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Abstract

Conventional numeric simulations of rock-fill dams are generally performed finite element method (FEM), in which the rock-fill body is

treated as continuum material. But the rock-fill body possesses strong discontinuity and FEM based on continuum idealization cannot

simulate its failure process. The discontinuous deformation analysis (DDA) method is just the right tool of solving this problem satisfactorily.

In this paper, two kinds of model dams, i.e. homogeneous rock-fill dam and concrete-faced rock-fill dam, are simulated using DDA method,

their characteristics of response and failure process are presented. The results from numerical simulations are consistent with those from the

author’s previous dynamic experiments.
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1. Introduction

A large number of model tests have been conducted

[1–3] to obtain in-depth insights into failure mechanism of

concrete-faced rock-fill dams subjected to seismic loading.

Quite differ from that of conventional center-core rock-fill

dams, the failure process of concrete-faced rock-fill dams is

characterized by the following two most remarkable

features. Firstly, the initial sign of rupture appears as the

surface starts sliding off the downstream slope. The concrete

facing plate, which spreading over the entire upperstream

slope, restrains the motion of rocks beneath it and thus

enhances the stability of the underlying slope. Secondly, as

the intensity of the shake given to the dam further increases,

the facing plate gradually follows the deformation of the

underlying rocks, and eventually, is cracked and broken into

a number of fragments.

Although concrete-faced rock-fill dams can be modeled in

a discrete manner with finite element method (FEM) and BEM

using special joint elements, the description of discontinuities

is usually difficult and there are often restrictions on the degree

of deformation permitted. Furthermore, the number of

locations where discontinuities can be handled is very limited.

On the other hand, the discrete element method (DEM) is

generally tailored for problems in which there are many

material discontinuities, with special emphasis on how the

contacts are handled. It also allows for large deformation along

discontinuities and can reproduce block movements (trans-

lation and rotation) quite well.

The discontinuous deformation analysis (DDA) method is

a recently developed numerical method that is a member of

the family of DEM. The DDA method includes a complete

block system kinematics to describe the contact behavior and

to obtain large displacement and deformation solutions for

discrete multi-body system. The contact constraint formu-

lation of DDA at block boundaries is based on penalty

method. Using DDA, the equations of equilibrium and

equations defining constraint conditions at contact interface

are solved simultaneously and implicitly. DDA adopts step-

by-step time marching scheme for both static and dynamic

calculations. The incorporation of diagonally dominated

inertia matrix for both static and dynamic calculations makes

the global coefficient matrix well conditioned. For a DDA

system, the equilibrium condition, the no-tension, no-

penetration constraint conditions, and the Coulomb’s friction

law are satisfied at all contacts.

2. The DDA formulation

2.1. Block deformations and displacements

In DDA method, the formulation of blocks is very similar

to the definition of a finite element mesh. A finite element
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type of problem is solved in which all elements are

physically isolated blocks bounded by pre-existing dis-

continuities. The elements or blocks in DDA can be of any

shape and the simultaneous equilibrium equations are

selected and solved at each loading or time increment.

The large displacements and deformations are the accumu-

lation of incremental displacements and deformations at

each time step. Within each time step, the incremental

displacements of all points are assumed to be small and can

be reasonably represented by the first order approximation.

By using the complete first order polynomial as

displacement function for a block, the DDA method

assumes that each block has constant strains and stresses

throughout. The displacements ðu; vÞ at any point ðx; yÞ in a

block, i, can be related in two dimensions to six

displacement variables

{Di} ¼ {d1i; d2i; d3i; d4i; d5i; d6i}
T

¼ {u0; v0; r0; 1x; ey; gxy}T ð1Þ

where ðu0; v0Þ is the rigid body translation at a specific point

in the block, r0 is the rotation angle of the block and 1x, 1y

and gxy are the normal and shear strains in the block.

