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Abstract

The rapid growth in the demand for cloud computing data presents a performance challenge for both software
and hardware architects. It is important to analyze and characterize the data processing performance for a given
cloud cluster and to evaluate the performance bottlenecks in a cloud cluster that contribute to higher or lower
computing processing time. In this paper, we implement a detailed performance analysis and characterization for
Hadoop K-means iterations by scaling different processor micro-architecture parameters and comparing performance
using Intel and AMD processors. This leads to the analysis of the underlying hardware in a cloud cluster servers to
enable optimization of software and hardware to achieve maximum performance possible. We also propose a
performance estimation model that estimates performance for Hadoop K-means iterations by modeling different
processor micro-architecture parameters. The model is verified to predict performance with less than 5 % error margin
relative to a measured baseline.
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Introduction
Given the rapid growth in the demand of cloud comput-
ing [1, 2] and cloud data, there is an increasing demand
in storing, processing and a retrieving large amount of
data in a cloud cluster. The data can be either stored to
a cloud network such as scientific data (i.e. Climate
modeling, Fusion, Bioinformatics…etc) or use the cloud
network for data-intensive tasks such as collecting
experimental data, dumping data on parallel storage sys-
tems, run large scale simulations…etc. Cloud computing
is an emerging technology used to deliver different types
of resources known as services over the internet. Cluster
computing [3–7] is a set of stand-alone computers con-
nected together to form a single computing resource [8, 9].
This improves the performance and availability of a cloud
cluster as compared to a single computer.
Hadoop was introduced as a solution to handle pro-

cessing, storing and retrieving Big Data in a cloud envir-
onment which usually runs on a cluster of commodity
machines. This cluster is composed of a master and
slave nodes that process and compute data in parallel. It
is important for processor architects to understand what

processor micro-architecture parameters contribute to
higher or lower performance. It is also important for
benchmark developers to optimize the benchmark soft-
ware for a given hardware to achieve maximum perform-
ance possible. Hadoop is an open-source framework with
two main components: MapReduce [10], and Hadoop Dis-
tributed File System (HDFS). HDFS is the primary storage
for Hadoop; it is highly reliable and uses sockets for com-
munications and is used for distributed storage [11, 12].
One important feature of HDFS is the partitioning of data
and computation using thousands of hosts, and the execu-
tion of application computations in parallel in a way it is
close to their data [13–16]. Hadoop cluster scales with
computation and storage capacity by adding more servers.
For example, Yahoo Hadoop cluster uses 40,000 servers
and stores 40 PetaBytes of application data. Hadoop HDFS
is used for data protection and reliability by replicating the
file content across multiple DataNodes. This replication
increases the probability for locating computation near
the needed data.
The MapReduce [17, 10] framework is used for paral-

lel processing. MapReduce and HDFS are co-designed,
co-developed and co-deployed. What this means is that
we have a single set of servers where MapReduce and
HDFS are deployed so there is no separate set of servers
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for HDFS to store data and a separate set of servers for
processing data. One important aspect of MapReduce is
that it’s capability of moving compute to data (DataNode
on which the data is located) and not the other way
around. MapReduce knows where the data is placed in a
cluster by working closely with HDFS. MapReduce con-
sists of two main components, the JobTracker, and the
TaskTracker. The JobTracker is the master and it is
responsible for resource management such as tracking
which nodes are up or down and how to deal with node
failures. The TaskTracker is the slave, it gets direction
from the JobTracker to run the tasks and report any fail-
ures and scheduling tasks.
Hadoop framework consists of several micro-

benchmarks developed using MapReduce algorithm, in
other words, it is a framework used to process large data
sets in a distributed computing environment. The
resource utilization for the benchmarks is categorized as
IO-bound, CPU-bound, or in between. Table 1 summa-
rizes the system resource utilization for each workload.
In this paper, we present a detailed performance

characterization for Hadoop K-means iterations using dif-
ferent processor configurations. We also propose a per-
formance projection model that projects and model
performance by changing different processor architecture
parameters such as the number of cores/threads, memory
bandwidth, memory size, cycles-per-instruction (CPI) and
memory latency [18, 19]. The remainder of this paper is
organized as follows: In “Hadoop K-means Overview” sec-
tion, we start with an overview of Hadoop K-means and
Mahout K-means implementations. In “Related Work”
section, compare our work to other published work of the
same topic. In “Performance Characterization using Intel
Xeon Based Platform” section we present a detailed per-
formance characterization of Hadoop K-means for differ-
ent key processor architecture parameters using Intel
Xeon processor. In “Performance Characterization using
AMD Interlagos Platform” section, we present a detailed
performance analysis and characterization for Hadoop K-
means using AMD Interlagos processor by analyzing the

performance sensitivity to key processor architecture pa-
rameters. In “Performance Projection Model‴ section we
propose a performance projection model that projects
processor performance and total runtime and finally we
conclude and discuss future work.

