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Abstract—This paper proposes a novel decoupling scheme for a 

bearingless permanent magnet synchronous motor (BPMSM) to 
achieve fast-response and high precision performances and to 
guarantee the system robustness to the external disturbance and 
parameter uncertainty. The proposed control scheme 
incorporates the neural network inverse (NNI) method and 2- 
degree-of-freedom (DOF) internal model controllers. By 
introducing the NNI systems into the original BPMSM system, a 
decoupled pseudo-linear system can be constituted. Additionally, 
based on the characteristics of the pseudo-linear system, the 
2-DOF internal model control theory is utilized to design extra 
controllers to improve the robustness of the whole system. 
Consequently, the proposed control scheme can effectively 
improve the static and dynamic performances of the BPMSM 
system, as well as adjust the tracking and disturbance rejection 
performances independently. The effectiveness of the proposed 
scheme has been verified by both simulation and experimental 
results. 
 

Index Terms—Bearingless permanent magnet synchronous 
motor (BPMSM), decoupling control, internal model control, 
neural network inverse (NNI). 
 

I. INTRODUCTION 

ermanent magnet synchronous motors (PMSMs) have been 
extensively investigated and applied all over the world due 

to its advantages of simple structure, reliable operation, high 
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efficiency, high torque density and power density, high 
robustness, reasonable cost, suitable for high speed, etc [1]-[4]. 
However, there may be many issues when the mechanical 
bearings are employed to bear the high-speed shaft of PMSMs 
[5]. On the one hand, the utilization of mechanical bearings can 
lead to the problems of heavy friction and wear [6], which may 
not only cause inefficiency of motors and short lifespan of the 
mechanical bearings but also increase the maintenance of 
motors. On the other hand, in some extreme conditions such as 
vacuum and fluid pumps in chemical and biochemical, 
pharmaceutical, and semiconductor industries, where an 
ultrahigh cleanness has to be guaranteed, the lubrication oil that 
is required by mechanical bearings cannot be used. 

To effectively solve these problems caused by mechanical 
bearings, magnetic bearings are researched and developed [7], 
[8]. The technique of magnetic bearings is an ingenious 
solution to the problems of mechanical bearings since it has the 
advantages of no friction, no abrasion, no lubrication, 
maintenance-free operation, high durability, high speed and 
high precision, and lower shear stress and heat generation [9]. 
However, high power density of the motors with magnetic 
bearings is difficult to implement due to its complex structure 
and increased axial length of the rotor [10]. 

One of the solutions to overcome the shortcoming of 
magnetic bearings can be bearingless motors [11]. A 
bearingless motor is a magnetically integrated machine with the 
functions of both rotation and noncontact magnetic suspension. 
Bearingless permanent magnet synchronous motors 
(BPMSMs), having torque and suspension force windings in 
the stator, can be designed with high efficiency, high torque 
density and power density, reliable operation, compact size, 
and reasonable cost. BPMSMs have demonstrated the potential 
applications in turbomolecular pumps, centrifugal machines, 
high-speed precision mechanical processing, compressors, 
aeronautics and astronautics, flywheel energy storage, 
semiconductor industries, life science, etc [12]. 

The traditional linear control scheme, i.e., the 
proportional-integral-differential (PID) control scheme, are 
usually preferred but due to their fixed proportional gain (Kp), 
integral time constant (Ti), and differential time constant (Td), 
the performance of the PID control scheme can be affected by 
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parameter variations, load disturbances and speed variations 
[13], [14]. Therefore, it is very difficult for this linear control 
scheme to obtain a sufficiently high-performance control for 
the BPMSM system which is a multivariable, nonlinear, and 
strongly coupling system with the time-variance of plant 
parameters as well as unavoidable disturbances. 

If a nonlinear system can be equivalent to a linear one, the 
control of the nonlinear system is immensely simplified. 
Consequently, we can make use of all kinds of mature control 
strategies to design appropriate closed loop controllers for the 
simplified system. So far, inverse system method has been 
widely used in decoupling control of nonlinear systems [15], 
[16]. We can construct the inversion of the nonlinear system, 
and then cascade it with the original system to achieve the 
decoupling control of the nonlinear system. Nevertheless, the 
accurate mathematical models of the controlled plants are 
prerequisite when the inverse system method is employed. Due 
to the complexity of the BPMSM system, its mathematical 
model cannot be obtained precisely. Hence, the purpose of 
decoupling control is difficult to achieve by only utilizing the 
inverse system theory. The other approaches are needed to 
combine with the inverse system theory to realize the 
decoupling control. 

