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a b s t r a c t

Position location usually relies on direct observation to/from conventional landmarks with
known positions from/to a Node of Interest (NOI). Nonetheless, in an Ad-Hoc Wireless Sen-
sor Network (AHWSN), nodes are often unable to establish a direct connection with the
available Access Points (APs). In such a scenario, neighboring nodes may supply coopera-
tive information to enable inference of the location of a given NOI in a network. In this
paper we examine the feasibility of relational techniques in multihop environments to esti-
mate position location. Two novel position estimation techniques are presented: the Rela-
tive Proximity Algorithm (RPA) and the Enhanced Relative Proximity Algorithm (ERPA).
RPA and ERPA can operate as range-based or as range-free techniques, which makes them
both attractive and flexible solutions for position estimation in AHWSNs. The performance
of these techniques is characterized and found to be related to the number of cooperating
nodes, the number of APs available in the network, and the presence of measurement
noise. RPA and ERPA are also compared to several known position location methods
reported in the literature, and it is shown that they achieve adequate location estimation
accuracy with some advantages in terms of the number of access points required and net-
work traffic overhead.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Nodes in ad hoc wireless networks are generally
equipped with sensors, which gather information about
specific events of interest associated to a given location
[1]. In addition, nodes are capable of processing and trans-
mitting such information. In order to take full advantage of
sensed data, the determination of the position location
information of the nodes in the network is essential [2].
This is because they may not occupy a permanent location
as they might be subject to intentional or unintentional
motion [3]. Therefore, position location algorithms are
demanded for a wide variety of applications, such as fac-
tory logistics, warehousing, real time surveillance, environ-
mental control and monitoring, among others [4].
Location is always described in relation to a coordinate
referential system defined by known conventional land-
marks [5]. Nonetheless, direct observation from a given
node to known landmarks is unlikely in an Ad-Hoc Wire-
less Sensor Network (AHWSN) because of limitations in
the transmission range of nodes and adverse propagation
conditions. Therefore, in AHWSNs, conventional landmarks
or Access Points (APs) are reached through the concatena-
tion of consecutive links, defining a multi-hop transmis-
sion path. In such a scenario where APs are unable to
establish a single-hop connection with most network
nodes (thus providing them with only limited reliable
information), location must be inferred from the context
of several descriptors. These descriptors are often related
to population features that characterize the neighborhood
of a nearby node [6,7]. Hence, location determination of a
node becomes a task that involves the cooperation from
several nodes in the network. Therefore, cooperative

Rabet
Typewriter

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2014.07.009&domain=pdf
http://dx.doi.org/10.1016/j.adhoc.2014.07.009
mailto:vhpg@itesm.mx
http://dx.doi.org/10.1016/j.adhoc.2014.07.009
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc


V.H. Perez-Gonzalez et al. / Ad Hoc Networks 24 (2015) 20–28 21
position location methods have been suggested over the
last decade for these type of scenarios [5,8].

Although several cooperative location techniques have
been recently proposed [9,10], many of them require a pre-
processing stage in addition to the location estimation
stage. This requirement may have adverse effects on their
performance. For instance, the preprocessing stage signifi-
cantly augments the number of information packets trans-
mitted across the network, increasing traffic overhead.
Furthermore, several cooperative location methods present
low estimation accuracy even with a large number of APs
deployed throughout the network (which also increases
the implementation cost of the system) [3]. Therefore, it
is necessary to develop low-cost, accurate, and efficient
cooperative location algorithms.

In this paper, we examine the applicability of simple
cooperative relational information for position location in
multihop environments. Different proximity measure-
ments (i.e., range-based and range-free) are suggested to
be used in the determination of the position of a node. Posi-
tion location estimation is carried out employing two novel
methods, the Relative Proximity Algorithm (RPA) and the
Enhanced Relative Proximity Algorithm (ERPA), where in
principle the estimation is based on the amount of neigh-
boring nodes surrounding the Node of Interest (NOI) to be
located. Performance results of both techniques are pre-
sented for several scenarios. Nevertheless, position location
estimation may be affected by measuring errors and even
by routing techniques [11]. Therefore, the effect of com-
posed proximity error on relational position location is ana-
lyzed. In addition, in order to further highlight their
advantages, the performance of the proposed methods is
compared to that of other position location techniques
reported in the literature in scenarios where measurement
noise, node density, and available APs are varied.