Hadoop K-means overview
Hadoop is designed as a framework for processing (stor-
ing and appending) multi Petabytes of data sets in a dis-
tributed computing cluster systems. There are several
components of Hadoop architecture, the first compo-
nent is known as the NameNode which is responsible
for storing the file system namespace. The second com-
ponent of Hadoop architecture is the DataNodes which
is responsible for storing blocks and hosting Map-
Reduce computation. The JobTracker component is
responsible for tracking jobs; also it is responsible for
detecting any failures. All applications in Hadoop are
based on MapReduce which was introduced by Google.
MapReduce means that a given application can be
broken down into smaller blocks that can run on any
node. The application can run on systems with thou-
sands on nodes to achieve better performance. Hadoop
is a framework which consists of several micro-
benchmarks. Some of these benchmarks are Sort, Word
Count, TeraSort, K-means, and NutchIndexing. The file
system in Hadoop is organized in a way that maps all
the local disks in a cluster into a single file system hier-
archy known as HDFS. Hadoop K-means is basically
used for machine learning as well as data mining. It is
divided into two main phases, the first phase is the iter-
ation phase and the second phase is the clustering phase.
In the iteration phase, the performance is a CPU-bound,
which means the performance will increase if there is an
increase in processing power such as an increase in the
number of cores. In the clustering phase, the perform-
ance is IO-bound which means that the performance is
limited and bounded by IO communication within a
cluster. Clustering is a technique used to identify groups
(clusters) within the input observation in such a way that
the objects within each group will have high similarities
and fewer similarities between other groups or clusters.
The similarities metric in clustering algorithm uses dis-
tance measured only, similarities by correlation is not
used in the clustering algorithm. K-means clustering
generates a specific number of disjoint (non-hierarchal)
clusters. The K-means method is numerical, unsuper-
vised and iterative. K stands for K number of clusters
and must be manually supplied by the user based on the
input data.
Hadoop K-means version 2.7.0 is a clustering algo-

rithm in which the input is a set of data points such as
K with a set of points X1, X2....Xn. The variable K refers
to how many clusters it needs to find. The algorithm

Table 1 Workloads based on Hadoop framework: System
Resource Utilization

Workloads System Resource Utilization

WordSort Sort Phase: IO-bound in the Reduce Phase:
Communication-bound.

Word Count CPU-bound

TeraSort Map Stage: CPU-Bound

Reduce stage: IO-bound

NutchIndexing IO-bound with high CPU utilizations in the map stage.
This workload is mainly used for web searching.

K-means CPU-bound in the iteration, IO-bound in the clustering.
It is used for machine learning and data mining.
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starts by placing K centroids in a random location such
as C1, C2…Ck. The algorithm will then repeat by exe-
cuting the following steps below until convergence:
For each point X, find the nearest centroid C. This is

done by computing the distance between Xi and Cj for
every cluster centroid, then it pick the cluster J with
minimum distance. It will then assign the point X to the
cluster of the nearest centroid. For each cluster J = 1.....K,
the algorithm will take the distance for every point in the
selected cluster and average out the distance by using the

following relation: C að Þ ¼ 1
n

Xcj

xi
X að Þ for a ¼ 1…d ,

where C(a) is the new centroid for cluster J. The algorithm
keeps running them one after the other until none of the
cluster assignment changes, so no points change cluster
membership. At this point, the algorithm has converged
so it stops there. The complexity of the Hadoop K-means
iteration algorithm is given as a factor of:

O #iterations�#clusters �#instances�#dimensionsð Þ

The number of iterations is determined by how many
times it will run until the algorithm convergence. An-
other implementation of K-means is Apache Mahout
[20] which is used as a machine learning software that
allows applications to analyze a large set of data. Mahout
uses Apache Hadoop power to solve a complex problem
by breaking them up into multi-parallel tasks. Mahout
offers three machine learning techniques which are Rec-
ommendation, Classification, and Clustering. Recom-
mendations use user’s information with community
information to determine the likelihood of user’s prefer-
ence. For example, Netflix uses the Mahout Recommen-
dation engine to suggest movies. Classification engine is
used for example in classifying spam emails. It uses
known data to determine how new data should be classi-
fied into a set of existing categories. So every time a user
mark an email as ‘spam’ it directly influences the email
Classification engine for providing future email spams.
The last Mahout engine is clustering which is used for
example to group different news of similar article
together. This is mainly used by Google and other search
engines. Clustering forms a group of similar data based
on common characteristics. Unlike classifications, clus-
tering does not group data into an existing set of known
categories. This is particularly useful when the user is
not sure how to organize the data in the first place.

Related work
Analyzing cloud computing performance is an important
research topic that leads to several published papers.
Map-Reduce clusters are becoming popular for a set of
applications [21–23] in which large data processed is
stored and shared as files in a distributed file systems.

Emanuel V in [24] presents an analytical model that
estimates performance for a Hadoop online prototype
using job pipeline parallelism method. In comparison,
the projection model proposed in this paper projects
performance and runtime using different processor
micro-architecture parameters that are important
parameters for processor architects to model perform-
ance. Furthermore, our model is verified to predict both
performance and runtime with <5 % error margin for all
tested cases. The performance projection model we
present in this paper is flexible and can be implemented
without the need for a simulator and sampling traces.
Dejun et al in [25], propose an approach to evaluate

the response time and I/O performance. Ibrahim et al in
[26], analyze Hadoop execution time on virtual ma-
chines. Stewart in [27] compares the performance of sev-
eral data query languages. All their work is focused on
different aspects for analyzing Hadoop performance.
Our work complements performance analysis for
Hadoop. We also present a prediction analytical model
for performance which is the main focus of the research
presented in this paper. There are several performance
monitoring tools for Hadoop K-means. Salsa [28] for
example is a DataNode/TaskTracker log analyzer which
provides data and control flow execution on each node.
Mochi [29] extracts job execution view from a Data-
Node/TaskTracker logs.
Therdphapiyanak et al in [30] proposed an imple-

mentation using Mahout/Hadoop for a large data set by
pre-determining the appropriate numbers of K-means
clusters. This is done by describing the appropriate
number of cluster and the proper amount of entries in
log files.
Jiang in [31] conducted an in-depth performance analysis

for MapdReduce. The research presented optimization
methods to improve performance. However, his research
does not present an estimation model to translate the opti-
mized methods presented into a performance prediction
model.
Esteves et al, in [32] presented detailed performance ana-

lysis of Mahout K-means using large data sets running on
Amazon EC2 instances. The performance gain in runtime
was compared when running on a multi-node cluster.

Performance characterization using Intel Xeon based
platform
Several measurements are conducted to analyze the per-
formance sensitivity for Hadoop K-means iteration using
Intel Xeon based platform.

1) Platform Configuration

The slave node configuration consists of software
and hardware configuration. For slave node hardware
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configuration, we used 4 Intel platforms with the following
setup:

2xIntel Core i7 CPU at 2.7GHz
32GB Memory (8x 4GB DIMMs) at 1066 MHz
Network controller using onboard 1GbE
Seagate disk at 1 TB 7200RPM
HDFS setup using 5x Intel 200GB SSDs on each system

The software configuration for the setup is as follows:

Disabled power management (including C-states)
Disabled Hyper-Threading
Enabled Prefetchers
Operating System used is Red Hat Enterprise Linux
with Apache Hadoop version 1.2.1
1:1 Map slots

1:1 Reduce Slots: 1:1
Heap Size is 2GB

2) Problem Size requirements

The workload input size must run and scale on differ-
ent processor architecture. We have to model it in a way
to scale across different processors architectures using
the baseline configuration with Intel Core i7 processor.
In order to do that, we need the workload input size to
be based on the number of active logical threads with
fixed memory size per thread. The problem size relation
in GB can be stated as

Problem size ¼ 7=8ð Þ � 2GB� of threads ð1Þ

The populated memory should scale as close as pos-
sible with JVM heap requirements. The metric used for
measurement is the number of samples per unit time
(seconds) per node. If the problem size varies, the run-
time will not be consistent. So the problem size must
have a fixed number of sample, for example, a problem
size of 28GB is equal to 409.6 M sample.

