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ABSTRACT

With the aid of a complete set of two scalar potential functions, the problem of transient wave propa-
gation in transversely isotropic half-space, subjected to time dependent tractions applied on a finite
patch at an arbitrary depth below the free surface of the half-space is investigated. With the use of the
displacement-potential function relationships in a cylindrical coordinate system, the coupled equations
of motion are uncoupled; resulting in two separate partial differential equations one of which is second
order and the other is fourth order. These two partial differential equations are solved with the aid of
both Fourier series expansion and joint Hankel-Laplace integral transforms. The solutions are also
investigated in details for tractions varying with time as Heaviside step function, which may be used as a
kernel in any integral based method for more complicated elastodynamic initial-boundary value pro-
blems. Moreover, some displacement Green's functions are numerically evaluated for a synthetic
transversely isotropic material to graphically demonstrate the transient motion of the free surface of the

half-space.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Because of its applications and mathematical challenges, both
engineers and mathematicians are interested in the wave propa-
gation in elastic solids especially in a time domain (see for
example [1,2]). The study of elastic wave propagation, particularly
those with transient nature, has many applications in linear and
nonlinear soil-structure-interaction, foundation analysis including
piles and underground structures [3], dynamic compaction of soil,
dynamic replacement of soil, Earthquake engineering, foundation
of theoretical seismology, geophysical related problems and
machine foundation design [4-9]. The fundamental solutions for
transient elastodynamics of either full-space or half-space may be
used for integral base numerical solution of nonlinear soil-struc-
ture interaction for more complicated geometry [10,3]. Analytical
solutions play an important role in a deep understanding of a
scientific phenomenon [11,12], although some simplifications
need to be made in the process of deriving them. In particular,
analytical solutions can also play a unique role in validating many
new numerical methods [13,14]. For these reasons, analytical
solutions have been derived in recent years for many scientific
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problems. In actual engineering problems, where the effects of
complex loading situation and complex boundary conditions are
indispensable, the numerical methods must be used to solve the
problem. One of the powerful numerical methods for solving the
linear partial differential equations arise in engineering problems
is the boundary element method (BEM), where analytical solution
in the domain is, (with the aid of Betti's theorem [4]), obtained
after determining the values of the interested fields at the
boundary, numerically [10,3]. However, this method needs the
determination of the Green's functions for the problem associated
with the boundary conditions. Thus in the recent years, a lot of
researches have been devoted for determination of Green's func-
tions. Rajapakse and Wang [15], with the use of displacement
potential function accompanied with Fourier transform deter-
mined the dynamic displacement Green's functions of an ortho-
tropic elastic half-plane subjected to a time-harmonic buried force.
Wang and Rajapakse [16] found the internal source Green's func-
tion for a transversely isotropic half-space in a time domain in
both 2D and 3D cases, where the joint of Laplace-Fourier and
Laplace-Hankel integral transforms were used, respectively for 2D
and 3D states after using a displacement potential functions for
the equations of motion. Wang and Achenbach [17] determined
both the 3D and 2D time-domain elastodynamic Green's functions
for linearly elastic anisotropic materials with the application of
Radon transform. Their fundamental solutions are in the form of a
surface integral over the surface of a unit sphere for 3-D cases and
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are over a unit circle path for 2D cases. In addition, their Green's
functions are evaluated in the frequency domain readily by a
subsequent evaluation of the Fourier transforms of the time-
domain solutions. Kausel [18] presented the Green's functions
for many different cases such as SH line load, double couples,
suddenly line and point loads, etc.

One of the most important contributions in the analytical study
of transient wave propagation in elastic isotropic materials is due
to Pekeris [19-21]. With the aid of the Laplace and Hankel integral
transforms, implementation of Helmholtz decomposition theo-
rem, and the use of Cagniard-De Hoop trick [22,23], Pekeris [21,22]
derived an analytical solution for the transient equations of
motion in an axisymmetric half-space due to surface and buried
impulse loading. In particular, he computed the displacement at
the free surface and showed the arrival time of different waves
including P—, SV — and Rayleigh waves. Chao [24] derived a closed
form solution for radial and tangential displacements at the sur-
face of a half-space due to surface horizontal point force varying
with time as a Heaviside step function. Jin and Liu [25], with the
use of the joint Hankel-Laplace integral transforms accompanied
with Cagniard-De Hoop method, have determined the exact ana-
lytical solution for the horizontal displacement at the center of a
circular surface patch of an elastic isotropic half-space, which is
under an impulsive constant distributed loading.

Anisotropy is a common property of engineering materials such
as soil (because of sedimentation), rock, reinforced concrete and
many man-made materials such as composites and piezo-
composites. Thus, the wave propagation in anisotropic materials
is recently of major concern. The high performance of anisotropic
materials in technological applications is another reason for
studying the response of anisotropic material to mechanical force,
displacement and other phenomenon. Most innovative materials
such as composites, piezo-composites and magnetics are aniso-
tropic, and in applications need to be modeled as either trans-
versely isotropic or orthotropic materials [26,27]. The early work
of Stoneley [28] revealed that wave propagation in a transversely
isotropic medium gives rise to a phenomenon, which greatly dif-
fers from the case where the medium is isotropic. Later, Synge
[29], Buchwald [30] and Payton [31] studied the elastodynamic
problems pertinent to the transversely isotropic half-space.