The remainder of the paper is organized as follows:
Section 2 provides a brief summary of position location
methods for multihop networks. Section 3 describes RPA,
a novel, basic and simple position location technique based
on the concept of proximity. In Section 4 ERPA, an
enhanced version of the RPA, is presented. ERPA provides
important performance advantages over previously pub-
lished position location systems. Such a comparison is pre-
sented in Section 5, where both proposed algorithms are
evaluated through computational modeling. Finally,
Section 6 contains the conclusions of this work.
2. Related work

The Global Positioning System (GPS) can be regarded as
the most widely employed position location system in the
world [12]. Nonetheless, in some particular environments
(e.g., AHWSNs), GPS presents important drawbacks, for
instance: deployment cost, service availability, and estima-
tion accuracy [13–15]. Therefore, cooperative and collabo-
rative algorithms have been developed over the past
decade to solve the position location estimation problem
in AHWSNs [9,16–18]. In this section, we briefly review
some of the best-known and more recent localization
schemes for multihop networks available in the literature,
although the review is not exhaustive, it does present
important algorithms from the point of view of their rela-
tion to the methods proposed in this paper. In Section 5,
some of those algorithms will serve as a benchmark for
the performance evaluation of RPA and ERPA.

In [19], the DV-Hop method was presented, which is
perhaps the simplest available approach to follow in order
to estimate the position of a NOI. It consists of two stages:
a preprocessing stage and an estimation stage. In the pre-
processing stage, employing shortest path routing, every
node (including the APs) calculates its distance in hops
(or links) to every AP available in the network. Since APs
are assumed to know their own positions, they will have
the information of the Euclidian distance between them-
selves. Therefore, employing the Euclidian distance and
the hop count, APs are able to estimate the ‘‘average hop-
length’’ factor, which is broadcasted to the network. Then,
in the estimation stage, the NOI estimates its distance to
each AP by multiplying the hop count in the path joining
it to each AP times the average hop-length factor. Finally,
a simple triangulation process can be employed to esti-
mate the position location of the NOI. Recently, in [20],
the DV-Hop estimation accuracy was enhanced through
the use of a linear programming approach for minimiza-
tion of the hop-length factor. Their results suggest an esti-
mation accuracy improvement of roughly 20% (in
comparison with the standard DV-Hop approach) for high
node density scenarios. Nonetheless, its estimation accu-
racy cannot be further improved, not even increasing the
number of APs or the communication range of the nodes.

One of the most important issues in every positioning
or localization algorithm is the number of reference nodes
that are needed to obtain accurate results. In [21] the local-
ization problem is presented as an optimization formula-
tion where the number of reference nodes is to be
minimized. The authors use greedy algorithms and trilater-
ation methods in their formulation. In addition to the
required amount of available reference nodes, another
important issue is the deployment (distribution) of the ref-
erence nodes in AHWSNs. In [22], it is recommended that
the reference nodes be deployed in a circle that surrounds
the entire sensor network as it minimizes position estima-
tion error. The paper considers the case of very-large-areas
AHWSNs, such as those employed for environment moni-
toring, surveillance, and tracking applications. Further-
more, Ref. [22] also presents the most important
proposed improvements for the original DV-Hop algo-
rithm, which is used as a reference algorithm for compar-
ison purposes in the results. The localization algorithm
proposed in [22] is named Hybrid DV-Hop (HDV-HOP)
because it exploits DV-Hop advantages and the minimiza-
tion of energy consumption, flooding of messages and
number of reference nodes needed for localization. More-
over, the authors had also shown that depending on the
scenario and the algorithm considered, an increased num-
ber of reference nodes does not always leads to a smaller
localization error.

Also in [19], the authors presented the range-based ver-
sion of DV-Hop, which was called DV-Distance. This alter-
native follows the same approach described in the
previous paragraph with just slight changes in the process.
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In the preprocessing stage, nodes do not calculate their dis-
tance in hops to each AP available in the network, instead,
the hop-length of each link in the multihop route connect-
ing a node with an AP is estimated employing range-based
measurements (received signal strength, time of arrival,
etc.). Finally, the length of the multihop route is calculated
through the addition of the individual hop-lengths that
form the path joining the node and the AP. Multihop routes
in AHWSNs are commonly zigzag shaped, and therefore, the
addition of the individual hop lengths leads to an overesti-
mation of the route length. Thus, in DV-Distance a correc-
tion factor is calculated to mitigate the adverse effect of
route length overestimation in position location estimation.