3) Core and Socket Scaling

For socket scaling, we conduct measurements using one
and two processor sockets for the same number of cores.
For core scaling, we used two sockets but change the
number of cores (4 cores and 8 cores) as shown in Fig. 1.
For core scaling, using four and eight cores, the per-

formance scaling is linear; close to 2x going from four
cores to eight cores. This means that Hadoop K-means
performance scales linearly with a number of cores.

Fig. 1 Performance scaling vs. number of cores Hadoop K-means

Fig. 2 Hadoop K-means: Total run-time (sec) vs. Input Size (GB) and number of sockets
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For socket scaling, using one and two sockets with
eight cores on both, the performance scaling (Sam-
ples/Second/Node) shows a linear scaling is about
1.99x. We conclude that both socket and core scaling
is 2x. The core scaling was adjusted accordingly using
“Active Core Count” in BIOS while the socket scaling
is achieved using the physical removal of a processor
with associated memory. The Cycles-Per-Instruction
(CPI) overall for the benchmark using different input
sizes (14 GB and 28 GB) calculated is about 0.52 for
1 socket/8 cores, 2 sockets/8 cores, and 2 sockets/4
cores. The Execution Length (EL) for different config-
urations is constant ~ 262,000. The EL is defined by
the total number of instructions executed per differ-
ent cores. In this case, it is constant and doesn’t
change with respect to the change in the number of

cores. The total runtime for different input sizes and
different configurations is constant about 362 seconds
as shown in Fig. 2.
This shows that the total runtime (seconds) is almost

constant relative to a different number of sockets,
the number of cores and the input data size. What
change is the performance metric defined as Samples/
Second/Node for different configurations as previ-
ously shown in Fig. 1 and Fig. 3. Next, we analyze
core and socket scaling with respect to memory
bandwidth (GB/sec) and performance as shown in
Fig. 4.
From Fig. 4 we conclude that performance is corre-

lated with memory bandwidth. That is the scaling in per-
formance between 1 socket/8 cores/14GB input size to 2
sockets/4 cores/28GB is about 2x. Same is true for mem-
ory bandwidth; the scaling for the same configurations is
also about 2x.

4) Core Frequency Scaling

Core frequency scaling is required so we can analyze
how performance behaves with respect to higher core
frequencies as shown in Fig. 5. The scaling between two
or three core frequencies will indicate the performance
change between these measured data points; so that we
can use to model the performance with respect to the
frequency change.
From Fig. 5, the performance is measured as a number

of samples per second per node (samples/second/mode).
The performance scaling from 2.1GHz to 2.4GHz (2.4/
2.1 = 1.14) is about 1.13x (249100/220000) in perform-
ance, and from 2.4GHz to 2.7GHz (2.7/2.4 = 1.125) the
performance scaling is about 1.12x (281300/249100).

Fig. 3 Performance scaling vs. number of sockets

Fig. 4 Hadoop K-means Memory Bandwidth and Performance correlation with respect to number of sockets and number of cores
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However, the performance scaling from 2.1GHz to
2.7GHz (1.28) is about 1.27x (281300/220000). This
shows that there is an excellent scaling between core fre-
quency and performance so we can use this scaling fac-
tor for core frequency in the performance model.
Memory bandwidth scales almost linearly with core fre-
quency as shown in Fig. 6.
The scaling rate from 2.1GHz to 2.4GHz is 1.14x while

the scaling rate for memory bandwidth is 8670/7600 =
1.14x. Similarly, the scaling for 2.1GHz to 2.7GHz is 1.28x
and the memory bandwidth scaling is 9600/7600 = 1.26x.
This shows that the scaling factor for memory bandwidth
with respect to the scaling factor for core frequency is
linear.

5) Hyper-Threading/Simultaneous Multi-Threading
Scaling

Enabling the processor Hyper-Threading (HT) feature
will enable an active core to execute two threads per core
instead of one thread or Single Thread (ST). In our per-
formance characterization, we found that enabling Simul-
taneous Multi-Threading (SMT) and scaling the workload
with respect to thread count shows an average of 20 % in-
crease in performance with all cores active.
In Fig. 7, SMT scaling for 2 sockets/4 cores shows 1.2x

improvements in performance from Single Thread (ST) to
HT with 1GB heap size. It also shows a 1.24x performance
improvement from ST to HT with 2GB Heap size. For 2
sockets/8 cores, the improvement from ST to HT with
1GB heap size is 1.17x and for HT with 2GB heap sizes its
1.22x in performance improvement. Given that HT is en-
abled, the CPI for the kernel increases with an average of
40 % as compared to HT off, but the overall CPI is 0.97
on average.