As neural network technology is advancing fast, its 
applications in different fields are expanding rapidly [17]-[19], 
including combined with inverse system theory to construct a 
neural network inverse (NNI) system [20], [21]. In [20], the 
NNI control scheme is adopted by M. Xu et al. to achieve the 
decoupling control of a bearingless synchronous reluctance 
motor, and the expert PID controllers are employed for the 
pseudo-linear system. However, only the decoupling control 
between the radial suspension displacements in x- and y- 
directions is carried out, and the decoupling control among 
radial displacements and speed are not yet considered. In 
addition, only some simple simulation researches are studied in 
[20], and the further experimental studies are not performed. In 
[21], with regard to the control issue of a bearingless induction 
motor, Z. Wang and X. Liu adopt the NNI control and internal 
model control method, and some simulation and experimental 
researches are carried out. However, the traditional internal 
model control used in [21] has only one degree-of-freedom 
(DOF). It is obvious that the utilization of a filter to detune the 
controller imposes the tradeoff of sacrificing control 
performance to obtain the robustness [22]. 

Up to now, there is rare literature concerning the control 
issue of the BPMSM system by adopting the NNI plus internal 
model control scheme. Since the developed pseudo-linear 
system of the BPMSM by using the NNI control scheme is not a 
simple linear system, the uncertainties, unmodeled dynamics, 
and parameters variations may inevitably influence the 
properties of decoupling, tracking, disturbance rejection and 
robustness. The traditional internal model control can obtain 
good performance for set point tracking, but gives the sluggish 
response for disturbance rejection problem. That is to say, it is 
difficult for traditional internal model control to give 
consideration to both tracking and disturbance rejection 
properties [23]. Therefore, for purpose of improving the static 

and dynamic properties of the whole BPMSM system, and 
adjusting the performances of tracking and disturbance 
rejection independently, the NNI control scheme plus 2- DOF 
internal model controllers are adopted in the paper.  

The paper is arranged as follows. In Section II, the 
mathematical model of the BPMSM and its inversion will be 
deduced. In Section III, the NNI control scheme is employed 
for decoupling control of the BPMSM system, and then the 
2-DOF internal model controllers are designed to improve 
system robustness. After that, simulation and experimental 
studies are performed to verify the effectiveness of the 
proposed control scheme in Section IV. Finally, the 
conclusions will be drawn in Section V. 

II. INVERSE SYSTEM MODELING 

A. Principle of Radial Suspension Force Generation 

The torque winding (with pole pair PM and radian frequency 
ωM) and suspension force winding (with pole pair PB = PM±1 
and radian frequency ωB =ωM) are wound together in the same 
stator slots of the BPMSM to generate the torque and radial 
suspension force simultaneously. Subscripts M and B 
correspond to torque winding and suspension force winding, 
respectively (the same hereafter). 

Fig. 1 shows the principle of the radial suspension force 
generation. As shown in Fig. 1, windings NMd and NMq are 
2-pole torque windings, and windings NBd and NBq are 4-pole 
suspension force windings. When the rotor is located in the 
center, the symmetrical 2-pole flux ψ2 is generated by the 
torque winding current and PMs. If the BPMSM is driven at no 
load, the 2-pole fluxes produced by the of torque winding 
currents iMd and iMq are small enough to be neglected. Under the 
condition that the suspension force winding current is zero, 
only the symmetrical 2-pole excitation flux linkage ψ2 
illustrated with the solid curves plus arrows is generated by the 
PMs, which causes the airgap flux density equal to each other in 
airgaps 1 and 3, and no radial suspension force is generated on 
the rotor. If the suspension force winding current iBd in the 
suspension force winding NBd exists as shown in Fig. 1, the 
symmetrical 4-pole suspension force flux ψ4 shown with the 
dotted curves plus arrows is generated. As a result, the flux 
density is increased in the airgap 1 since the direction of the 
4-pole suspension force flux ψ4 is the same as that of the 2-pole 
excitation flux linkage ψ2. On the contrary, the flux density is 
decreased in the airgap 3 for the direction of ψ4 is opposite to ψ2. 
Hence, the radial suspension force Fx, which tends to move the 
rotor to the positive x-direction, is generated, as shown in Fig. 1. 
A radial suspension force toward the negative direction in the 
x-axis can be produced with a negative current iBd in the 
suspension force winding NBd. Similarly, the radial suspension 
force Fy in the y-axis can be produced by the suspension force 
winding current iBq in the suspension force windings NBq. 
Therefore, radial suspension force F can be generated in any 
desired direction by a vector sum of Fx and Fy. 
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Fig. 1. Principle of the radial suspension force generation. 