The potential method is a powerful tool for solving the coupled
both equilibrium equations and equations of motion. Lekhnitskii in
1940 derived a potential function for axisymmetric elastostatic
problems of transversely isotropic media [32,33]. Hu [34] and
Nowakii [35] studied the general case of elastostatic problem in
transversely isotropic media and generalized Lekhnitskii's solution
to the asymmetric case, which is now called as Lekhnitskii-Hu-
Nowacki solution [36]. Eskandari-Ghadi [33] has introduced a
complete solution for the general elastodynamics problems in
linear transversely isotropic mono-axial-convex domain in terms
of two potential functions, one of which describes SH-wave and
the other gives both SV- and P-waves in any plane containing the
axis of material symmetry. With the aid of this representation,
Eskandari-Ghadi and Sattar [37], investigated the problem of
transient wave in an axisymmetric transversely isotropic half-
space due to surface loading and their solution included an inte-
gral representation with a finite limit.

In the present study, a transversely isotropic half-space is
considered as the domain of the problem, and the potential
functions introduced by Eskandari-Ghadi [33] is implemented to
derive the analytical solution for the displacement Green's func-
tion of transversely isotropic half-space under the action of tran-
sient tractions applied at an arbitrary depth of the half-space. To
do so, with the use of the representations for the displacements, in
terms of two scalar potential functions; the elastodynamic gov-
erning partial differential equations are uncoupled into a fourth-

and a second-order partial differential equations in cylindrical
coordinate system and solved by virtue of Fourier series expansion
in terms of the angular coordinate and joint Hankel-Laplace
integral transforms in term of radial-time variables, along with
satisfying both the boundary and regularity conditions.

The Green's functions derived in this paper are applicable as inte-
gral kernels in the boundary element method or any other boundary
integral formulations to solve more complicated engineering initial-
boundary value problems such as either linear or non-linear dynamic
analysis of anisotropic soil-structure-interaction as well as earthquake
engineering and rock engineering relevant problems. For instance, the
topic of the forced vibrations of rigid disc embedded at an arbitrary
depth in a semi-infinite transversely isotropic medium, which is a
subject of considerable interest in geo-mechanics and civil engineering
could be treated with the aid of these Greens' functions [38,39].
Another interesting application of the proposed model may be found
in geophysical applications, such as earthquake and volcano source
monitoring. Moreover, the Green's functions for the point load exci-
tation may be used in the dislocation formulation of co-seismic
deformations arise from the rupture of buried faults, so that they
can find some applications in the emerging computational geosciences
field [40-43].

2. Statement of the problem

A transversely isotropic half-space in a cylindrical coordinate
system is considered as the domain of the problem in such a way
that the axis of symmetry of the material to be depth-wise (Fig. 1).
The displacement equations of motion in the cylindrical coordi-
nate system for homogenous transversely isotropic solid in the
absence of body force may be expressed as [26]:
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C11<—+ ———)+C +C44 _(C11+C66)r_2£
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where u = (u,v,w) is the displacement vector, Cq;, C33, Ci3, C13,
C44 and Cgg = (C11 —Cq3)/2 are the elastic constants and p is the
density of the medium. In view of the positive definiteness of the

Fig. 1. Transversely isotropic half-space under buried arbitrary time dependent force.
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strain energy, the elastic constants should satisfy the following
inequalities [44].

C11>0,C33 > 0,Cgp > 0,C11C33 — Cj3 — C33Ce5 > 0. 4

It is assumed that the medium is at rest prior to the instant
t =0, thus the displacement and stress components are zeros at
t <0. An arbitrary traction, f(r, 0, t), is assumed to be distributed
on a finite patch zy located at depth z=H (see Fig. 1). Thus, the
prescribed boundary conditions at z=H are

o o H- P(r,0,t) r,0emy
=Sx(r, 0, H" ,O)+54(r,0,H ,t) = 0 r,ggéﬂ:H ’
R(r,0,t) r,0enmy
4 - n_
—Su(r,0,H" ,0)+S(r,0,.H ,f)—{o r,.0¢ny
) Qr,0,t) rOem
—S;p(r.0.H" . )+S,9(r.0.H™ ,t)= { 0 r 9¢7r: ©

where S; (i, j=r, z,0) are the components of stress tensor and P,
Q and R are the components of the known traction in radial,
angular and vertical directions, respectively. In addition, the dis-
placements and stresses have to obey the regularity conditions at
infinity.

According to Eskandari-Ghadi (2005), the complete solution of
Egs. (1)-(3) in a z-convex transversely isotropic medium, with a z-
axis to be the axis of material symmetry, could be expressed in
terms of two scalar potential functions, namely F(r,8,z,t) and y(r
,0,z,t) as:
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Substituting (6) into the equation of motions, results in two
separate partial differential equations (PDEs) governing the
equations for the potential functions F and y as
(1+a1)(D1D2—6L)F=O

az2ot?
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The quantities s2(a = 1,2), which are not zero or negative, are
the roots of the following equation [44]:

C33Caa5* +(C73+2C13C20 — C11C33)s> +C11Caa =0 (10

In view of (4), s? and s can be real and distinct, coalescent, or
conjugate complex, however, they cannot be pure imaginary
numbers [44].

By considering the Fourier series expansion in terms of angular
coordinate and Hankel-Laplace integral transform with respect to
radial coordinate and time, respectively, Eq. (8) may be written as

an ordinary differential equation in terms of depth. To derive the
solution of the resulting equations, it is convenient to view the
half-space as being composed of an upper and a lower region of
the same material, namely Region 1{0<z<H} and Region
II{z > H}, respectively. Consistent with the regularity condition at
infinity the general solutions of Eq. (8) in transformed domain may
be written as:

=m

Fr=ALe" 4B e 47+ (e 1Dl e 2, Fo =Ep e +Fye ¥
an
for Region I and
Fr=Ble hziple-hz Fn _plle-ue (12)

for Region IL In the above equations, AL , ..., F.., B! D! and F! are
constants due to integrations, which are functions of Laplace
transform parameter, p, Hankel transform parameter &, and elastic
coefficients to be determined using the boundary conditions. In
the above equations

1 1
A= \/kl E 4 kyp? +5\/l<3§4+k452p2 +kspt, v= \/—Of_z\/ E 4 pop?.