Another cooperative position location algorithm was
presented in [19]. This approach is known as the Euclidean
propagation method. In this scheme, it is the Euclidean dis-
tance between nodes what is shared between neighbors.
For instance, let us assume that nodes B and C are able to
establish a single hop connection to an AP and also
between themselves. In addition, there exists another
node, A, that is unable to establish a single hop connection
to the AP. However, node A can establish a single hop con-
nection to nodes B and C. Node A measures its distance to
nodes B and C, and nodes B and C share their distance mea-
surements to the AP and also the distance measurement
between themselves with node A. This information then
allows node A to calculate its Euclidean distance to the
AP. According to [23], this position location technique
can provide very accurate position estimates of a NOI in
dense networks (at least 12 neighbors per node).

From the methods mentioned above, it is clear that DV-
Hop, being range-free, is the least expensive solution. In
this same direction, the Approximate Point in Triangle
(APIT) algorithm was developed [14]. In APIT, a NOI com-
municates with the available APs surrounding it. For APIT
to estimate the position location of the NOI, it is required
that at least three APs are available within a single-hop
from the NOI. Each group of three APs defines a triangular
region. Then, the position location estimate of the NOI is
obtained by calculating the centroid of the intersection of
the triangular regions enclosing it. Therefore, in order to
provide accurate position estimations with APIT, it is
essential to have a considerably large amount of APs
deployed across the network defining several triangular
regions. Unfortunately, increasing the number of APs in
the network increases the implementation cost of APIT.

In [17], a collaborative localization is introduced, where
nodes are of three kinds, the normal node (usually
the node of interest is a normal node), the anchor or refer-
ence node, and the beacon node. The localization of normal
nodes is carried out by considering combined range-free
and range-based localization schemes. Normal nodes and
beacon nodes are deployed randomly, although it is pre-
ferred if at least a beacon node is within the intersection
of the coverage areas of two reference nodes, which limits
the random deployment the authors proposed. The esti-
mated distance based on the received signal strength is
based on the classical simplified power received model
which is dependent on the path loss exponent and a log-
normal random variable. The localization operation is per-
formed with at most three beacon nodes, and reference
nodes only provide information of angles toward the nor-
mal nodes. This algorithm requires certain deployment of
nodes and the so-called reference nodes only provide
information which can be dynamic (not considered in
[17]) and changing. Claiming that at most three beacons
are needed for localization is not the same as saying that
only three reference nodes are needed. This is because ref-
erence nodes also play an important role and hence, we
could say that, at least four nodes are involved in any local-
ization. Besides, this algorithm requires a high number of
beacon nodes to have good performance (an average of
4 m of error for 60 or more beacon nodes). The paper
shows comparisons against Concentric Anchor Beacon
(CAB) and APIT, outperforming both methods.

Multi-Dimensional Scaling (MDS) algorithm presented
in [13] estimates the position of blindfolded nodes follow-
ing three steps. First a distance matrix is formed containing
distance measurements between all pairs of nodes in the
network. Then singular value decomposition (SVD) is
employed to produce the first approximation of the net-
work map. Finally, information from anchor nodes is
employed to optimize this map through rotations and
scalings.

In [18], authors present a cooperative algorithm based
on received signal strength (RSS) to localize sensor nodes.
The method assumes a priori knowledge of the RSS Indica-
tion (RSSI) patterns of any pair of nodes in the network
(nodes are either sensors or reference nodes) at any dis-
tance. Some of the sensor nodes to be localized will be
within the areas with specific RSSI levels, and the localiza-
tion is more accurate as more reference nodes cover the
node of interest. When multiple reference nodes cover
the node of interest with their signal, then they collaborate
calculating an estimate of the positions. The reference
nodes transmit a series of beacon signals to the node of
interest and the RSSI patterns measured during this proce-
dure, are matched to those known. The method proposed
has better performance than Multi-Dimensional Scaling
(MDS) algorithm with different weighting factors including
Maximum Likelihood Estimation (MLE). In contrast, the
method we propose, does not need of a pre-processing
stage which is equivalent to the need of knowing a priori
the RSSI maps. Also, if the environment changes, which
regularly does, the RSSI maps would have to be obtained
once again, which is not desirable in an AHWSN.