 

B. Description of the Mathematics Model 

When the nonlinear magnetic saturation of magnet, the 
unbalance pull, and the iron losses are neglected, the theoretical 
formulae of the radial suspension forces and torque can be 
given as  
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where Fx and Fy are the suspension force components in x- and 
y-directions, respectively; iBd and iBq are current components of 
suspension force windings in d-q coordinate, respectively; 

Md Md fMd= +L i  , and Mq Mq MqL i   are the airgap flux linkages 

components of torque windings and PMs of rotor in the 
synchronously rotating d-q reference frame, respectively; Ψf is 
the equivalent excitation flux linkages of PMs; LMd and LMq are 
the self-inductances of torque windings in the synchronously 
rotating d-q reference frame, respectively; iMd and iMq are 
current components of torque windings in the synchronously 
rotating d-q reference frame, respectively;

 M M B m 2 0 M WM B WB8K P P L lr W k W k   , and 

 L M B WB M WM4K P W k rW k   are Maxwell forces and Lorentz 

forces constants, respectively; PM and PB are the pole-pair 
numbers of torque and suspension force windings, respectively; 
Lm2 is the mutual inductance of suspension force windings;

 

l is 
the length of rotor iron core; r is the radius of the stator inner 
surface; WM and WB are the number of turns of torque and 
suspension force windings, respectively; kWM and kWB are 
winding factor of torque and suspension force windings, 
respectively. 

According to the rotor dynamics and Newton’s second law, 
the dynamic model of system motion equations can be written 
as 
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where x and y are the radial displacements in x- and y-directions, 
m is mass of the rotor, g is the gravity constant, J is the moment 

of inertia of the rotor, ω are speed of rotor, and T and TL are the 
electromagnetic torque and the load torque, respectively. 

C. Analysis of the Invertibility of the BPMSM 

The objective of the proposed control scheme is to decouple 
the rotational speed ω and the radial displacements x and y in x- 
and y-directions. Hence, ω, x and y are chosen as the outputs of 
the BPMSM system, and output variables are 

   T T

1 2 3= y , y , y = x, y,Y . In addition, choose the suspension 

force winding current components iBd and iBq , and the torque 
winding current components iMd and iMq to be the input 

variables, then    TT

1 2 3 4 Md Mq Bd Bq= =u ,u ,u u i ,i ,i ,i,U . Choose ω, 

x, y, and the first derivative of x and y to be the state variables, 

then    T T

1 2 3 4 5x , x , x , x , x x, y , x, y ,   X . Consequently, (2) 

can be rewritten as 
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According to the inverse system theory and Interactor 
algorithm, the outputs of the system are differentiated until the 
derivatives contain input U obviously 

1 1 3y x x                                     (4) 
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Thus, the Jacobi matrix can be resolved as
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Obviously, rank[A(X, U)]=3 and the matrix A(X, U) is 
nonsingular. Moreover, the relative orders of the system are: 
α=(α1,α2,α3)=(2, 2, 1), which satisfy α1+α2+α3 = 5 ≤ n (is the 
number of the state variables). Thus, it can be concluded that 
the inverse of the original system is existent. According to 
implicit function theorem, the inverse system can be written as: 

1 2 3 4 1 1 2 2 2 2 3 3[ , , , ] ( , , , , , , , , )Tu u u u y y y y y y y y      U X  (10) 

III. NNI-BASED INTERNAL MODEL CONTROL STRATEGY 

Even if the inverse of the BPMSM system has been obtained, 
it is still difficult to get its exact expression. Moreover, there are 
lots of parametric perturbations, unpredictable disturbances, 
and unmodeled dynamics in the practical application, the 
robustness and anti-disturbance often cannot meet the 
requirements. Therefore, NNI and internal model control 
theories will be introduced to improve these problems in this 
section. 

A. Back-Propagation Neural Networks 

There are many different types of neural networks, and one 
neural network which has received most attention in the field of 
engineering applications is the feed-forward neural network 
with the back-propagation (BP) learning algorithm, i.e., BP 
neural network. A BP neural network consists of a number of 
interconnected processing elements, commonly referred to as 
neurons, which are often grouped into input, hidden and output 
layers. Each neuron is connected to all the neurons in the next 
layer, and it has weighted inputs, summation function, transfer 
function and output. The transfer functions of neurons 
primarily determine the behavior of a BP neural network. The 
summation function is computed from the weighted sum of all 
input neurons, and its expression can be given as: 