1
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with
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Chadwick and Seat [45] showed that three different body
waves with different velocities can propagate in each direction in
anisotropic elastic materials. However, while the associated dis-
placement vectors are mutually perpendicular to each other, the
waves cannot in general be classified into dilatational and rota-
tional types. For transversely isotropic materials one of the body
waves is always purely transverse, and since this wave is polarized
in planes perpendicular to the direction of symmetry, it may
appropriately be referred to as an SH-—wave. The SH-—wave
number corresponds to the branch point of the function v~ and may
be expressed as:

Eoy= +ip\/p/Ces - (15)

The other two body waves are called quasi-longitudinal (QL)
and quasi-transverse (QT), the former being the wave for which
the inclination of the displacement vector to the wave normal is
least. However, in principal directions which are corresponding to
the eigen-vectors of the acoustic tensor [46], there are two waves,
which have pure dilatational (P-wave) and pure transverse beha-
vior (SV-wave). The wave numbers related to these dilatational
and transverse waves are the branch points of the functions A4; and
A2, which may be expressed as:

Ep= tip\/po/(1+a1).Esy = +ipy/po/ 2, (16)

Using the transformed displacement and stress potential
function relationships [37,47] and considering, the conditions (5)
together with the continuity of displacements across the plane z
=H and the traction free conditions at the surface z =0, provide
nine equations required for the solution of the nine unknown
coefficients Al ,...F!. Substituting these coefficients into the
relations (11) and (12) and with the use of displacement-potential
functions relationships and the inverse theorem for Laplace-
Hankel integral transforms, the displacements component could
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Fig. 2. Surface vertical displacement due to buried vertical point force at different epicenteral distance.

be determined in a real domain as:
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yz(z,H):;_y(e—”‘z—”‘+e-”<z+”>). (23)
Vo2 H) = 0(3C4;§ . {sgn(z—H)(e”ll‘z’H'—e”IZ'Z’H‘>

2612 C33 (ll —)LZ)

+§;[e—il(z+H)+efiz(z+H)]

_I%{nzuz%e—(ﬂ-lzﬁ-/{ﬂ")+nlvl%e—(ﬂzz+hH):| } (24)

with
~m—-1 ~m-1 ~m+1  ~m+1 ~m

Xm=P, —iQ, .Ym=P, +iQ, .Zm=R,

e = (@3 —a) A +EA+ar) +pop?, O = azdy — 1y
U= (’7, 053% *%/ﬁ)ﬂk,fi =101 £ 1402,k=1,2,3

+1 z>H
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sgn(z—H) = {

In the same way, one can derive the representations for the
stress components, which are eliminated here for brevity see
[37,47]. It is emphasized that in Khojasteh et al [47], the results
have been presented in the frequency domain, and it is necessary
to replace w = —ip in Khojasteh et al [47] to derive time domain
results, which may be used in this study.

3. Displacement Green's functions

The general solutions of the displacement vector shown in Egs.
(17)-(19) can be specified for the case of concentrated tractions
varying with time as Heaviside step function as

o(r) o(r)

£(r.0.0=f1 Saiven+fi5 —Hbe:, (26)

In Eq. (26), d(.) is the Dirac delta function, H(.) is the Heaviside
step function, and ey, is the unit vector in any horizontal direction
given by (see also Fig. 2)

e, = cos(f—0p)e.— sin(@—6p)ey. 27)
with e, ey and e, being the unit vectors in radial, angular and
vertical directions, respectively. Moreover, f;, and f, are the mag-

nitudes of point load, which may be used for determination of the
transformed loading coefficients Xy, Y, Zm (see Eq. (25)) as:

i0p f —
Xm:{e OZhIJ’ m=1

0, m#1
Yo = eofi, m=-1

0, m#—1’

Lo m=0
7 —{ 2 28
m {O, m£0 (28)

Substituting these relations into (17)-(19) results in the dis-
placement components as
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To derive the displacement Green's functions at the free surface
of the half-space, the integrals in Egs. (29)-(31) must be evaluated

for z=0. At first, by setting z=0 in Eqgs. (20)-(24), we have
A1 — A0
g/ﬁZ:O,H):%{Hm e MM _Qin,e” *2”}.
(’71/12—’72/11)
e—uH
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To facilitate the inversion of the double transform in Eqgs. (29)-
(31), we use the following change of variable introduced by Cag-
niard (see [20,37]) in the Hankel inversion integral

E=px, dE=pdx (33

which results in
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It should be noticed that in this case the Laplace transform
parameter appears only at the exponential functions and the
argument of Bessel functions.

3.1. The case of horizontal surface source

It is emphasized that the case of vertical surface point force
which results in axisymmetric case, has been treated in Eskandari-
Ghadi and Sattar [37] and therefore we discard it in this study.
Thus, let us first consider the case of horizontal surface point force
in which we have f, = H=0 and as a result of this substitution one
may write:
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73(z=0,H=0)= — N
(,Z2C33[ (11 —/12>A])¢2
Ql(z _0.H—0)— (192’71 —191’7?2 (Uﬂ?z —Alizl(}l).
a3x<f7]/12—i]2/11>1
.QZ(Z=O,H=O)=C44 (772191 *7"1192> (131/12*132/11). a7

a0 Casl ™ (zf _zi)mz

Now, with the use of the following two identities of Bessel
functions

h@)= —%

@)= (Jo(2)+§ djgf)) (38)
one may write

J,(pxr) = 1X ajog;;xr)