As discussed, most of these techniques require a pre-
processing stage that increases power overhead in the net-
work, and they estimate the location of the nodes at the
expense of great computational effort [3]. In the next sec-
tion, we introduce a position location technique that uses
information from the surrounding environment to deter-
mine distances and relative positions. The algorithm is
based on knowing the number of neighbors surrounding
a NOI and their respective closeness to available APs, hence
needing low computational processing capabilities.
3. Relative Proximity Algorithm (RPA)

In this section, the Relative Proximity Algorithm is
introduced by first analyzing a simple scenario of two
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APs, to be extended to the three-AP scenario as well. In
both scenarios, nodes in the network are assumed to be
able to distinguish or identify those nodes within their cov-
erage region, so that they can share information regarding
reachability of APs. Thus, a NOI in an AHWSN has specific
knowledge about its neighboring nodes.

The Relative Proximity Algorithm assumes that nodes in
the network are able to distinguish or identify those nodes
that are within their coverage region, so that they can
share information regarding reachability of APs. It is
assumed that some of the nodes ns surrounding the NOI
know the value of a parameter called proximity index,
ds,i, which is related to the distance between the node
and a given APi. Thus, a NOI n0 to be located will have asso-
ciated a non-empty R-neighborhood or R-ball, BR(n0),
defined as the set of all the nodes reachable from n0 in
one hop within a coverage region of radius R, which is
set by the transmitting power and the sensitivity of the
nodes in the neighborhood. In other words, node ns 2
BR(n0), if and only if |ns � n0| 6 R, where |ns � n0|
represents the distance between nodes n0 and ns. The
area covered by this R-neighborhood is denoted as AR.
In a two-dimensional scenario, and for an AHWSN with
a homogeneous propagation environment, the area AR

covered by this R-neighborhood is a circle.
In reference to the proximity indexes, it must be noted

that the accuracy these proximity indexes have, will
depend on the deployed technologies for proximity esti-
mation (e.g., range-based or range-free), as well as on the
accuracy of such technologies and the prevailing propaga-
tion conditions. As an example, in the case of multihop
connections the proximity index may refer to the number
of required links or hops needed by a node ns to reach an
access point [24]. Thus, under a minimal distance routing
protocol, the proximity index is related to the node-to-
access point distance.

In order to assess how these proximity indexes and the
R-neighborhood work within our position location algo-
rithm RPA, let us consider a basic scenario with two access
points, APi and APj. Let N be the total number of nodes
reachable by the NOI in one hop, i.e., these nodes are
within the R-neighborhood defined by the ball BR(n0) sur-
rounding the NOI. Note that this number N can be split into
two terms, Ni and Nj according to a vicinity criterion of the
form ds,i 6 ds,j, for all nodes ns 2 BR(n0). In other words,
N = Ni + Nj, where Ni stands for the number of nodes with
proximity indexes that indicate they are closer to APi than
to APj, similarly for Nj. In this first approach, we can assume
that no true distance measurements are available. Never-
theless, the inequality of the proximity indexes ds,i 6 ds,j

can be based on coarse observations, as mentioned before,
when using ds,i as the number of hops or links in the path
joining the neighboring node ns and a given access point.

From the information of the number of neighboring
nodes, Ni and Nj, obtained from the R-neighborhood
through the use of the proximity indexes, the proposed
method gets the proportions of the nodes in the vicinity
of the NOI to indicate proximity to the access points. In
other words, in a homogeneous node density scenario, by
considering the proportion Ni/(Ni + Nj) the algorithm has
an indicator of the relative proximity of the NOI to the
access point APi. Similarly, the proportion Nj/(Ni + Nj) is
considered for the relative proximity to access point APj.
Note that this would mean that for a homogeneous node
density scenario in an AH-WSN, when Ni = Nj, the NOI n0

is expected to be equidistant to both APs. And since the
NOI does not necessarily lie on the line segment APi M APj

joining access points APi and APj, it will be assumed to be
on the perpendicular line APi \ APj evenly bisecting the
segment connecting the two access points (see Fig. 1).

When the proportion of nodes closer to an access point
determines that there is an unbalance, e.g., Ni P Nj, this
will be consistent with a drift Dij of the NOI n0 toward
the access point for which such proportion is larger, i.e.,
APi. Under these conditions, the NOI will be assumed to
be on a line kij perpendicular to the line segment APi M APj

that is drifted toward APi, see Fig. 1. We can extend this
idea to the more general scenario where three access
points are present. Thus, the same argument as that just
described, can be applied in the presence of a third access
point, APk.