1netk k
j ji i

i

w O                                   (11) 

where netk
j  is the summation function of the j-th neuron in the 

k-th layer, wji is the weight from the i-th neuron in the (k-1)-th 

layer to the j-th neuron in the k-th layer and 1k
iO   is the output 

of the i-th neuron in the (k-1)-th layer. 
The activation signal of the summation function can be 

treated as an input to the transfer function from which the 
output of the neuron is determined. The role of the transfer 
function is to translate the summed information into outputs. In 
this paper, a tangent function is employed as the transfer 

function. The output of the j-th neuron k
jO for the k-th layer can 

be expressed as: 
net net

net net
(net )
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j j
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                 (12) 

The desired output Tj is compared with the actual output Oj, 
and the error Ep is computed, respectively, which can be 
expressed as: 

21
( )

2p j j
j

E T O                     (13) 

The connection weights are modified to reduce the error 
associated with the overall error function. In this paper, the 

gradient descent method plus a momentum term is utilized to 
minimize the error E between the desired and actual outputs of 
the BP neural network as rapidly as possible. The new 
incremental change of weight Δwji(n+1) can be given as: 

   1ji ji
ji

E
w n w n

w
 

   


Δ Δ            (14) 

where n is the index of iteration, α is the momentum coefficient 
and η is the learning rate. The BP neural network can memorize 
the relationship between the input and output vectors through 
the connection weights via this learning process. 

B. NNI System 

The BP neural network is utilized to approach the inversion 
of the BPMSM system, and five integrators are used to 
characterize its dynamic characteristics. The original BPMSM 
system is excited by the appropriate incentive signals of the 
suspension force and torque windings currents iMd, iMq, iBd, and 
iBq in the actual operating area, and then the corresponding 
responses of radial displacements x and y, and speed ω can be 
obtained. Then, the input and output signals {iMd, iMq, iBd, iBq, x, 
y, ω} of the original BPMSM system can be sampled. 
According to (10), the input signals of the inversion include 
radial displacements x and y and their 1-order and 2-order 
derivative, and speed and its 1-order derivative, and the output 
signals include suspension force and torque windings currents 
iMd, iMq, iBd, and iBq. Therefore, the inputs and outputs of the 
neural network are { x , x , x , y , y , y , , } and {iMd, iMq, iBd, 

iBq }. Regarding the differentiators appearing in the inputs of 
the neural network, it can be realized by using a five-point 
numerical differential algorithm to guarantee high computing 
accuracy.  

After the derivatives { x , x , x , y , y , y , , } were gained 

by the five-point numerical differential algorithm, the training 
sample sets { x , x , x , y , y , y , , } and {iMd, iMq, iBd, iBq } of 

the neural network can be finally obtained. Before the 
beginning of the training process, both input and output 
variables should be normalized to obtain a usable form for the 
BP neural network to read.  

According to the inputs and outputs of the BP neural network, 
it is easy to determine that the numbers of neurons in the input 
and output layers are 8 and 4, respectively. However it is not so 
easy to determine the appropriate number of neurons in the 
hidden layer since there is currently no definite rule to choosing 
it, and it is usually determined according to the experiments and 
researchers’ experience. The average root-mean-square (RMS) 
error ERMS between the actual output yj and predicted output jy


 

is used to check the convergence criterion for the developed 
networks, and can be calculated with the following equation: 

2
RMS

1 1

1 1
( )

p n

ji ji
i j

E y y
p n 

   
            (15) 

where p and n are the numbers of training or testing data and 
variables in the output vector, respectively. The influence of 
number of neurons in hidden layer on the network performance 
is studied, which is shown in Table I. It can be seen that 
increasing the number of neurons in the hidden layer cannot 
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ensure the decrease of the average RMS error ERMS. Therefore, 
from Table I, it can be obviously observed that the optimal 
number of the neurons in the hidden layer is 18.  

 
TABLE I  

INFLUENCE OF HIDDEN-LAYER NEURONS ON THE NETWORK PERFORMANCE 

Configuration Training ERMS Testing ERMS 

8-8-4 0.0667 0.0652 
8-10-4 0.0658  0.0641 
8-12-4 0.0663  0.0639 
8-14-4 0.0657  0.0627 

8-16-4 0.0652  0.0623 
8-18-4 0.0634 0.0602 
8-20-4 0.0662  0.0627 
8-22-4 0.0659  0.0631 
8-24-4 0.0648  0.0629 

8-26-4 0.0659  0.0632 

 
Then various parameters of the BP neural network, including 

the learning rate, momentum coefficient, and number of 
neurons in the hidden layer, can be optimized by trial-and-error. 
The learning rate can determine the changing speed of the 
weights, and the momentum coefficient can prevent the 
unexpected changes in obtaining the results. In this paper, the 
learning rate and momentum are set at 0.12 and 0.88 through 
experimentation, respectively. After approximate 800 epochs 
training, the training error of the BP neural network is under 
0.001 and hence meeting the requirement. Therefore, the BP 
neural network is constructed successfully. 