Jatpar) = = (I 2 SO (39)

Eq. (39) shows that to derive the inversion of the integral in Eq.
(34) (with f, =0), it is sufficient to compute, only the inverse for
the case of the integral involving Bessel function of zero order. The
other cases could be derived by the simple identities of Laplace
transform as would be seen at the sequel (see Appendix A). Here,
we introduce the inverse Laplace transform of functions TX(p) in

the form of
Ti(p) = A X o (prods. (40)

in which f(x) is an arbitrary function of x, which approaches
zero as x—oo. The inverse of this function could be determined
with the use of the method of Cagniard as (see Appendix A, Eqgs.
(A2)-(A7)):

()
T(t)= —2Im [ —HUH
(t) - m/o o

For the integrals involving Bessel function of the second order,
we have:

du 41

Sp) = /O Xfeol,(pry)dx 42)

By considering Eq. (39), one may write (see Appendix A, Eq.
(A8)-(A12)):

2 Fouf(iu) " f(ip) [2_ 2
S(t):;lm/ \/7(1[4-!- Im/ —p2rdu (43)
. IuZ

Finally, for the integrals containing Bessel function of the first
order we have

N(p) = /O Xf ) (prydx (44)

In this case, the inversion is (see Appendix A, Eqgs. (A13) and
(A14))

IETNO
N="Re / mdy 45)

Eqgs. (41), (43) and (45) could be used to determine the dis-
placement Green's functions at the free surface of the half-space
due to surface horizontal point force. The only thing that is left is
to notice to the proper representations given in (41), (43) and (45)
according to Eq. (34) (for f, =0), with kernels given in Eq. (37).
The function f(x) in the above equations must be replaced by
corresponding kernel functions in Eq. (37).

3.2. The case of buried source

Now, we consider the case of buried source, namely H # 0, for
both horizontal and vertical point force. In this case, by refereeing
to Egs. (34) and (35), and the identities of Bessel functions, we
need to find the Laplace inverse transforms of the following two
integral equations:

Kp)= [ xfoe P lo(prodx. i=1.2 46)

L(p) = /0 xfoe P (prydx, @7)

In the first place, we consider Eq. (47), which is corresponding
to the SH —wave. This wave arises only for the case of horizontal
point force and its characteristics contain in the kernel function y,.
After some complicated but straight forward algebraic manipula-
tions one may obtain the inverse Laplace transform of the func-

tions L(p) as (See Appendix B, Egs. (B3)-(B36)):
L(f) =0, é <h
_2 mO - xf(x)
L(t)_ﬂzlm/o g s
_ 20 Y X,
1= 2im /O N e 48)
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Fig. 3. Surface radial displacement due to buried vertical point force at different epicenteral distance.

where

ek 7=\
mi(t) = aé’\/l —h? —ah\/l ~&4),

X = ahy/* () —1+ial(t)\/ 1-h’
A(x; t) = X2 +a2(h® +C2(t)) — 2ahl () Va2 +x2,

The inverse for the Bessel function of the first order, namely

{O=qp

(49)

Vo) = [ afeoe g pros, (50)
is (see Appendix B, Egs. (B37)-(B45))
Y(t)=0, {<h
2 imy (t) (aéj— hva? +x2)f(x)
Y(t)=—I 1
= im [ iy hels
2 Xc(0) (aé’ —hva? +x2>f(x)
Yoy =2im /0 . dx, ¢>1 (51)

Finally, For the Bessel function of the second order, we have,

D(p) = /0 xf0e~HPL,(pryydx, (52)

while its inverse may be expressed as (see Appendix B, Egs.
(B46)~(B53)):

D(t)=0, {<h
2 im@® (1 —hz)x2+2(aC—h a2+x2)2
_ )
D) = m [ 0 P dx h<{<
5 x (1—h2)x2+2(aé_,’—h\/a2+x2)2d )
D(t) =21 )
0= 5m [ 1 T x >
(53)

Now, we consider the case of P— and SV —waves which are
corresponding to Eq. (46). In these cases as could be seen in Eq.
(36), ;1,-(1'= 1,2) are complicated functions of x, which does not
permit the analytical solution of Eq. (46) to be determined, with
the use of a suitable path of integration in general. However for a
particular transversely isotropic material, specified by the value of
its elastic module, the analytical solution still could be established.
Referring to Eq. (36), one could write

iiquz]i%ﬁ‘, Z1=k1X2+k2, z2=k3x4+k4x2+k5

where z; and z; would be two complex polynomial functions of
X =o+iu. In the cases where the function z, could be written as a
perfect square, the inner radical in Eq. (54) is eliminated and we
can find the analytical solution with the same procedure explained

(54
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Fig. 4. Surface vertical displacement due to buried horizontal point force at different epicenteral distance.

in the part of SH—wave. The polynomial z, may be written as a
complete square if its discriminate is zero namely

A=1Ik%—4ksks =0 (55)

Due to characteristics of s and s3 (see Eq. (10)), The coefficients
ki-ks in Eq. (54) are all real and k;, and ks are also positive, (see
also Eq. (14)), thus the necessary condition for Eq. (55) to be hold

is that
ks >0 (56)

From Egs. (14) and (10), it is seen that k3 < 0, only if s? and s3 be
complex conjugate. In other words k3 would be positive if

C13 > \/C11C33 or
Ciz3 < —/C11C33—2Cy4 or
v/ C11C33 —=2C44 < C13 < —/C11C33,

with C1214 > (Cq1C33 or

—\/C]]ng <C]3 </ C11C33—2C44, with C314<C1]C33 (57)
and A =0 if

C13=1/(Caa—C11)(Caa—C33)—Caq or Ci3=—Cqq or

Ci3=—/(C4a—C11)(Caa—C33)—Caa (58)

