A two-level packet classification

Ons Jelass , Olivier Paul
INT, Nationa Institute of Telecommunication
Evry, France
Email: {onsjelassi, olivier.paul } @int-evry.fr

Abstract— Packet classification is a central function in fire-
walls, intrusion detection mechanisms and monitoring archi-
tectures. Network elements assuming these techniques operate
on packet flows to insure access control. A large variety of
multi-fields packet classification techniques were reported in
litterature but it remains difficult to find a packet classification
solution that represents a good tradeoff between classification
times, fast updates, memory requirements and scalability to large
filters database. In this paper, we introduce a new five-fields
classification concept, the two level classification algorithms based
on an architecture that can be applied to any decision tree-
based packet classification algorithm, we test it with a well-known
algorithm the Extended Grid-of-Tries and present performance
measurments. In this paper, we show how our algorithm improves
search times.

I. INTRODUCTION

Security and monitoring applications require packet clas-
sification. Packet classification implies finding out in a set
of filters the highest priority filter matching the packet. The
growth of in demand bandwidth has driven the throughput
over classification engines to increase exponentionaly. The
classification task has become more complex and is based on
at least five packet header fields. source and destination IP
adresses and ports and protocol identifier. The type of fields
values are typically prefixes for |P adresses, ranges for ports
and exact values or wildcard for protocol identifier.

Filtering in firewalls generates security classes. A firewall
processes incoming packets based on a filter database. Enti-
ties such as MIDCOM (MIDdlIboxes COMmunication) agents
configure dynamically the rulesin firewalls or NATs (Network
Adress Trandator) [1]. This communication is managed by the
MIDCOM protocol [2].

QoS monitoring needs led to the expansion of monitoring
frameworks with PSAMP (Packet SAMPling) [3] or IPFIX
(IP Flow Information eXport) [4] proposals. These techniques
configure some functions of capture, stamping, aggregation
and compute QoS indicators within networks. In order to per-
form this supervision, monitoring techniques need to achieve
packet classification to select packets in the monitored traffic.
In this paper, we present a novel two-level classification
algorithm. It's illustrated through a use case.

Il. PROBLEM STATEMENT

A network element offering traffic differentiation maintains
a database of rules. Each rule associates an action to a
processed packet. A rule R consists in a filtering part based
on one or more packet fields, an associated action to process
if the packet matches the rule and a given priority.

Matching packets with corresponding actions is a bottleneck
for the intermediate network eguipment. The aim of the work
presented in this paper is to make this correspondence faster
with responding to the needs of upper-layers protocols and
architectures in terms of fields format and fields number.

1. PREVIOUS WORK

Many implementations of firewalls use, mostly, a simple
linear search. The data structure associated is a simple chained
list containing the N rules sorted by decreasing priority. The
search is sequential with a time of O(N). The storage of the
list is also O(N). The update time is O(log N). It's obvious
that the search time is too important.

Other packet classification algorithms use heuristics and
present very good time and memory complexities. But due
to data structure precomputation, algorithms such as RFC
(Recursive Flow Classification) algorithm described in [5] are
unable to handle incremental updates. We also cite HICuts (Hi-
erarchical Intelligent Cuttings) presented in [6], an algorithm
for two-fields classification which was extended by HyperCuts
[7] to multi-fields classification.

In [8], a scheme called Tuple Space Search was proposed, it
can handle any type of filters and has a good update time.
However, the time complexity of searches and updates are
non deterministic. Enhancements using precomputation and
markers were proposed in [9].

A. Positioning our work

In this paper, we present an improvement to the Extended
Grid-of-Tries algorithm presented in [10].
One of most cited proposals in the packet classification liter-
ature is the grid of tries algorithm. This agorithm, proposed
in [11], was originally designed to be applied for two fields
classification.
This algorithm uses a prefix representation for classification
conditions. We notice that the ranges can be converted into
prefixes. Splitting arange in a set of minimal ranges satisfying
this property produces a set of prefixes corresponding to the
initial range. A W-width range can be split into at most 2*W-2
prefixes.
A binary trie is a binary tree where branches are labeled
according to bits values, the left branch is labeled 'O’ and the
right oneislabeled’1’. A node represents the concatenation of
the labels of all the branches between the root and this node.
For example the prefix 0* is represented by the left root's
child.