The relative proximity algorithm is based on the
assumption of a homogeneous scenario where nodes are
uniformly spread in the coverage area AR, and the number
of nodes N in such area AR is distributed according to a
Poisson random variable, i.e., (kAR)Ne�kAR/N!, where k is
the node density parameter. It can be seen that for a given
number N, the maximum probability occurs for kAR = N [5].
Note that the total number of nodes, N, within the ball
BR(n0) surrounding the NOI is known, as it is the number
of nodes reachable by n0 in one hop.

Now, defining the disjoint areas Ai and Aj such that they
form a partition of area AR of BR(n0). Then, nodes in areas Ai

or Aj are those nodes closer to access point APi or APj,
respectively. Assuming independence of occurrences of
nodes in Ai and Aj, the total number of nodes in area AR,
has pdf given by

PfNAR ¼ Ng ¼ PfNAi
¼ Ni;NAj

¼ Njg

¼ ðkAiÞNi ½kðAR � AiÞ�Nj e�kAR

Ni!Nj!
; ð1Þ

and a maximum a posteriori approach leads to Ai = NiAR/N.
This is, the size of area Ai is a proportion of the total area AR,
where the proportion is given by the number of nodes in Ai

regardless of node density. Recall that for an AHWSN with
a homogeneous propagation environment, area AR

becomes a circle, and the proportion Ni/(Ni + Nj) allows to
place the NOI on the line kij parallel to APi \ APj. Note that
such line kij is drifted Dij length units toward APi as a func-
tion of the proportion of nodes closer to APi than to APj as
shown in the expression

2pR2 Ni

Ni þ Nj
¼ R2 cos�1 Dij

R

� �
� Dij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � D2

ij

q
: ð2Þ

Now, considering a third access point APk, the perpen-
dicular lines APi \ APj and APj \ APk are known, and after
finding drifts Dki and Djk, the drifted lines kki and kjk can
be defined and the NOI will be said to be at the centroid
of the area defined by the intersections of drifted lines kij,
kjk, and kki.



Fig. 1. Typical neighborhood scenario for RPA location estimation (NOI is at the center of the circle); (a) basic scenario with 2 APs and (b) position location
with 3 APs.
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Note that in the case of an uneven distribution of nodes,
and in the absence of a node concentration clue, a fairly
uniform distribution can be assumed in the vicinity of
the NOI. This is, although node concentration can differ
widely in the service area, variations in each coverage area
are small. Therefore the point where the number of nodes
associated to APj distributes equally as the number of
nodes associated to APi shifts to the point where areas Ai

and Aj satisfy the condition

ðkjAjÞNj

Nj!
expf�kjAjg ¼

ðkiAiÞNj

Ni!
expf�kiAig: ð3Þ

This is, for Ni = Nj, kjAj = kiAi and Aj + Ai = A. Note that in
the case of kj = ki, Aj = Ai, leading to Dij = 0. For the sake of
simplicity, we consider in the rest of this paper that nodes
distribute with a uniform node density k across the service
area.

Performance results for this technique, which are pre-
sented in Section 5, demonstrate that this approach pro-
vides acceptable position estimation accuracy where
estimation errors decrease as the number of neighboring
nodes within the R-neighborhood increases. Nonetheless,
in the next section we present an enhanced version that
decreases location estimation error for most scenarios
when high density of nodes is present in the network.
4. Enhanced Relative Proximity Algorithm (ERPA)

In this section, we present an improvement to the RPA
introduced in the previous section that enhances perfor-
mance of the algorithm. The improvement is characterized
by changing the use of perpendicular lines in RPA by the
use of hyperbolas to locate the NOI. ERPA uses the same
kind of proximity indexes as RPA, but the set of indexes
is treated differently to generate the hyperbolas. Thus, a
different approach to relative proximity location estima-
tion can be developed from the same proximity indexes
described previously, i.e., (ds,i, ds,j, ds,k) for the scenario with
three access points (see Fig. 2). The accuracy of these prox-
imity indexes varies depending on the observation tech-
nique. For instance, in a multihop scenario with a route
linking node ns to APi, the proximity index ds,i can be
obtained from the addition of consecutive hop length esti-
mates in the path linking the nodes. These hop lengths can
be estimated from perceived field strengths or propagation
delay of signals traveling between consecutive nodes.
Assuming that routing methods select the shortest path,
and in the absence of time measuring or field intensity
measuring capabilities, the number of hops will provide
an indicator of the proximity of a node to the access point.