Since the elastic module must be real, it is necessary that in Eq.
(58)

Caq > max(Cy1,C33) or Cyq < min(Cyyq, Ca3) (59)
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Considering Egs. (57)-(59), the necessary and sufficient con-
dition for A to be zero would be Eq. (58) constrained with

C44 < mil’l(Cn, C33) (60)
In this case, one may easily deduce that
3 k k
Mz = k+£x2+k+ 4 61
12 \j<1_2> 2_4\/E (61)
Writing
Ja=ALVx2+a2 (62)
with
ky + ks
Ai=k1¢@, @@=k (63)
ko

and considering Eq. (14), it is clear that A, are always positive,
since,

vk _ o

A+ = k] +TZSZ
A =I<1—@=s% (64)

Moreover, k3 must be positive in the case of A = 0 (see Eq. (56)).
Thus, s and s? are real and when they are real, they are also
positive. Considering the necessary and sufficient conditions for

A =0, it could be easily proved that a? in Eq. (63) is also positive.
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Thus, one may use the results of SH—wave motion by the fol-
lowing substitutions
1

Ay =—

AL (65)

In the general case of transversely isotropic material, the ana-
lytical result could not be obtained and therefore we use the
numerical methods for inversion of Laplace and Hankel integral
transform.

4. Graphical representation

In the previous section, we have derived the analytical
responses of a transversely isotropic half-space, to both buried and
surface impulses. In a particular cases, the displacement compo-
nents have been presented in the form of double integrals related
to joint Hankel-Laplace inversion theorem (see Eqgs. (29)-(31)). In
the general case, the response functions contain different wave
fronts including, P—, SV —, SH— and Rayleigh wave amplitudes
and their characteristics lurk on the kernel functions y, ..., €2, (see
Egs. (20)-(24)). Generally, in a transversely isotropic material,
only, For the SH—wave, the closed from solution in terms of the
integrals with finite limit may be obtained for both buried and
surface sources. For other wave fronts, as the authors have tried,
the closed form solution could be obtained only for the case of
surface source and therefore the full wave motion in the case of
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Fig. 5. Surface radial displacement due to buried horizontal point force at different epicenteral distance.

buried source needs the application of numerical algorithms for
inversion of joint Laplace-Hankel integral transforms. It is
emphasized that in isotropic materials as well as a particular class
of transversely isotropic material introduced in Eq. (58), the closed
from solution could be derived for both surface and buried source
and for any wave type. Besides these two special cases, the full
wave motion in transversely isotropic materials due to buried
source needs the application of suitable numerical method.
Recently Raoofian et al [48], introduced an efficient algorithm for
inversion of joint Laplace-Hankel integral transforms based on the
application of fixed Talbot for Laplace inversion and extrapolating
strategy for Hankel inversion. The precision and performance of
this algorithm has been tested on similar functions related to wave
propagation, where a very good accuracy and reliability can be
seen (see [49,50]). For the numerical evaluation, we select a syn-
thetic transversely isotropic material whose mechanical properties
in SI unit are C;;=55,000, C33=159,000, C44= 20,000,
C13=18,000, C1, =15,000, p =50. Here, we emphasized that to
investigate the complete behavior of response functions due to
buried and surface source in transversely isotropic half-space, it is
necessary to derive the response functions for all classes of
transversely isotropic material categorized by the sign and inter-
relation of their elastic module [51,31]. And the result of this paper
could be considered as one of those classes.

For the evaluation of the integrals for the surface source, where
the analytical solution in terms of integrals with finite limit, may
be used, one may very cautious about their integrand functions
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Fig. 6. Surface angular displacement due to buried horizontal point force at different epicenteral distance.

which are not very smooth and well behaved. One must consider
the location of the branch points and Rayleigh pole on the path of
integration. The Rayleigh pole is the zero of the function I~ (x) in
Eq. (36) which could be numerically found. For the synthetic
material used here the pole is located at x=0.05177. The most
problematic task was the inversion of radial displacement due to
vertical point load and vertical displacement due to horizontal
point load and its complexity relates to the arrival of Rayleigh
wave. It is emphasized that for the time after the passage of
Rayleigh wave, it is necessary that the Cauchy principal value of
each integrals are computed.

For numerical computations and graphical representations, we
use the Mathematica software Ver. 8. Figs. 3 and 4 show respec-
tively the time histories of vertical and radial displacement at the
free surface of a half-space due to application of normal point load
varying with time as a Heaviside step function for different radial
distance. Also, Figs. 5-7 illustrate, respectively the behavior of
vertical, Radial and angular displacements at the free surface of a
half-space due to application of horizontal point force varying
with time as a Heaviside step function for different radial distance.
In these figures and also in the other similar illustrations, P, S, and
R denote the arrival time of dilatational, shear, and Rayleigh waves,
respectively, and SP is attributed to arrival of diffracted wave,
which starts as S —wave and is converted into a P—wave [20]. It is
emphasized that all results presented here are dimensionless,
where we use the normalized displacements (72CgsZ/R)(u, w) for
vertical point force and (72CesZ/P cos(0—6p))(u, cot(@—6Op)v,w)

for horizontal point force. In both cases the normalized time is
7=1/Ces/p(t/Z).