Rule | Field 1 | Field 2
F1 0* 10*
F2 0* 01
F3 0* 1*
F4 00 1*
F5 00 11*
F6 10* 1*
F7 * 00

TABLE |
AN EXAMPLE OF A CLASSIFIER

A 2 fields grid-of-tries is an hierarchical structure. We first,
construct the first level, a 1-dimensiona trie which corre-
sponds to the first field. Then, for each node labeled with
a prefix, p, in this trie, we construct a trie on the second field
for the rules of classifier for which the first field is p.

Destination Trie

Sources Tries

J ’ \‘
, \

\

on s b
1 F3
Fa F6
1 1 0
F2 F1
F5 Fr@®y

Fig. 1. Grid-of-Tries structure

The data structure for the classifier in Table | is shown in
Fig.1l. To extend the Grid-of-Tries to handle more then two

2—fields (F, F’
algorithm

(FLF'1) (F2,F2) (Fn,F'n

R1 RS R8
R2 R6

R3 R7

R4

Fig. 2. Extending the Grid-of-Tries structure

fields, [10] propose to use a linear search on the rest of the
fields after using the source-destination matching (see Fig.2).

IV. A TWO-LEVEL CLASSIFICATION ALGORITHM
A. Motivation

In this section, we describe our two-level classification

approach and we apply it to the Extended Grid-Of-Tries.
The idea on which is based this approach is that a classifica-
tion engine treats packets headers that often share the same
fields values, and the fields may share the same values for
a certain number of consecutive bits. The number of this
recurrent packet headers values is obviously more important
when packets belong to flows from applications such as VPN
(Virtua Private Networks) where packets share at least source
and destination IP adresses, in a RTP (Real Time Protocol)
connexion, or in a HTTP/FTP connexion.
To justify this assertion, we studied filter files given by the
benchmark developped in the Washington university [12].
These files represente real filter files used in access lists
in entreprise edge and backbone routers (ACL), access lists
and security filters in firewalls (FW), VPN and NAT filters
in software-based systems (IPC). The study of redundancy
depends on number of considered bits. We tested the number
of redundant filters in different filter files. For example an
ACL file of 5000 filters is composed of 1990 filters begining
with’Q" and 2110 of filters begining with "1, of 334 of filters
begining with '01'and 1596 files begining with '00’, etc., of
540 filters with *’ in the |P destination adress and 167 filters
with '206.*.* .*’ in the |IP destination adress, etc.

Our approach is totally different from the flow-based clas-
sification where packets are accepted or rejected depending
on the nature of the flow ie the norma sequence of packets
(the packet following a request must be a response). Our
optimisation reduces search times for packets belonging to
different flows as long as packets share any bits considered
from the packet header.

B. Implementation

We propose to have a two-level structure for packet classi-
fication. The main structure contains the classification struc-
ture constructed by the classification algorithm mainly the
Extended Grid-of-Tries.

The first structure is an hash table which is used to store
last searches results in order to help next searches. The hash
function is the CRC (Cyclic Redundancy Check) on the header
bits. In the case of collision, alinear search in the results with
the same hash key is performed.

If we have the same packet header, we find immediatly the
best-matching result. If the new packet header shares some
fields values with an entry in the first structure, we return a
pointer to the result of the best matching for the first structure
entry and we continue the search begining from that node.
This reduces the time of search since we don’t begin the
search from the root node of the basic structure. In case we
can't find correspondance in the first structure, we do a normal
exploration in the basic Extended Grid-of-Tries structure.
We notice that the pointer contained in the first level of
structure can contain any node in the search path depending on

the treated flow nature and on the number of bits considered.
Typically, in the Extended Grid-of-Tries, if we consider the
first header field for first level correspondance, the pointer
can contain the node terminating the search in the first trie
corresponding to the first field, and if we consider the concata-
nation of the two first header fields the pointer contains the
node terminating the search in the second trie corresponding
to the matching for the two first headers.

The first level of the data structure is refreshed periodically,
the timeout for an entry depends on the nature of the flow.