Now, considering a homogeneous node density scenario
in the network, and regardless of the way that proximity
indexes are obtained, when the equality ds,i = ds,j is satis-
fied, we expect node ns to be equidistant to access points
APi and APj, this allows to define an orthogonal line APi \
APj evenly bisecting the segment connecting the APs where
all points in the line are equidistant to the access points APi

and APj as explained in the previous section (see Fig. 1).
When the proximity indexes ds,i and ds,j differ, we still

consider that the node n0 is a typical representative of its
neighbors. In such a scenario, the proximity index d0,i from
the NOI n0 to APi can be taken as the average of all the
proximity indexes of all the neighboring nodes ns 2 BR(n0)
to the access point APi. This is, the proximity index d0,i is
given by

d0;i ¼
1
N

XN

s¼1

ds;i: ð4Þ

Now, given the mean proximity indexes d0,i and d0,j to
access points APi and APj, respectively, the node n0 is meant
to be on the feasible location locus that is described by the
hyperbola Hij locus as the set of points that satisfy the
expression

jn0 � APij
jn0 � APjj

¼ d0;i

d0;j
¼ fij: ð5Þ

When a third access point APk is used in the algorithm,
the NOI feasibility region can be reduced to the intersec-
tion of hyperbolas Hij and Hki, and in order to cope with
the randomness of the proximity estimates, d0,i, d0,j, d0,k,
the hyperbola intersections Hjk \ Hki and Hjk \ Hij are also
considered, and n0 is assumed to be at the centroid of these
intersections. Although this suggests a merely algebraic
process average, errors arise as the nodes ns occupy ran-
dom locations within the R-neighborhood or R-ball
BR(n0). Also, distance estimates ds,i exhibit uncertainty as
they are subject to routing impairments when ds,i includes
the number of hops, or subject to propagation errors when



Fig. 2. Hyperbola locus for feasible location in ERPA. Proximity indexes represent distance measurements. NOI is at the center of the circle; (a) basic
scenario with 2 APs and (b) position location with 3 APs.
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field intensity or delay measurements are involved. Simi-
larly, and as previously discussed in Section 3, the number
of nodes N in the ball is a Poisson distributed number. In
the following section we report numerical results on the
performance of the algorithm, characterizing the effects
of measurement errors, number of neighbors per node,
and network node density on estimation accuracy for dif-
ferent scenarios.
5. Results

In order to assess the estimation accuracy of the pro-
posed techniques, several simulations were carried out.
For each simulation, several (three or more) APs with
known locations were assumed to be available in the net-
work. These APs were positioned on a plane in such a way
that a convex polygon with side length L was defined.
Nodes were randomly generated with a uniform distribu-
tion. Network node density was adjusted in order to pro-
vide the NOI with a specific number of neighbors. Then,
from all the nodes available in the network, one was ran-
domly selected to be the NOI. Simulation scenarios are
characterized by the ratio r = R/L in percentage
(r P 100% indicates a single-hop scenario, whereas
r < 100% indicates a multihop scenario). Increasing r is
the same as increasing the size of the R-neighborhood or
R-ball, BR(n0), hence, increasing the number of nodes sur-
rounding the NOI. Position estimation error is given by
the difference between the actual position of the NOI and
the estimate given by the algorithms. A common practice
in the literature is to report algorithm performance results
in terms of error normalized with respect to the node cov-
erage radius. Therefore, in this paper we report normalized
root mean square error (RMSE).

Fig. 3 presents normalized RMSE curves for DV-Hop,
RPA, and ERPA under different scenarios. Fig. 3a compares
the performance of RPA (when the location is at the inter-
section of straight lines) and ERPA (when the location is at
the intersection of hyperbola loci) versus the number of
neighbors for multihop noise-free scenarios (i.e., where
neighboring nodes know their precise distances to each
AP in the network). On the other hand, Fig. 3b compares
the performance of the three position location algorithms
as a function of r and the number of available APs in the
network.