The above figures show that for small radial distance, the
SP—wave does not appear and only the amplitudes of P— and
S—waves are seen. The first arrival of SP—wave occurs at r = H/~/2
which happen before the S—wave. The Rayleigh wave arrives only
at large epicentral distances from the source particularly its first
arrival is seen at r = 5H. When the applied loads is vertical, after
the arrival of Rayleigh wave, the vertical displacement immedi-
ately becomes constant, which is corresponding to its steady state
manner. On the other hand, the radial displacement tends to its
steady state manner in a monotone fashion. However, when the
applied load is horizontal this situation becomes reverse. The
Rayleigh wave have no amplitude in the angular displacement
which is a proof of the elliptical motion of a material point in
planes normal to ey. When the depth of the source tends to zero or
as r/H—oo, the SP—wave reaches to the P—wave and they
become coalescent. In this case, the amplitude of Rayleigh wave
tends to infinity and the wave front becomes discontinuous at the
arrival time of Rayleigh wave.

Since the vertical normal stress is interested to geotechnical
engineers, we also present the behavior of normal stress due to
application of vertical point load. In Fig. 7, we illustrate the var-
iations of normal stress as a function of radial distance (upper
figures), depth (middle figures), and time respectively (lower fig-
ures). As could be seen, the normal stress has an oscillatory
behavior with a radial distance and tends to zero with an
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oscillatory manner. Due to boundary conditions of the problem,
the normal stress is zero at the free surface as it is evident from
figure. The time histories of normal stress marks the arrival time of
different wave front including P—, SP— and Rayleigh wave.
Moreover after the passage of S wave the stress becomes zero.

5. Conclusion

The asymmetric transient responses of a transversely isotropic
half-space under an arbitrary time-dependent surface and buried
tractions have been derived. The general solutions have been
investigated for special loading functions which varying as Hea-
viside step function in time, and also numerically evaluated for a
synthetic transversely isotropic material. For the case of surface
source, the closed form solution has been obtained by the Cag-
nirad method and represented in terms of integrals with finite
limit. For the case of buried source, where the more sophisticated
integrand functions are involved, the closed form solution could be
obtained, only for a particular transversely isotropic material in
terms of the integrals with finite limits. In the process of numerical
evaluations, some special attentions are required to be paid for the
presence of branch points and pole at the pass of integration. For
the general cases, where the closed from solution does not exist,
the numerical inversion of joint Hankel-Laplace integral transform
is applied based on suitable and efficient algorithms.

The fundamental solutions derived at this study, are applicable
as kernels in the boundary element method or boundary integral

formulations for the numerical treatment of more complicated
elastodynamic problems involving half-space geometries.
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Appendix A. Derivation of the inverse of Laplace transforms
for the case of horizontal surface source

By Mehler-Sonin formula one could represent the Bessel
function of the zero order by the following integral equation [52]

2] 00 eisz d Al
z)==Im s
A (A1)
from which Eq. (40) may be written as
2 o) 00 eiprxs
Tt =—Im/ X xdx/ ds
P== A f (%) A
2 ® ds o0 i
=ZIm / Xf(x)eP™S) dx A2
Pl N~ s W A of (%) (A2)

Now, in the complex x = 6 +iu plane, we choose a contour for
which the coefficients of p in exponential functions in Eq. (A2) be



M. Raoofian Naeeni, M. Eskandari-Ghadi / Soil Dynamics and Earthquake Engineering 81 (2016) 42-57 53

real [20,21]. Therefore, we must find a path of integration from the
solution of the following equation

Im[irxs]=0 = Im[ir(c+iu)s] =0 (A3)

It is clear that this path is located on an imaginary axis x =iy
(o =0) and therefore we have

ds o0
ip)e P, A4
S | ey A%
Now, we use the following change of variable in the first
integral

TH(p) = — 21

B .

which results in
Hf (in)

2 o0 o0
TH(p) = —=Im / ——
®) T Jur |Jo o /g2 —p2r?

_7[m / / ﬂf(lH)H(f ’”)d

ﬂz 12

dy | ePtde =

e Ptdt (AG)

From Eq. (A6) and the definition of Laplace transform, it is clear
that

T(t) = — Mdﬂ Im/ K (i) K gy a7

N e

where T(t) is the inverse Laplace transform of T'(p). For the
integrals involving Bessel function of the second order, we have
from Eq. (39):

& o 2 9
S'p) = [ xfoalaprody = /0 xf(x)[—Jo(pxr)— o)
== [ sfenstpxriax—2.2, [ EIT g sl p)—Sip

ror X
(A8)

The solution for the first part of the above integral is the same
as Eq. (A7). However, for the second part, after using Mehler-
Sonine formula and taking the integration on the imaginary axis

=1iu, we have
f(lH)H(t /’”’) dlLl e—p[dt (Ag)

Shp) = Hm / o

If F(p) is the Laplace transform of a function f(t), then [53]:
F(p) _1JF@) T
{ } / fadu, L 1{p2} - /0 M f(u)du} dr.
(A10)

where L™! is used as the inverse Laplace operator. Using the
above identities of Laplace transform, and after some algebraic
manipulations, one may write the inverse of Ss(p) as

Sz(t)_——l /f('”) £ — p2r2du (A11)
Thus, from Eq. (A8) one may write
2 [T ufw " f(i)
St = Im/ _H +—lm/ O, [2 _ y2p2g A12
= \/7 el A pereap (A12)

For the integrals containing Bessel function of the first order we

have from Eq. (39)
a o0
N(p) = /0 xf(x); (prx)dx = ~ar Jo h(x)@dx (A13)

In this case by using Eq. (A10) one may obtain

/j [ g,

Nt = 2 Re
nr t2 7#21”2

(A14)

Appendix B Derivation of the inverse Laplace transforms for
the case of buried source

Using the Mehler-Sonine representation (Eq. (A1)) in con-
junction with the change of variable s = chg, where ch(.) stands for
the hyperbolic cosine function, one may write Egs. (45) and (47)
as:

K(p)= %Im /0 dq0/0 Xf(X)e’p(Hji*irXChl/')dx

L(p):%lm /O de /0 x f(x)e—P(HY —irxche) gy (B1)

As we have done in the previous section, we should find a path
on the complex x = o +iu plane, for which the coefficients of p in
the exponential function be a real quantity. In this case, the path of
integration is found from the solutions of the following equations

Im(H/L —irxchgo) -0, i=1,2 (B2)

Im(Hv —irxchg) =0 (B3)

But contrary to the previous cases of surface source, here this
path is no longer collapsed on x =iy or on an imaginary axis. We
are trying to find the solution of the above equations in the form of
4 =f(o), which define a curve in 6 —y plane, from which the path
of integration may be obtained. In the first place, we consider Eq.
(B3), which is corresponding to the SH-—source. Solving this
equation results in two contours as

c=0 or x=iu

p= (M3 +K2c’po?) =f(©)  or x=0+if(0) (B4)
with
r , @kich’gp

K=—.a3, = ac = B5
Y2 Ko 112k Po (B3)

It is clear that the portion 6 =0 (x=iy) should be followed
only for 0 < u < i, and for the second part, the path of integration
is on x = o +if (o) with f(o) given in (B4). Therefore, we have
L(p)= glm/ dd)/ xf(x)e ~PHY —irxche) gy

T 0 0
:%lm / - do / o xf(x)e ~P(HY —irxche) gy
Zim / dop / * Xf(e PH RO dy — L (p) + Ly(p)  (B6)

For the first integral (L;), we must substitute x = iy and for the
second integral (L, ), we must substitute x = o6 +if (o) (see Eq. (B4)).
Moreover, along the latter path one may write

xX= ”Z_ﬂgﬂ,u dx= d +i
kehg Kchepy/u? — i
Hv—irxchep = ﬂ(xchglwr L ) (B7)
$="Ja xchep)”
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At first, we consider the integral of L, which by the above
equations may be expressed as

/112 2 2_ 142
Lz(p)—flm/ dqb K Mch;OJriﬂ)f(MHﬂ)

xchg
xe (e +m¢) S — P (BS)
kchep/p? — g
Now, if we use the following change of variable

B H=Hy = y=1
H=Hoy B=oo = y=oo

\/1+K2ch®¢ $=0 = w=0
chy =+—— (B9)
V1+x2 p=c0 = y=o0
then we have
\/ch?y —h? H
kche = — dy = pydy, h= 7/
a H?
Ho chw ch’y —h? = po(p), d¢ :,Todl/” Z=|1? o
(B10)
Substituting the above results into Eq. (B8), we have
2a o o hyy2-1 .
LZ(P)Z;Im/ llo(ll/)dl/// yiJFly f
0 /1 ey —h?
ah./y?
< Chl// +lﬂo(ll/)}’>
x e~ Pazyehy (B11)

hy
+1
VYZ—T1y/ch*y —h?

Since the coefficient of p in the above integral is real, we con-
sider the following change of variable

y=1 t=aZchy
t=aZchyy : {y:oo f— oo
dt
dy= aZchy (B12)
As a result Eq. (B11) may be written as
2 o ¢] o]
L) = im [ uowdw [ gt ae (B13)
nZ 0 aZchy
in which
gtw) =%<h\/y(t)2 —14iy(t) Chzl//—hz)
chy\/ch*y — h?
hy(t) il ahy/y(? -1
\/y(t)z 1 \/Chzl//_ 2 chyr
ay(t)\/ch*y —h?

where y(t) = t/aZchy. Changing the order of integration results
in

= Zm [ [

=

-1

¢
Ho)g(t, y)H(t —aZ)dyr | e~ Pdt

(B15)

Using the definition of Laplace transform
Lz(t) = 0, t<aZ

2 ~ch™ ¢
Lt =_ZIm /O Hoy)g(t, y)dy, t>aZ (B16)

The above integral could be further simplified by using the

change of variable y ={/chy, which by considering Eqs. (B14)-
(B16) results in:

ZClm/ \/7
ay) = ay{ \/3Tl+1\/ —h*y?
/)’0/)=<h y2—1+iy/¢? h2y2> \/_\/Tyz

Considering the change of variable x=a(y) in the above
equation one could easily check that

L= flaW)py)dy. ¢>1

(B17)

d
ix

\/CZ -y \/x2+a2(h2+C2)—2ahC«/a2+x2
With the use of the relations (B18) one may write

2 X xfx)
Lz(t) = Elm m, C >1

=a(y=1)=%" 2w,

=ah\/* —1+ial\/1—h?

where

AX) =x2 +a2(h® + &%) —2ahi Va2 +x2

Now, we consider the integral of L;(p), which after change of
variable x =iy is

o0 Ho — 242 e
h(p)?%"“ /0 d¢ /0 wf(impe (i “‘h‘”)du

Since for O0<u <y, the coefficient of p in the exponential
function is real, we can write

(B18)

Xe=ay=0)

(B19)

(B20)

(B21)

az—p? #=0. t=azs
t=|H o +ruche U 1“(;;,124) (B22)

Moreover, from Eq. (B22) we have

1
14x2ch’

t‘ay

uit, @) = t*/_ 2icchep — \/ a2(1+K26h2¢)—J (B23)

Therefore, one may write Eq. (B21) as

"0 at\/1+K2ch’p
Lp)=—2m [“dp [V T e et (B24)
0 a\/a_2
in which
d
. = it PGt p P D) (B25)

By changing the order of 1ntegration we have

aH, [1ix2 oo
Lﬂp):—%lm{ v UO g(t,qﬁ)d(ﬁ}e*mdt
e
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+/aH (1+x2)/ay |:/6 g(t’d)) ¢:|e t}
_ 1
e=ch 1(H\/§2—h2>