The complete first order approximation of the block

displacement takes the following form

u ¼ a1 þ a2x þ a3y v ¼ a4 þ a5x þ a6y ð2Þ

and in matrix formulation

u

v

( )
¼ ½Ti�{Di} ð3Þ

where

½Ti� ¼
1 0 2ðy2 y0Þ ðx2 x0Þ 0 ðy2 y0Þ=2

0 1 ðx2 x0Þ 0 2ðy2 y0Þ ðx2 x0Þ=2

" #

ð4Þ

This equation enables the calculation of the displacements

at any point ðx;yÞ within the block when displacements are

given at the center of the rotation and when the strains are

known. In the two-dimensional formulation of the DDA, the

center of rotation with coordinates ðx0;y0Þ is assumed to

coincide with the block centroid.

2.2. Equilibrium equations

In the DDA method, individual blocks form a system of

blocks through contacts among blocks and displacement

constrains on single blocks. Assuming that n blocks are

defined in the block system, Shi [4] showed that the

simultaneous equilibrium equations could be written in

matrix form as follows

K11 K12 · · · K1n

K21 K22 · · · K2n

..

. ..
. ..

. ..
.

Kn1 Kn2 · · · Knn

2
66666664

3
77777775

D1

D2

..

.

Dn

2
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3
77777775

¼

F1

F2

..

.

Fn

2
66666664

3
77777775

ð5Þ

where each coefficient Kij is defined by the contacts between

block i and j. Since each block i has six degrees of freedom

defined by the components of {Di} in Eq. (1), each Kij in

Eq. (5) is itself a 6 £ 6 sub-matrix. Also, each Fi is a 6 £ 1

sub-matrix that represents the loading on block i. The

system of Eq. (5) can also be expressed in a more compact

form as KD ¼ F where K is a 6n £ 6n stiffness matrix, and

Dand F are 6n £ 1 displacement and force matrices,

respectively. The total number of unknown displacement

is the sum of the degrees of freedom of all the blocks.

The solution to the system of Eq. (5) is constrained by a

system of inequalities associated with block kinematics (e.g.

no penetration and no tension between blocks) and

Coulomb’s friction for sliding along block interface. The

simultaneous equations are derived by minimizing the total

potential energy of the block system, II. The total potential

energy is the summation over all the potential energy

sources:

Fig. 1. Cross-section of model dam.

Fig. 2. Initial configuration of the homogeneous rock-fill dam model.

Table 1

Mechanical properties of rock-fill and facing slab materials

Density

(g/cm3)

Inter

friction

angle (8)

Young’s

modulus

(MPa)

Poisson’s

ratio

Cohesion

(MPa/m2)

Tensile

strength

(MPa)

Rock-fill

material

1.55 42 210 0.30 0.1 0.1

Facing slab

material

1.60 42 1100 0.28 0.1 0.1
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† The strain potential energy, Pe, produces stiffness

matrix;

† The potential energy of initial stresses, Ps, stresses

produces the initial stress matrix;

† The potential energy of point loading, Pp, produces the

point loading matrix;

† The potential energy of volume loading, Pv, produces

the volume loading matrix;

† The potential energy of inertia, Pi, produces mass

matrix;

† The strain potential energy of contact (normal and shear)

springs, Pc; produces contact matrix.

By minimizing the total potential energy, all the block

matrices would be produced similar to FEM

›2P

›dir›djs

; r; s ¼ 1; 2;…; 6 ð6Þ

where the dir and djs are the deformation variables of block i

and block j, respectively.

Both static and dynamic analysis can be performed using

DDA method. For static analysis, the velocity of each block

in the block system at the beginning of each time step is

assumed to be zero. On the other hand, in the case of

dynamic analysis, the velocity of the block system in the

current time step is an accumulation of the incremental

velocities in the previous time steps.

2.3. Energy loss

In the original dynamic computations of DDA, no energy

dissipation due to mutual bumping between blocks is

considered. This means that the method of DDA is strictly

confined by the law of conservation of mechanical energy.

In fact, however, lots of materials are not perfectly elastic

and inelastic deformation may occur and thus cause loss of

energy during static or dynamic contact. In addition, partial

energy will be dissipated due to friction between grains and

micro cracking of blocks, etc. So the mechanical energy will

transform into other forms of energy (i.e. thermal). Pei has

studied this case [5].