The trained BP neural network can then be used to 
implement the inversion of the original BPMSM system, and 
accordingly by cascading the NNI with original system, a 
pseudo-linear system can be built as illustrated in Fig. 2. The 
pseudo-linear system is equivalent to two 2-order and a 1-order 
linear integral subsystems. The developed scheme does not 
need the accurate model of the original system, and the 
robustness and anti-disturbance of the whole system can be 
improved greatly. 
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Fig. 2. Diagram of pseudo-linear system. 

 

C. 2-Degree-of-Freedom Internal Model Controllers 

It can be found from Fig. 2 that by cascading the NNI with 
the original BPMSM system, a simple open-loop pseudo-linear 
system is constituted. Thus, to achieve the high-performance 
control of the BPMSM system, the closed-loop controllers are 
the essential parts of the whole control system. 

In this section, we will develop the 2-DOF internal model 
controllers for the open-loop pseudo-linear system. According 
to Fig. 2, two radial displacements and speed are decoupled, so 
controllers for three pseudo-linear subsystems are designed 

independently. Taking the x- direction radial displacement as 
an example, Fig. 3 shows the structure of 2-DOF internal model 
controller, where G(s) and Gx(s) are the real plant to be 
controlled and the internal model, respectively, Gc1(s) and Gc2(s) 
are internal model controllers, x

* and x are the reference input 
and output of x- direction radial displacement, respectively, v is 
the control input, dx is the outer disturbance input, and e is the 
error. 

e

*x 

( )G s
xd


x









v u

 
Fig. 3. The 2-DOF internal model controller structure. 

 
The ideal transfer function of the pseudo-linear subsystem of 

x- direction radial displacement can be written as 
2( ) 1xG s s                               (16) 

The transfer function (16) is the nominal model of the radial 
displacement in x- direction of the BPMSM system. However, 
the composition of the actual control plant and its inversion (10) 
do not exactly equal to the linear subsystem (16) due to the 
existence of model errors and unmeasurable disturbances. The 
actual transfer function of the pseudo-linear subsystem, 
including the uncertainties and noises, can be expressed as 

( ) ( ) ( )x dG s G s G s                        (17) 

where Gd(s) denotes an arbitrary uncertainty. 
From Fig. 3, we can calculate the output as 

*
1 2

2

( ) ( ) ( ) ( )(1 ( ) ( ))
( )

1 ( ) ( )
c x c x

c d

x s G s G s d s G s G s
x s

G s G s

 



   (18) 

If the internal model is accurate, i.e., Gx(s) = G(s), (18) can 
be rewritten as 

*
1 2( ) ( ) ( ) ( ) ( )(1 ( ) ( ))c x x c xx s x s G s G s d s G s G s      (19) 

From (19), we can see that the tracking performance only 
depends on Gc1(s), while the disturbance rejection property 
only relies on Gc2(s). To track the reference input x without any 
steady-state error as well as to enhance the system robustness, 
the internal model controller Gc1(s) and Gc2(s) are designed as 

1
1 1

1
2 2

( ) ( ) ( )

( ) ( ) ( )
c x

c x

G s G s Q s

G s G s Q s





 



                   (20) 

where Q1(s) and Q2(s) are the low-pass filters, and can be 
commonly chosen as 

2
1 1

2
2 2

( ) (1 )

( ) (1 )

Q s s

Q s s








  


 
                        (21) 

where λ1 > 0 and λ2 > 0. 
Moreover, by simplifying Fig. 3, we can obtain the improved 

2-DOF internal model controller as depicted in Fig. 4. Here 
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Fig. 4. The closed-loop system of the 2-DOF internal model controller. 