From Fig. 3a, it can be observed how localization accu-
racy improves for both techniques as the number of neigh-
boring nodes grows. However, this improvement is more
significant for ERPA than for RPA. The reason behind this
behavior is that when the NOI knows its actual distance
to each AP in the network, ERPA allows it to estimate its
true position. On the other hand, RPA can only estimate
the exact location of the NOI when it lies in the straight
line that connects two given APs. If the NOI is displaced
upwards or downwards from this line, the estimation of
the drift, Dij, will be less accurate. Thus, for RPA, under
most scenarios it is impossible to estimate the exact loca-
tion of the NOI even in the presence of exact distance mea-
surements. Therefore, an increase of one node in the
neighborhood has a more significant positive effect in the
estimation accuracy of ERPA than it does in that of RPA.
Moreover, results verify that ERPA renders in better perfor-
mance than RPA for most scenarios. Nonetheless, for large
values of r and low number of neighboring nodes (i.e.,
approaching single-hop scenario category) RPA presents
better estimation accuracy than ERPA. In addition, the per-
formance of ERPA is shown to remain constant regardless
of the value taken by r. This feature makes it an equally
suitable choice for position location estimation in single
hop or multihop scenarios. On the other hand, r has a sig-
nificant effect over the performance of RPA. As depicted in
Fig. 3a RMSE decreases as r increases for RPA, meaning
that the accuracy of the position estimates provided by
RPA will increase as the scenario approaches a single hop
scheme.

As depicted in Fig. 3b, the number of available APs in
the network is a parameter that has important effects on
the estimation accuracy of DV-Hop, RPA, and ERPA. The
scenario considered for this analysis consisted in a network
with a fixed number of neighboring nodes (N = 7.6), there-
fore as the parameter r was varied, the network node den-
sity had to be adjusted to keep the number of neighbors
constant. Fig. 3b shows that, in this scenario, the estima-
tion accuracy for RPA is considerably decreased as the
number of APs is increased. This is due to the nature of
the algorithm which relies on line kij to sweep along the
polygon segment connecting APi and APj. As the number



Fig. 3. Normalized RMSE (a) as a function of neighboring nodes and r for RPA and ERPA and (b) as a function of the number of available APs in the network
and r for DV-Hop, RPA, and ERPA.
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of APs is increased, kij cannot longer sweep through the
entire polygon area, creating zones where the accurate
position estimation of the NOI becomes unfeasible. DV-
Hop also shows a negative trend in which its estimation
accuracy decreases as the number of available APs
increases. Nonetheless, under this scenario it seems to be
more robust than RPA, although it has the important draw-
back of requiring a preprocessing stage that significantly
increases traffic overhead in the network. Finally, ERPA
provides better accuracy as the number of available APs
in the network is increased.

As it was observed that ERPA outperforms RPA for most
scenarios, the rest of the simulation results are solely
focused in ERPA. In Fig. 3 it was shown that with only a
few neighboring nodes, and in the presence of noise-free
distance measurements, ERPA is capable of providing high
location estimation accuracy. Nonetheless, in a real
scenario many sources of measurement noise exist
(i.e., shadowing, scattering, multipath, etc.) Therefore, in
Fig. 4. Effect of measurement error over the normalized RMSE for ER
order to analyze the effect of measurement errors in loca-
tion estimation accuracy, additive measurement errors
were assumed to occur with an exponential distribution
with means ranging from of 5% to 20% of the actual dis-
tance measurements between NOI neighbors and the APs.
In Fig. 4 we report normalized RMSE, both for noisy and
noise-free scenarios. Comparison between Figs. 3a and 4a
allow the identification of yet another advantage of ERPA
over RPA, which is that with just a few neighboring nodes
to work with, and even in the presence of measurement
errors, ERPA exhibits better performance than RPA does
in noise-free scenarios for small values of r. Furthermore,
Fig. 4b shows the effect of measurement errors as a func-
tion of r and the amount of available APs in the network.

Fig. 4b allows the comparison of different distributions
of APs to find what configuration best mitigates the effect
of measurement errors. As it can be observed from the
normalized RMSE curves, in the absence of measurement
errors (Measurement Error Mean = 0 in the figure), the
PA as a function of (a) neighboring nodes and (b) available APs.



Table 1
Comparison between different position location algorithms.