If the movement of block system obeys the law of

conservation of general energy, then the total energy of

block, E, is equal to its kinetic energy, Ek, before block

bumping

E ¼ EK ð7Þ

During bumping, the kinetic energy of block system, Ek,

will partially transform into strain energy, Es, and partially

into thermal energy, ET, then E changes to

E ¼ Es þ ET ð8Þ

After bumping of block system, the blocks rebound. In this

time, the strain energy, ES; transforms into new kinetic

energy, EK(S), again. Then the total energy, E, can be written

as

E ¼ EKðSÞ þ ET ð9Þ

Obviously, the kinetic energy after bumping, EK(S), is less

than the kinetic energy before bumping, EK. If the lost

energy can be expressed as the kinetic energy prior to

bumping multiplied by a coefficient K (less than one), then

the equation for the new energy after bumping will be

ET ¼ KEK EKðSÞ ¼ ð1 2 KÞEK ¼ KKEK ð10Þ

If we assume the reaction force being in proportion to

resilience energy, the reactive inertia force after bumping

with energy loss can be written as

fx

fy

( )
¼ KKM

›2uðtÞ
›t2

›2vðtÞ
›t2

8<
:

9=
; ð11Þ

where M is the mass of material. This equation indicates that

the reaction force after block bumping is less than the

impacting force.

Fig. 3. Block displacements after 4000 steps of 0.0001 s.

Fig. 4. Block displacements after 12,000 steps of 0.0001 s.

Fig. 5. Block displacements after 21,000 steps of 0.0001 s.

Fig. 6. Comparison between initial and deformed block system.
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3. Illustrating examples

Based on the earlier discussion, a comprehensive soft-

ware system called DDAW for the two-dimensional DDA is

developed on Windows platform. Because of the convenient

pre-processor and post-processor and the high-performance

equation solver, DDAW offers great convenience and high

efficiency for practical applications.

The dynamic failure process of two kinds of model

dams, i.e. a homogeneous rock-fill dam and a concrete-

faced rock-fill dam, are simulated by the DDA method.

The model concrete-faced rock-fill dam and the homo-

geneous rock-fill dam have exactly the same geometry and

material properties except that the homogeneous rock-fill

dam has no facing plate on the upstream slope. The cross-

section of the model dam used in the simulation is given

in Fig. 1. This is same as the one used in model tests. The

rock-fill of the model dam is meshed into 4224 blocks,

whereas the facing slab is modeled as one block only.

Table 1 shows the mechanical properties of the rock-fill

and facing slab. El-Centro earthquake is input directly into

DDA computation and its maximum acceleration is 0.45g,

where g is the gravity acceleration. Fig. 2 shows the initial

configuration of the model homogeneous rock-fill dam, its

block displacements after 4000, 12,000 and 21,000 steps

of 0.0001 s are shown in Figs. 3–5, respectively. Fig. 6

shows the comparison between initial and deformed block

system of the model homogeneous rock-fill dam, Its block

displacements after 8000, 16,000 and 24,000 steps of

0.0001 s are shown in Figs. 7–9, respectively. Finally,

Fig. 10 shows the comparison between initial and

deformed block system of the model concrete-faced

rock-fill dam.

4. Conclusions

The dynamic response characteristics and failure process

of concrete-faced rock-fill dams are different from those of

homogeneous rock-fill dams. The failure of the concrete-

faced rock-fill dams usually starts with the slop sliding at the

vicinity of the downstream crest. It takes the form of the

shallow-seated slip. Compared with the downstream slope,

the upstream slope has a rather high stability due to the

facing slab.

Under strong earthquake, the failing of the soil mass,

including loosening, sliding and subsiding, leads to the loss

of supports of the slab which in turn triggers the fracture

occurred in the upper portion of the facing slab.

In order to enhance the stability of concrete-faced rock-

fill dams, it is very important to enhance the downstream

slope stability.

The results from numerical simulations are consistent

with those from the author’s previous dynamic experiments.

This demonstrates that the DDA method is capable of

simulating large displacement and deformation problems of

discontinuous multi-body block system.
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Fig. 8. Block displacements after 16,000 steps of 0.0001 s.

Fig. 9. Block displacements after 24,000 steps of 0.0001 s.

Fig. 10. Comparison between initial and deformed block system.Fig. 7. Block displacements after 8000 steps of 0.0001 s.
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