Fig. 5 Hadoop K-means: Performance vs. Core Frequency Scaling

Fig. 6 Hadoop K-means Memory Bandwidth and Performance scaling with respect to different core frequencies
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6) Last Level Cache Scaling

The capacity of Last Level Cache (LLC) does not have
any impact on performance improvement. If the cache
size is increased from 10 MB to 20 MB, the performance
improvement is only 1.01x as shown in Fig. 8 using 2
sockets/4 and 8 cores processor configuration. So for
Hadoop K-means workload it is not bounded by LLC.
We conclude there is no performance improvement
even if LLC size is increased above 20 MB.
The Message Passing Interface (MPI) is directly re-

lated to the LLC size. For 10 MB LLC size, the over-
all LLC MPI measured is 0.00111 using 2 sockets

with 4 cores. For 20 MB LLC size, the MPI mea-
sured is 0.00097, this shows that MPI is affected by
LLC size with about 14 % decrease with LLC 20 MB
versus LLC 10 MB which is expected. For memory
bandwidth, there is about 7 % lower in memory
bandwidth utilization for the same performance with
larger LLC.

7) Data Input Size Scaling

Data input size is a key factor that impacts perform-
ance for Hadoop K-means. We scaled input size and
analyzed the change in execution run-time. The result is

Fig. 7 Hadoop K-means: Performance vs. Simultaneous Multi-Threading scaling with different heap sizes

Fig. 8 Performance scaling vs. different Last Level Cache sizes
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an increase of twice the input size results in about 1.9x
increase in run-time. For example, the scaling factor for
56GB/28GB is 2x, and the scaling factor for run-time
(695 sec/367 sec) is 1.9x. Figure 9 shows the input size
scaling with respect to total run-time for different mem-
ory sizes. In this case, the memory size does not have
any impact on total run-time, with less than 1 % vari-
ation for memory size 32GB, 64GB, and 96GB.
In summary, a 2x increase in input size will result in

about 1.9x increase in execution time regardless of

memory size. Figure 9 shows even more linear scaling
going from 56GB to 112GB input size.

8) Memory and Heap Size Scaling

For memory scaling, there is almost a 1 % run-time
variation between different memory sizes. This indicates
there is no performance and run-time variation for
Hadoop K-means for these three memory sizes (32GB,
64GB, and 96GB) as shown in Fig. 10.

Fig. 9 Total run-time (sec) vs. different input sizes (GB) for different memory sizes (GB)

Fig. 10 Total run-time (sec) vs. different Memory and input sizes (GB)
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The run-to-run variation for the run-time data col-
lected for memory scaling is in the range of 1 %-3 %
which is an expected run-to-run variation range. For
heap size scaling, we used heap size of 1GB, 2GB, and
4GB. The run-time is almost the same for different input
size as shown in Fig. 11.

Performance characterization using AMD interlagos
platform
In this section, we implement performance analysis
characterization for Hadoop K-means iteration using
AMD Interlagos platform.

1) AMD Platform Setup

The slave node configuration consists of software and
hardware configuration. For slave node hardware config-
uration, the following setup is used:

4x AMD Interlagos platforms (Bulldozer core)
Two different chassis: 2x HP Proliant and 2x
Supermicro
CPU: 2x 2.60GHz ITL
Memory: Fixed at 1066 MHz for all configurations
32GB = 4x 8GB DIMMs (1-socket) and 64GB = 8x 8GB
DIMMs (2-socket)
NIC: Onboard 1GbE (only 1 port in use)
For disk configuration, the System disk used is Seagate
1 TB 7200RPM (holds no HDFS data). The HDFS: 4x
Intel 200GB SSDs on each system. All disks attached
via an SAS controller.