 
The design process of the 2-DOF internal model controllers 

for the y- direction radial displacement shares the similar way. 
Moreover, the transfer function of the pseudo-linear subsystem 
of the rotor speed system is Gω(s) = 1/s. Thus, similarly, the 
corresponding 2-DOF internal model controllers can be 
designed as 

2

1

2

1
( )

1

1
( )c

s
T s

s

G s






   

  


                            (23) 

D. Tracking, Disturbance Rejection, and Robustness 
Performances of the Designed 2-DOF Internal Model 
Controller 

From Fig. 4, we can define the output error transfer function 
of the closed-loop system as 

*

*

( ) ( ) ( )

(1 ( ) ( )(1 ( ))) ( ) ( )

1 ( ) ( )
c x

c

E s x s x s

G s G s T s x s d s

G s G s

 

  




      (24) 

To analyze the tracking performance, letting dx(s) = 0 and 
G(s) = Gx(s), then (24) can be written as 

* 2 *
1 1( ) (1 ( )) ( ) 1 (1 ) ( )E s Q s x s s x s                (25) 

Similarly, to analyze the property of disturbance rejection, 
letting x*(s) = 0 and G(s) = Gx(s), then (24) can be written as 

2
2 2( ) (1 ( )) ( ) (1 ) 1 ( )x xE s Q s d s s d s           (26) 

According to (25) and (26), it can be concluded that the 
smaller λ1, the better tracking performance, and the smaller the 
λ2, the better the performance of disturbance rejection. In 
addition, it can also be drawn a conclusion that the closed-loop 
control system can track the step and sinusoidal signals without 
any steady-state errors, and can also reject the step and 
sinusoidal disturbance signals. 

The necessary and sufficient condition for stabilization of the 
closed-loop system for arbitrary ω can be given as 

( ) ( ) 1c x mG j G j l                             (27) 

where ml  is the upper bound of the modeling error. 

Substituting (16) and (20) into (27) yields 
2

2(1 ) 1 ms l                                 (28) 

From (28), it is obvious that for a certain modeling error 

upper bound ml , by selecting λ2 appropriately, we can 

guarantee the stability of the closed-loop system. In addition, 
we also can draw a conclusion that the larger the λ2, the larger 
the Gd(s) that can be acceptable. 

Similarly, it can be proven that 2-DOF internal model 
controller for the rotor speed system is of the aforementioned 
characteristics. 

According to aforementioned analysis of the system 
performance indexes and robust stability, we can realize the 
effective independent control of tracking and robustness 
performance by choosing an optimal control parameter sets λ1 
and λ2. The control block diagram of the proposed 2-DOF 
internal model control based on NNI control scheme for the 
BPMSM system is given in Fig. 5. 
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Fig. 5. Control block diagram of the entire system. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

To validate the efficient performance of the proposed control 
scheme, comparative simulation and experiments between the 
proposed control and the inverse system method plus PID 
controller have been performed. The system parameters and the 
parameters of the two control schemes are illustrated in Tables 
II-IV. The proposed control scheme is implemented in the 
Matlab/Simulink and a TMS320F2812 DSP-based control 
computer, respectively.  

TABLE II 
PARAMETERS OF THE PROTOTYPE MACHINE 

Parameter Value Parameter Value 

PM 1 PB 2 
r (mm) 67 R (mm) 65 
lm (mm) 2 lg (mm) 1 
l (mm) 85 N 24 

WM 40 WB 40 
kWM 0.908 kWB 0.955 

Ψf (Wb) 0.0230 Lm2 (mH) 3.27 

J (kgm2) 0.00053 m (kg) 2.0 

 
TABLE III  

PARAMETERS OF THE 2-DOF INTERNAL MODEL CONTROLLER 

Parameter Value Parameter Value 

λ1 0.07 (0.03) λ2 0.04 (0.02) 

 
 

TABLE IV 
PARAMETERS OF THE PID CONTROLLER 

Parameter Value Parameter Value 

Kp 18 Ki 26 
Kd 0.45 (0.6)   
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A. Decoupling Properties 

In this part, to demonstrate the decoupling properties of the 
proposed control scheme, comparative simulation and 
experiments, including the speed step and the radial 
displacement step of the BPMSM system are carried out. The 
reference speed steps from 2500 r/min to 5000 r/min at t = 0.4 s, 
and then the reference radial displacement in x- direction 
increases from 0 to 40 μm at t = 1.2 s. Figs. 6 and 7 depict the 
comparative simulation and experimental results, respectively. 
In Figs. 6 and 7, from top to bottom are, in order, the speed, x- 
and y- axes radial displacements, respectively.  

 
(a) 

 
(b) 

Fig. 6. Decoupling properties of the inverse system method plus PID controller. 
(a) Simulation results. (b) Experimental results. 