Finally, from the above equations and the definition of the
Laplace transform we have

(B26)

aH

Li(t)=0, t<— or h
10 < NG <
2 o aH 1+x2
Li(t)= —Elm/0 g(t,p)de, E<t<aH P or h<({<1
2 o0 aH [1+k2
Li(t)= —Elm/g g(t,p)de, t> "\ o or {>1
(B27)

The above integrals could be further simplified by the following
change of variable (see Eq. (B25))

X=ut,¢p) = dp= ¢dx

(B28)
Therefore we have
L= {<h
2 dudg
L1(t)_—zlm/ xf(lx)dtd dx, h<{<1
2 du d(/)
L=~ 2im / Mo ghde  £>1 (B29)
Refereeing to Eq. (B22) one may write
/a 2 _y2
X=u(t,p) = xchp= f == var X (B30)
From the above equation we have
dudg _dop _ _ 1
dtdp —dt Z\/az(h2+§2)—x2—2ahC«/a2—x2
m :,u(t,O):a{C\/l—hz—h\/l e
a /.2 12
=u(t,e) =~ —h
pe.e)=7 g
my =ny = u(t,00) =0 (B31)
Finally one may write
Li(t)=0, {<h
2 M xf(ix)
Li(t)= —=Im dx, h 1
10=-— b VB <{<
2 xf(ix)
Li(t)= ——=Im d 1 B32
0= im [ = (B32)
where
B(x) = a*(h? + &%) —x* —2ah{ Va2 —x2 (B33)
From Eqgs. (B33) and (B20) it is clear that
B(x) = A(ix) (B34)
Therefore on may write Eq. (B32) in the form of
Lit)y= {<h
i Xf(X)
Li(t =7 X, h 1
1 =—im / o <C<
2 ™ Xf(x)
Li(t)y ==l dx, 1 B35
0= [ ¢> (B35)

Considering Eq. (B35) and (B19) and (B6), one may arrive at Eq.
(48) as

L(t)=0, {<h
L(t):ilm/lm]f/{%x h<{<1
_  xf(x)
L(t) = EI /0 mdx, C>1 (B36)

Now we consider the integral involving the Bessel function of
the first order, namely

Y(p)= /0 " Xfeve ], (prxydx (B37)

By considering the first identity in Eq. (39), and the Mehler-
Sonin representation, one may write the above equation as:
Y(p) = —%Re / che dop / xf(x)e ~PUH-Ixcho) gy — Y, (D) + Y2 (p)
0 0
(B38)

This is similar in the form to Eq. (B1), the only diffidence
consisting in the appearance of the extra factor chg. By consider-
ing Eq. (B10), this adds the following factor in the integrand of
Ya(p)

(B39)

Therefore one may write Eq. (B17) (here L, should be replaced
by Y,) as

Yz(t>—— /

As before by con51der1ng the change of variable x = a(y) one
may write

VE-Ry2 af—n/a@4x2

f [aBW)dy. >1 (B40)

= B41
Ve —y2 VARX) 4D
And finally
Y2(t)=0 <1
2 X <a¢’—h«/a2+x2)f(x)
Va0 = Zim /X | i S (B42)

In the same way, according to Eq. (B30), chg adds the following
factor in the the integrand of Y(p),

chp =2 —Va—x* (B43)
1-h’x
Therefore one may write:
Y1(t) =0, {<h
-m (al —hva2 —x2)f(ix
Yi(t) = _ilm/ (e i \ix, her<i
ar Jo /BX)
2 n (aé’—hx/az—xz)f(ix)
Yit)= ——1 1 B44
1= [ N e (B44)
And finally we have:
Y(t)=0, {<h
2 imy (aC—hVa2+x2>f(x)
Y(t) = lm/ T dx, h<(<1
aC hv/a? +x2 )f(x)
Y(t)= lm/ dx, >1 (B45)
VAX)
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For the integral involving the Bessel function of the second
order, we have:

D(p) = /0 ” xf(x)e ~PH], (pxr)dx (B46)

Instead of using the identities in Eq. (39), we use the following
identity for the Bessel function of the second order

&’Jy(2)

L@ =]Jy(2)+2 az (B47)
This results in
2
) = Jotpry L I (B4)

By the above formula and using Mehler-Sonine representation
one may write

D(p) = /O " X e P (paryd

—%Im / ch’gp dg / xf(x)e ~PHY —irxche) gy (B49)
0 0

The first integral is similar to the case of Bessel of function of
the zeros order. For the second integral, we have:
D(p) = —%lm/ ch’¢ dqa/ xf(x)e ~PHY—irxcho) gy — D, (p)+ Dy (p)
0 0
(B50)

Which could be treated with the similar method used for the
Bessel function of the zero order, the only difference is the extra
factor chzrp. The final results for Dy(p) is:

Bz(p) =0 é‘ <0
. e (a-hv@e) .

X0)= /x1 X\/A®X) . 6> @51

And for D;(p) we have
Di(t)=0, C<h
2

_ 4 m (aC—hvaz —x2> f(ix)
Dq(t) = I dx, h 1

0= Za_mw m/o xv/B&) . h<¢s<

2

B 4 n (aéj—h\/az —xz) f(ix)
D = I d 1 (B52

0= Za_mw m/o Xv/BX) . &>1 (B52)

Finally from Eqgs. (B49), (B50) and (B36) we have
D(t) =0, {<h
2
5 im (1 —hz)x2+2(aC—hVa2+x2)
D) =im [ f0 i dx h<C<1
2
2 v (1—h*x2 +2(a§—h\/a2 +x2)

D(t) =21 ) 1

= 5m [ fox A i ¢

(B53)
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