Method Network node density Accuracy

RPA, r = 50% (noise-free) 7.6 Neighbors per node and 3APs 26% R
ERPA (noise-free) 7.6 Neighbors per node and 3APs 22% R
ERPA (error mean = 10%) 7.6 Neighbors per node and 3APs 32% R
ERPA (error mean = 20%) 7.6 Neighbors per node and 3APs 47% R
APIT (noise-free) 16 One-hop APs 40% R
DV-Hop (noise-free) 7.6 Neighbors per node with 30% to be APs 30% R
DV-Distance (noise-free) 7.6 Neighbors per node with 30% to be APs 15% R
Euclidean (noise-free) 7.6 Neighbors per node with 30% to be APs 10% R
MDS-MAP (noise-free) 12.2 Neighbors per node and 3AP 50% R
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estimation accuracy of the system is improved as the num-
ber of available APs is increased. Nonetheless, as the mea-
surement error mean is increased the trend changes. Even
with a measurement error mean of 5% the estimation accu-
racy of ERPA decreases as the number of APs increases.
Nevertheless, as the measurement error mean is increased,
the best configuration of APs changes from a triangle with
three APs, to four-AP polygon.

In order to evaluate how accurate both proposed loca-
tion estimation algorithms are, it is important to provide
a benchmark for comparison. Table 1 shows such a com-
parison between the performances of the methods pre-
sented in this paper and those of previously published
position location algorithms (data obtained from [3]). In
order to fairly compare these algorithms we have consid-
ered scenarios with an average of 7.6 neighbors per node
as in [3]. From Table 1 it can be observed that although
RPA is outperformed by ERPA for most scenarios, RPA
(accuracy of 26% R) can compete with techniques such as
DV-Hop, APIT, and MDS-MAP for medium and large values
of r. On the other hand, ERPA exhibits a better perfor-
mance than these three methods for any value of r. More-
over, RPA and ERPA offer the advantage of requiring only
three APs in the network, while DV-Hop, DV-Distance,
Euclidean, and APIT approaches employ a large number
of APs (e.g., APIT requires 16 one-hop APs). In addition,
the proposed approaches do not require a preprocessing
Fig. 5. Effect of measurement error over the normalized RMSE for ERPA as
a function of area node density.
stage, as opposed to DV-Hop and DV-Distance, lowering
the computational and communication costs.

It is important to bear in mind that in a real scenario the
number of neighbors is not a parameter to be controlled
(but network node density is), because in a homogeneous
scenario it is a Poisson distributed number. Fig. 5 shows
the normalized RMSE in terms of the network node density
(it is important to bear in mind that the estimation accu-
racy of ERPA is not dependent on r and therefore any curve
from Fig. 3 can be taken as the noise-free reference). It can
be noted that the estimation accuracy of the algorithm
improves as node density increases. However, as node den-
sity grows for noisy scenarios, the RMSE reaches a plateau
determined by the distribution of the measurement error.
At this point, the RMSE will no longer be dependent on
node density.
6. Conclusions

In this work, we introduced two algorithms, RPA and
ERPA, for position location in AHWSNs with neighbor
cooperative information. Proposed heuristics determine
the location of a Node of Interest (NOI) in terms of the
number of nodes in the neighborhood surrounding the
NOI. The proposed methodology can be applied to a wide
variety of both indoor and outdoor scenarios, provided that
proximity indicators are obtainable either via direct mea-
surements or by the relations of the NOI to surrounding
neighbors. The accuracy of the proposed location estima-
tion methods relates to the available information as well
as to the measurement errors caused by the range estima-
tion techniques used and the propagation conditions. The
algorithms proposed are based on the proximity indexes
which can be defined depending on the distance estima-
tion technique available in the network. Performance for
several schemes has been examined and in order to have
applicability to a wide range of scenarios, results are nor-
malized with respect to the coverage radius of the NOI.
Also, the impact of measurement noise, node density, and
available APs is presented.

Results show that the location accuracy improves as the
number of cooperating nodes increases, however, high
node densities of neighboring nodes are not necessarily
required to achieve a good localization accuracy. Further-
more, both RPA and ERPA methods were shown to present
advantages over known location estimation techniques on
the accuracy of the location estimation as a percentage of



28 V.H. Perez-Gonzalez et al. / Ad Hoc Networks 24 (2015) 20–28
the coverage radius. Also, both RPA and ERPA were shown
to provide advantages in terms of computational and com-
munication costs. Furthermore, the proposed methods also
reduce the number of APs needed to provide acceptable
location estimation accuracy.
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