5) 

where 1a and 2a are the constants. 
To solve Eq.(4), the Newmark method is adopted 

in this paper. Then, substituting the Newmark 
representations of the velocity and the acceleration 
vector into the dynamic equiliburium equation 
systems, Eq. (4) is transformed as follows: 
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are the effective stiffness matrix and the mofdified 
load vectors, respectively. 

In this paper, the dynamic response is evaluated 

with a time step of ∆t=0.001sec. The damping facter 
is considered 3% proportinal to the mass by 
Rayleigh damping (Eq.(5)). The convergence rule of 
equation of motion is defined by Newton-Raphson 
method. 
 

2.5 EBE Procedure 
In the dynamic response of structure, Eq. (6) is 

solved step by step. However, to solve this equation, 
we need a large computing effort because R/C 
cooling tower model possesses large amount of 
degrees of freedom. Although, to solve such 
problems, many numerical schemes have been 
proposed combining the axisymmetric analyses or 
modal analyses, it is also difficult to represent the 
local behavior of these structures by such numerical 
scheme. To overcome these problem, a parallel 
computation is one of the solution schemes to solve 
such large size of simultaneous equations. In these 
analyses, element-by-element (EBE) solution 
techniques (Hughes 1983, Levit 1987, Hara 2004) 
are applied to Eq.(6).  

Each term of Eq.(6) is assembled by each 
element equilibrium equations. Then the equation is 
solved by use of the conjugate gradient method 
(Adeli 1999). 

PC cluster is applied to solve Eq. (6). In this 
analysis, PC cluster is composed of 8 personal 
computers and a switching hub to connect each other. 
The data communication of each computer is 
governed by MPI.  

In conjugate gradient scheme, the solution vector 

1+ky  and the gradient vector 1+kr  are represented 
as follows: 
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In Eqs. (9)-(13), kpK~  is calculated by element by 

element. Therefore, these are easy to parallelized. 
To define the vector 0r , the preconditioning 

technique is usually adopted. In this analysis, the 
solutions are relatively stable and the iterative 
solution converges well. Therefore, the 
preconditioning of the equation is not adopted to 
solving Eq. (6) by the conjugate gradient scheme. 

 

3 NUMERICAL MODEL 
Applying the parallel computing scheme mentioned 
above to R/C cooling tower, the dynamic response of 
structure is analyzed. 
 

3.1 Geometry of R/C cooling tower 
The geometric configuration R/C shell is defined as 
follows (Hara 2004): 

2

2)125(1
b

zarr −
+⋅+∆=             (14) 

where r is the radius of the shell at height z(m). 

Parameters a, b and  ∆r are shown in Table 2. Also, 
the radius and the thickness of R/C shell are 
presented in Table 3. 

 

3.2 Reinforcements  
In shell elements, reinforcements are placed in 

both hoop and meridional directions on both inner 
and outer surface of the shell. The reinforcing ratio 
of each reinforcing layer is assumed to be 0.2%. 

Table 2. Configuration parameters  

  
Table 3. Radius and thickness of the shell 

The concrete covers are 15% thickness of the shell 
wall from both inner and outer surfaces. The material 
properties of  the concrete and the reinforcements 
are shown in Table 1. 
 

3.3 Analytical Model   
Figure 6 shows the numerical models of the R/C 
cooling tower. The model is a half of R/C shell 
considering the symmetry of the configuration, the 
loading and supporting conditions. Both models are 
divided into 32 elements in hoop direction and into 
30 elements in meridional direction. The height is 
about 175m. The thickness of the shell changes 
105cm at the lintel through 20cm at the top (see 
Table 3). In R/C shell structure, reinforcements are 
doubly placed in both hoop and meridional direction. 
The reinforcing ratio is 0.2%. On the other hand, 
reinforcements are placed 2% in the columns. R/C 
hyperbolic shell is supported on the 16 columns. 
Each column has 90cm square cross section and 
9.17m length. In I column model, the supporting 
columns are placed equidistance. In V column model, 
the supporting columns are placed equidistance and 
the adjacent top of the columns are connected. Each 
column is divided into four elements to represent the 
flexural deformation of the columns. 
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Figure 6 numerical Models 

 

Height(z) 9.17m-125m 125m-176m 
a     51.9644 0.2578
b 113.9896 8.0293
∆r -15.3644 36.3422

 Lintel Node Top
Height(z)  9.17m 125m 176m
Radius(m) 58.72m 36.6m 38.0m

Thickness(m) 1.05m 0.24m 0.2m



4 NUMERICAL RESULTS 
To compare the dynamic characteristics of the shell 
with two types of columns, the step load and the 
harmonic loads are applied to the models. 
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Figure 7 Response of Step Load (I-Column) 
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Figure 8 Response of Step Load (V-Column) 

 

4.1 R/C Cooling Tower under Step Loading 
To evaluate the basic dynamic response properties of 
R/C cooling tower, the step load of 0.1g (g: gravity 
acceleration 980cm/s2) is applied. Figures 7 and 8 
show the time displacement history at the top (the 
dash line) and at the lintel (the solid line) of the shell 

under the step load. These figures represent the 
responses for the shell with I-columns and with 
V-columns, respectively. 