For slave node software configuration, the following
setup is used:

Power Now: Enabled, but frequency fixed via On
Demand governor and Core Performance Boost
disabled
Prefetchers: Enabled
Operating System: Red Hat Enterprise Linux 6.1 with
Kernel version 2.6.32
Java: Sun 1.6.0_25
Hadoop distribution: 1.0.2 snapshot (based on Apache
distribution)
Map Slots: 1:1 with active logical threads
Reduce Slots: 1:1 with active logical threads
Heap Size: 2GB

2) Problem Size Requirements

The workload needs to scale across all testing do-
mains using different processor architectures. So the
approach is to use a workload input size based on a
number of active logical threads with fixed memory
size per thread as indicated in Eq (1). The populated
memory also scales as close as possible with JVM
heap requirements. The metric used for measurement
is samples/sec/node. The run-time is not a consistent
metric if we are varying the problem size. A given
problem size has a fixed number of samples (unit of
work). Ex. 28GB problem size per node (without rep-
lication) = 409.6 M total samples. The metric calcu-
lated is Total Samples/Run-time/# of Nodes.

3) Hadoop K-means Performance Scaling with respect
to thread Count

This experiment is implemented to scale performance
with respect to thread count. The measurements were

Fig. 11 Total run-time (sec) vs. heap and input size scaling
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taken using Intel Xeon processor (2 sockets, 8 cores,
Hyper-Threading On, at 2.7GHz core frequency) which
gives a total of 32 threads versus AMD Interlagos (2
sockets, 16 cores, at 2.6GHz core frequency) which also
gives a total of 32 threads. Comparing the performance
for these two configurations, we conclude that there is
a ~37 % lead for Intel Xeon compared to AMD Interla-
gos using the same thread count as shown in Fig. 12.
Given the slight difference in core frequency (2.6GHz
vs. 2.7GHz), our Hadoop K-means frequency scaling

assessment indicates that the performance will be close
to 34 % instead of 37 %.
The total run-time for Intel vs. AMD shoes that

Intel Xeon total run-time is 35 % less (smaller the
better) compared to AMD run-time as shown in
Fig. 13. This is implemented for the same number of
threads (32).
The CPI for Intel Xeon is measured at 0.96 versus 1.26

for AMD which means Intel CPI is ~24 % lower as com-
pared to AMD.

Fig. 12 Thread scaling for AMD vs. Intel

Fig. 13 Total run-time scaling for AMD vs. Intel for the same thread count
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4) Hadoop K-means Performance scaling with respect
to thread count

Performance change with respect to a change in the
number of sockets was implemented on AMD Interlagos
system for one and two sockets.
From Fig. 14, we conclude that there is a linear

scaling between one and two sockets on AMD Inter-
lagos system. The performance rate change is 96 %
going from one to two sockets. For Intel Xeon sys-
tem, the performance is also about 98 % between one
and two sockets configuration. This confirms the
Hadoop K-means scales linearly with respect to the
number of processor sockets. For the CPI scaling as

the number of sockets doubles, the CPI change from
one to two sockets is relatively flat around 1.22 for
one socket versus 1.26 for two sockets. We conclude
that CPI does not change significantly as the number
of sockets doubles.

5) Hadoop K-means Performance Scaling for AMD
with respect to core count using 2 sockets

Hadoop K-means performance scaling for AMD Inter-
lagos using 2 sockets processor shows a linear scaling
with respect to a change in a number of cores as shown
in Fig. 15. The performance almost doubles when the
number of cores doubles (Fig. 16).

Fig. 14 Socket scaling for AMD Interlagos

Fig. 15 Performance scaling with respect to change in number of cores for AMD Interlagos using 2 sockets
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The same measurement was implemented on Intel
Xeon processor, and a similar conclusion can be con-
cluded for Intel Xeon as performance doubles when the
number of cores doubles. There is a slight increase in
CPI when the number of cores doubles.
We conclude there is a slight increase in CPI when

the number of cores increases at a non-linear rate.

6) Hadoop K-means Performance Scaling for AMD
with respect to core frequency

The performance for Hadoop K-means scales almost
linearly with respect to change in core frequency as
shown in Fig. 17. For example changing core frequency

from 2.0GHz to 2.3GHz (2.3/2.0 = 1.15 or 15 %) results
in a 12 % increase in performance (225000/200100 =
1.12). Similarly changing the core frequency from
2.3GHz to 2.6GHz (2.6/2.3 = 1.13 or 13 %) will result in
1.105 change rate in performance (248800/225000 =
1.105 or 10.5 %). Note that the frequency scaling was
achieved through Linux governor.