C. Use Case Sudy

Incoming packets :

P1:001, 1001, 01, 10, TCP
P2:001, 1001, 10, 10, UDP @

————————— — -0 @
R5 R6,R7

R2

RO, R1

Fig. 3. Search example

For example, let’s take two incoming packets with headers
Py (001,1001,01,10,TCP) and P, (001,1001,10,10,UDP).
After doing a norma best-matching search in the Extended
Grid-of-Tries structure for P; (Fig.3), we store the result
of the search, the P; header values and a pointer of the
node terminating the search in the first level of the two-level
classification algorithm data structure.

To find the best-matching filter corresponding to P, we do an
hash search in the first level structure, we find that P, has the
same two first fields as P;. Since, the pointer pointing on the
result of the search corresponding to the two first fields in the
Grid-of-Tries is stored in the first level of our data structure,
we go immediatly to that node. Arriving there, a simple search
in the bucket containing the filters allows us to find the best-
matching filter for P.

We can see on this example that the practical time search for
packet header P, is optimized using our proposal.

Basic EGT | Two-level EGT
ACL 0.253 0.186
FwW 0.689 0.510
IPC 0.742 0.493
TABLE 11

THE AVERAGE BEST-MATCHING TIME SEARCH

D. Performance results

In this section we present measurements from our imple-
mentations of basic EGT and the two-level EGT in C++ on
a Linux machine (Intel Pentium 2 Ghz, 256 Mo RAM). We
make a comparaison between the two implementations and
show that our proposal gives better processing times. We use
the washington university benchmark. The three measurement
file sets contain filter files composed of 5 000 filters. This size
was choosen because it is representative of real filters sets. We
generate, using the trace generator of the benchmark the packet
files corresponding to these filter files, the size of the packet
files vary depending on the formats (see justifications in [13]):
41.815 packets for ACL, 50.192 for IPC, 63.729 for FW.

As reported in Table Il, we have an improvement of 30%
in best-matching search times.

V. CONCLUSION

In this paper, we presented a novel idea based on an
extension to tree based packet classification algorithms. This
extension alows them to take advantage of redundancies
jn packet headers. We show an application of this idea to
the well-known Extended Grid-of-Tries packet classification
algorithm. We believe such an extension can be interesting
from a practica point of view since it can be optimized
depending on the type of flows treated by the classification
equipement. Optimizations and performance tests on memory
usage and updates support will be investigated in further
works.

REFERENCES

[1] P Srisuresh et M. Holdrege, IP Network Adress Trandlator (NAT) Termi-
nology and Considerations. |IETF 1999.

[2] M. Barnes, RFC 4097: Middlebox Communications (MIDCOM) Protocol
Evaluation. |ETF 2005.

[3] T.Zseby, M. Malina, N. Duffield, S. Niccolini, F. Raspall, Sampling and
Filtering Techniques for 1P Packet Selection. IETF 2005.

[4] J. Quittek, T. Zseby, B. Claise, S. Zander, Requirements for IP Flow
Information Export (IPFIX). IETF 2004

[5] P. Gupta, Algorithms for routing lookups and packet classification. Thesis
of the university of Standford 2000.

[6] N. McKeown, P Gupta Packet Classification Using Hierarchical
Intelligent Cuttings. Hot Interconnects VII 1999.

[71 G. Varghese, J. Wang, S. Singh, F. Baboescu Packet Classification
Using Multidimensional Cutting. SigComm 2003.

[8] V. Srinivasan, S. Suri and G. Varghese, Tuple Search for Fast Layer-4
Packet Classification. SigComm 1999.

[9] V. Srinivasan, A Packet Classification and Filter Management System.
InfoCom 2001

[10] F. Baboescu, S. Singh, G. Varghese, Packet classification for Core
Routers: Is there an alternative to CAMs?, Infocom 2003.

[11] V. Srinivasan, G. Varghese, S. Suri and M. Wadvogel, Fast and Scalable
Layer Four Switching. SigComm 1998.

[12] D.E. Taylor, J.S. Turner, ClassBench : A Packet Classification Bench-
mark. |EEE Infocom 2005

[13] D.E. Taylor, J.S. Turner, ClassBench : A Packet Classification Bench-
mark. Technical Report 2004