 
As shown in Fig. 6 (a), when the speed reference suddenly 

steps from 2500 r/min to 5000 r/min at t = 0.4 s, as for the 
inverse system method plus PID controller, there are about 15 
μm and 16 μm overshoots of the radial displacements in x- and 
y- directions, respectively. And there is about a 550 r/min 
overshoot of the speed response. However, as shown in Fig. 7 
(a), compared with the inverse system method plus PID 
controller, the proposed control scheme has almost no 
fluctuations of the radial suspension system in x- and y- 
directions when the speed reference suddenly increases from 
2500 r/min to 5000 r/min at t = 0.4 s. This demonstrates that 
there is strong coupling not only between the radial suspension 
system in x- and y- directions but also among the two radial 
suspension systems and the rotor speed one. On the contrary, 
compared with the inverse system method plus PID controller, 

when the reference radial displacement in x- direction steps 
from 0 to 40 μm at t = 1.2 s, the proposed control scheme has 
almost no influence on the radial suspension system in y- 
direction and little disturbance to the rotor speed system. That is, 
a sudden change of one reference input has little influence on 
other two outputs, which indicates that by using the proposed 
control scheme, the decoupling control among the two radial 
suspension and rotor speed systems can be realized with great 
improvement on the response speed and control precision. 

 
(a)  

 
(b) 

Fig. 7. Decoupling properties of the proposed control scheme. (a) Simulation 
results. (b) Experimental results. 

 
Moreover, from Fig. 6 (b), it is obvious that when the inverse 

system method plus PID controller is adopted, with the change 
of the operating points, the steady-state peak-to-peak values of 
the rotor vibration amplitude in x– or y- direction increase from 
about 10 μm to 14 μm, and the steady-state peak-to-peak value 
of the speed increase from about 180 r/min to 500 r/min. On the 
contrary, according to Fig. 7 (b), we can see that when the 
proposed control scheme is employed, the steady-state 
peak-to-peak values of the rotor vibration amplitude in x– or y- 
direction and the speed are almost about 6 μm and 130 r/min, 
respectively, no matter whether the operating points change. 

As shown in Figs. 6 and 7, it can be seen that the 
experimental results agree very well with the simulation ones. 
Since there are noises, static and dynamic imbalances in the 
physical BPMSM system, the control precision and adjusting 
time of the system may be inevitably affected. Thus, compared 
with the simulation results, the experimental ones are of 
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somewhat longer adjusting time, higher overshoot, and lower 
control precision. This can also be demonstrated in the latter 
studies. 

B. Tracking, Disturbance Rejection, and Robustness 
Properties 

In this part, in order to demonstrate the tracking, disturbance 
rejection, and robustness properties of the proposed control 
scheme, comparative simulation and experiments, including the 
speed step, external disturbance and parameter variation of the 
BPMSM system are carried out. At t = 0 s, the reference speed 
steps from 0 r/min to 6000 r/min. After 1 s, a 2 N·m radial 
disturbance is imposed on the magnetically suspended rotor, 
and at t = 1.5 s, the Maxwell force constant KM decreases by 
15%. Moreover, to further compare the performance of the two 
control schemes, different control parameters were developed 
too, as illustrated in Figs. 8 and 9. 

 
(a) 

 
(b) 

Fig. 8. Tracking and disturbance rejection properties of the inverse system 
method plus PID controller with kd = 0.5. (a) Simulation results. (b) 
Experimental results. 

 
(a)  

 
(b) 

Fig. 9. Tracking and disturbance rejection properties of the proposed control 
scheme with λ1 = 0.062 and λ2 = 0.038. (a) Simulation results. (b) Experimental 
results.  

 
In order to compare the simulation and experimental results 

systematically, here we define some important performance 
indexes and see how these performance indexes vary when the 
control parameters of the system change. In regard to the speed 
step of the rotor system, we choose the setting time and 
overshoot as the key indexes. With respect to the disturbance 
rejection and robustness properties, we choose the setting time 
and deviation value as the two main indexes. Note that the 
deviation value denotes the maximal deviating value from the 
steady-state position as an external disturbance or parameter 
variation occurs. 

From Fig. 8 (a), it can be seen that with respect to the inverse 
system method plus PID controller, when the reference speed 
steps from 0 r/min to 6000 r/min at t = 0 s, there is approximate 
1800 r/min fluctuations from the reference speed inputs (that is, 
the overshoot is 30%) with a 0.16s long setting time. In addition, 
when a 2 N·m radial disturbance is imposed on the 
magnetically suspended rotor at t = 1 s, the deviation value and 
setting time of the speed are respectively 800 r/min and 0.11 s, 
and the deviation values and setting times of radial 
displacements are respectively 18 μm and 0.12 s. When the 
Maxwell force constant KM suddenly changes at t = 1.5 s, the 
deviation value and setting time of the speed are respectively 
700 r/min and 0.1 s, and the deviation values and setting times 
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of radial displacements are respectively 16 μm and 0.11 s. In 
contrast, according to Fig. 9 (a), regarding proposed control 
scheme, the speed tracking curves are relatively steady with 
tiny overshoots (or deviation values) and short setting times 
when the reference speed step, external disturbance and 
parameter variation occurs, which undoubtedly indicates the 
superiority in the tracking, disturbance rejection, and 
robustness properties to the inverse system method plus PID 
controller. 