7) AMD Interlagos core and cluster scaling using one
socket

The objective for analyzing performance with respect to
a number of clusters and a number of cores is to under-
stand the core-per-cluster impact on performance. From

Fig. 16 CPI scaling with respect to change in number of cores for AMD Interlagos

Fig. 17 AMD Interlagos Core frequency scaling
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Fig. 18, we conclude there is a performance benefit for
additional core per cluster. For example, in four cluster
configuration, the change from one thread to two threads
results in about 60 % increase in performance. Similarly
for eight clusters, the performance benefits going from
one thread to two threads is also about 60 %. However in
one cluster configuration, the performance benefit going
from one to two threads is almost doubled (>100 %). We
can conclude that there is a performance benefit for
additional core-per-cluster for most configurations.
There is an increase in performance going from one

cluster to four clusters in a range of 4.4x, and the per-
formance increases by ~2.2x going from four clusters to
8 clusters as shown in Fig. 18.

Performance model
In this section, we discuss a detailed processor perform-
ance projection model for Hadoop K-means based on
the performance characterization we did in Section IV is
used to derive the performance model. We start with de-
fining the general equation for performance, the per-
formance (samples/second) relation is derived as

Performance ¼ core frequency � Total # of cores
Execution Length� CPI

;

ð2Þ

and the total run-time in seconds is given by

Run Time ¼ Input Size
# of nodes� Performance

: ð3Þ

The Execution Length (EL) is defined by the total
number of instructions executed divided by measured
performance baseline given as

Execution Length¼ of instructions executed
measured performance

: ð4Þ

The Cycles-per-Instruction is given as

CPI ¼ CoreCPI þ 0:5�MPI
�Memory Latency; ð5Þ

where the core CPI is defined as the CPI without the
memory stall cycles added. In other words, it is the CPI
with no cache misses in the Last Level Cache. Given that
this scenario is not realistic, we have to add the cycles
generated from memory misses which is the MPI multi-
plied by memory latency. The ‘0.5’ factor used in Eq (5)
to multiply the memory latency and MPI, is caused by
memory cache miss which is referred to as a memory
blocking factor. We expect the memory blocking factor
to range from 0 to 1 for most processors. In case it is
equal to 0, this means there are no memory misses at all
which means that the CPI is equal to the CCPI. This is
not a realistic scenario for this workload. On the other
hand, if the memory blocking factor is ‘1’, it means that
there is 100 % miss rate, which is not a realistic scenario.
Based on statistical analysis for memory a 0.5 value for
blocking factor is used for Hadoop K-means. The model
is verified to project performance (samples/second) and

Fig. 18 AMD Interlagos core and cluster scaling
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run-time(seconds) with <5 % error margin for all tested
cases as shown in Fig. 19 and Fig. 20.
From Fig. 19, the performance measured is com-

pared to performance projected by the model. We
verified different processor configurations such as dif-
ferent number of sockets, different number of cores,
different core frequency, and different input sizes,
with Hyper-threading set to off. All these variables
are included in the performance model. The error
variation is within expected range of < 5 %. Among all
tested configurations in Fig. 19, the peak performance
achieved is for 2 sockets, 8 cores, 2.7GHz core fre-
quency with 28 GB input size.
For modeling run-time, the highest run-time is ex-

pected for the configuration with lowest core frequency
which in this case is 2.1GHz as shown in Fig. 20. All

tested cases for run-time (measured vs. projected) shows
an error margin of <5 %.

Conclusion
In this paper, we presented a detailed performance
characterization analysis for Hadoop K-means using Intel
and AMD based processors. We also proposed a projec-
tion model for Hadoop K-means workload. The projection
model is verified to project performance and runtime with
5 % error margin for all tested cases. The model is flexible
to accept any changes in processor micro-architecture
parameters and estimate performance or runtime. The
model does not require any simulation which in turn re-
quires trace based sampling for the workload. In future
work, we can implement the same approach for different
Hadoop framework workloads such as word count and

Fig. 20 Run-time: Projected vs. Measured

Fig. 19 Performance: Projected vs. Measured
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implement a full details performance characterization.
The model can be expanded to include IO latency such as
disk and network latency. The focus of this paper is on
the processor performance excluding any IO latency, this
is why the input size selected was 28GB which is less than
the system memory size of 32GB. For AMD Interlagos
versus Intel Xeon performance analysis, we conclude that
there is about 38 % better performance for Intel Xeon as
compared to AMD Interlagos. The socket and core scaling
is almost linear in most measured cases, the sample con-
clusion applied to Intel Xeon Processor. For cluster-per-
core scaling, there is about 60 % increase in performance
for AMD Interlagos processor.
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