In the shell with I-columns, the response at the 
lintel is larger than that at the top, while the response 
at the lintel is smaller than that at the top in the shell 
with V-columns. From these responses, the shell 
with V-columns shows the small displacements and 
is stiff enough against the lateral load.  

From Figure 7, the natural frequency of the shell 
with I-columns is 1.05Hz. Also, Figure 7 shows the 
2.70Hz from the top response. In the case of the shell 
without columns, the natural frequency of this model 
shows 3.5Hz (Hara 2004). 

From Figure 8, the natural frequency of the shell 
with V-columns is 2.66Hz. The amplitudes of the 
displacements on both lintel and the top are different. 
But the natural frequencies of them are the same.  

Figures 9 and 10 show the deformation patterns 
of R/C cooling tower with I-columns and V-columns, 
respectively. The deformation of the shell with 
I-column represents the kink at the connection 
between the shell and the columns and the shell 
shows the rigid body rotation. On the other hand, the 
response of R/C cooling tower with V-column 
deforms like as the cantilevered column. 

 
Figure 9 Deformation under Step Load 

(I-column) 
 



 

Figure 10 Deformation under Step Load  
(V-column) 

 
4.2 R/C Cooling Tower under Harmonic Loading 
Figures 11 and 12 show the responses of the cooling 
tower with I-columns and V-columns under the 
harmonic loading, respectively. The dotted and the 
solid line denote the response at the top and the lintel, 
respectively. In this analysis, the intensity of the load 
is 0.1g.  

The frequencies of an external harmonic load are 
1.05Hz for the shell with I-columns and 2.66Hz for 
the shell with V-columns, respectively.  
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Figure 11 Response under Harmonic loading 
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Figure 12 Response under Harmonic loading 

(V-column) 

Each frequency of the harmonic load is adopted 
considering their natural frequency under step 
loadings.  

Figure 11 shows the resonance response of the 
structure. In the case of I-columns, the large 
deformation is detected around the conjunction 
between the lintel and columns. 

Figure 12 does not show the resonance response 
of the structure within 3 seconds. The cooling tower 
shell with V-columns shows the same deformation 
mode as that shown under step loading. 
 

5 CONCLUSIONS 
This paper presented the numerical analysis of R/C 
cooling tower with column support under dynamic 
loading. To apply the general finite element to solve 
the huge R/C structure, the parallel computing 
technique is adopted.  

In numerical analyses, two types of the 
supporting column systems are adopted and the the 
dynamic response of R/C cooling tower is examined. 
Also, the EBE approach to the huge R/C structures is 
applied. 

From the numerical investigations, following 
conclusions are obtained. 



(1) R/C cooling tower with I-column supports under 
dynamic loading shows local deformation 
around the junction between the lintel and 
columns but shows small deformation or 
distortion on the shell.  

(2) R/C cooling tower with V-column supports 
under dynamic loading shows the cantilever type 
global deformation but the deformation is small. 

(3) The total structural responses of the shell with 
supporting columns strongly depend on the 
column supporting systems and are different 
from the conventional pin-supported ideal shell 
(Hara 2004). Therefore, the precise total 
analyses must be considered. 

The numerical scheme presented here will be 
applicable to the practical one such as the earthquake 
response of the structure or the response of the 
dynamic wind loading considering the local 
deviations such as supporting columns and the hole 
on the shell surface. 
 

REFERENCES 
 
Adeli H. and Soegiarso R., 1999, High-performance 
computing in structural engineering. CRC Press 
 
Hara T. and Gould P.L., 2002, Local-global analysis 
of cooling tower with cutouts, Computers & 

Structures, 80:2157-2166. 
 
Hara T., 2004, Dynamic analysis of R/C cooling 
tower shells under earthquake loading. 5th 

International Symposium on Natural-Draught 
Cooling Towers. 283-291 
 
Hara T., 2004, Dynamic response analysis of R/C 
cooling tower shell, Proceedings of the WCCM VI in 

conjunction with APCOM’04, Sep. 5-10, 2004, 
Beijing, China on CDROM. 

 

Hara T. and Hadi M.N.S., 2005, Behavior of 
eccentrically loaded concrete columns with FRP 
wrapping, Proceedings of ISEC-03, Sep.20-23, 

Shunan, Japan, 1:229-235. 
 
Hinton E., 1988, Numerical methods and software 
for dynamic analysis of plates and shells. Pineridge 
press Swansea U.K. 
 
Hughes T.J.R, Levit I. and Winget J., 1983, An 
element-by-element solution algorithm for problems 
of structural and solid mechanics. Computer Methods 

in Applied Mechanics and Engineering 36:241-254 
 
Kupfer H. and Hilsdorf K.H., 1966, Behavior of 
concrete under biaxial stress., ACI Journal 

66:656-666. 
 
Lang C., Meiswinkel R. And Wittek U., 2003, 
Anwendung von Schalenringelementen zur 
nichtlinearren dynamischen Berechnung von 
Stahlbeton- Rotationsschalen, Beton- und 

Stahlbetonbau,  98:123-134, (in German). 
 
Levit I., 1987, Element-by-element solvers of order 

N. Computers & Structures 27:357-360 