In addition, according to the experimental results shown in 
Figs. 8 (b) and 9 (b), similar conclusions can be drawn, which 
are in good agreement with the simulation and the 
aforementioned analysis. 

Here, taking the rotor speed as an example, a more specific 
comparison between the inverse system method plus PID 
controller and the proposed scheme is shown in Table V, where 
the aforementioned performance indexes change when the 
control parameter kd of the inverse system method plus PID 
controller and the control parameters λ1 and λ2 of the proposed 
control method vary. 

TABLE V  
COMPARATIVE RESULTS BETWEEN TWO CONTROL SCHEMES WITH PARAMETERS 

VARYING 

 

Inverse 
system 

Proposed scheme 

kd = 
0.5 

kd = 
0.75 

λ1 = 
0.062 
λ2 = 

0.038 

λ1 = 
0.062 
λ2 = 

0.016 

λ1 = 
0.024
λ2 = 

0.016

Tracking 
Setting time 0.16s 0.21s 0.07s 0.07s 0.05s
Overshoot 30% 25% 20% 20% 10% 

Disturbance 
rejection 

Setting time 0.11s 0.11s 0.05s 0.04s 0.04s
Deviation 

value 
800 

r/min 
750 

r/min 
300 

r/min 
200 

r/min 
200 

r/min

Robustness 
Setting time 0.1 s 0.1 s 0.06s 0.04s 0.04s
Deviation 

value 
700 

r/min 
600 

r/min 
350 

r/min 
250 

r/min 
250 

r/min

 
From Table V, it can be seen that, as for the inverse system 

method plus PID controller, when the value of the kd increases 
from 0.5 to 0.75, the settling time of the speed response 
increase no matter whether there is an external disturbance or 
parameter variations. In contrast, the overshoots of the speed 
response decrease. 

Thus, in regard to the inverse system method plus PID 
controller, we can draw a conclusion that it cannot adjust the 
tracking performance and the disturbance rejection 
performance independently. Hence, since the modeling errors 
always exist, it is quite difficult for the inverse system method 
plus PID controller to find out the optimized control 
coefficients when its operating points change. That is, even if 
the optimized control coefficients of the inverse system method 
plus PID controller can be selected sometimes, it cannot satisfy 
the tracking, disturbance rejection properties simultaneously. 

However, regarding the proposed control scheme, the 
decrease of the values of λ1 and λ2 can both decrease the setting 
times and the overshoots of the speed response. Concretely 
speaking, by decreasing the control parameters λ2, we can 
improve the disturbance rejection and robustness properties 
without any influences on the tracking property. On the other 

hand, by decreasing the control parameters λ1, we can enhance 
the tracking performance without any influences on the 
disturbance rejection and robustness properties. Therefore, it 
can be concluded that the proposed control scheme can adjust 
the tracking and disturbance rejection properties independently, 
which is in accordance with the analysis in section 3. Similarly, 
the same conclusion for the radial displacements in x- and y- 
directions can be drawn. 

Obviously, the aforementioned simulation and experimental 
results demonstrate that, compared with the inverse system 
method plus PID controller, the proposed NNI control scheme 
plus internal model controller has great improvements on the 
high precision, fast response, and strong robustness, which can 
enhance the system stability and the static as well as dynamic 
properties of the whole BPMSM system significantly. 

V. CONCLUSION 

The BPMSM is a multivariable, strongly coupled and 
nonlinear system with unavoidable parameter variations and 
unmeasured disturbances. To effectively reject the nonlinear 
and coupling influence as well as to enhance the control 
properties of high-precision, fast-response, and 
strong-robustness for the BPMSM system, this paper proposes 
a new decoupling control scheme combing the NNI control 
method and the 2-DOF internal model controllers. The 
simulation and experimental results demonstrate that: (1) The 
NNI control scheme can successfully realize decoupling 
control of the BPMSM system; (2) By employing the 2-DOF 
internal model controllers based on the NNI control scheme, 
the unmodeled dynamics to the decoupling accuracy can be 
eliminate effectively; (3) By adjusting the control parametersλ1 
and λ2, the tracking and disturbance rejection properties can be 
regulated independently. 
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