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Machine Learning (ML) is a powerful tool that can be used to make predictions on the future nature
of data based on the past history. ML algorithms operate by building a model from input examples to
make data-driven predictions or decisions for the future. The growing concept “Big Data” has brought
much success in the field of data science; it provides data scalability in a variety of ways that empower
data science. ML can also be used in conjunction with Big Data to build effective predictive systems or
to solve complex data analytic problems. In this work, we propose an electricity generation forecasting
system that could predict the amount of power required at a rate close to the electricity consumption for
the United States. The proposed scheme uses Big Data analytics to process the data collected on power
management in the past 20 years. Then, it applies a ML model to train the system for the prediction stage.
The model can forecast future power generation based on the collected data, and our test results show
that the proposed system can predict the required power generation close to 99% of the actual usage.
Our results indicate that the ML with Big Data can be integrated in forecasting techniques to improve the
efficiency and solve complex data analytic problems existing in the power management systems.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

The United States (U.S.) is currently the second largest elec-
tricity producer and consumer in the world [1]. The U.S. enjoys 
a magnificent geographical diversity among states with a high 
amount of power consumption. This makes it challenging to de-
ploy a centralized power management system that can control the 
power generation and regulate the consumption. The electricity is 
mostly generated from natural resources, such as coal, gas, nuclear, 
petroleum, oil, and renewable energy. The consumption sectors 
can be detailed in terms of commercial, industrial, residential and 
other user communities.

Due to lack of centralized control, there is a large disparity 
in the ratio of power consumption/power generation from one 
state to the next. This imbalance results in wasting large quan-
tities of power generated in states where generation significantly 
exceeds consumption, while other states are suffering from in-
sufficient amount of power generation. Due to the size and the 
geographical diversity of different states in the U.S., it is farfetched 
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to prescribe centralized control over the power system. Merely, the 
interstate segments are regulated by the federal government [2,3], 
and the majority of the rest of the nation is delimited by individ-
ual states. Fig. 1 shows the electricity generation and consumption 
in the U.S. during 1980–2014. In this figure, the green line at the 
bottom shows the consumption, the red line in the middle repre-
sents the actual generation, and the blue line on top indicates total 
generation including net import (i.e. from neighboring countries). 
The difference between the generation (red line) and consumption 
(green line) is attributed to system losses, uncounted loads, and 
the lack of centralized control.

Fig. 2 shows electricity generation in the U.S., by state. States 
shown in lighter brown color are not producing enough electricity 
to meet their demand. Other states (shown in darker orange color) 
produce excess electricity, which could be used to compensate for 
the brown states lacking sufficient power generation. Further de-
ficiencies are fulfilled by importing electricity from neighboring 
countries.

Power generation is in direct correlation with the amount of re-
sources used to generate the electricity such as coal, gas, nuclear, 
petroleum, oil, and renewable energy. In Fig. 1, the red line in the 
middle (representing the power generation in the U.S.) provides 
two types of information: the amount of energy consumed and 
the quantity to be imported. Therefore, predicting power genera-
tion might provide vague information about power demand; hence 
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Fig. 1. Electricity generation and consumption graph. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 2. Electricity generation in the U.S., by state. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

increase the quantity to be imported from neighboring countries. It 
is critical to explore possibility of centralized power management 
and to determine the allocation of natural resources.

The prediction is challenging due to the accuracy requirement, 
and it becomes even more cumbersome when datasets are enor-
mous in volume and have excessive noise and high volatility. Sev-
eral forecasting methods using different species of Machine Learn-
ing (ML) algorithms, such as fuzzy neural network [15,22], gray 
algorithm [16], gray Markov model [17], and support vector regres-
sion [18] have been proposed to deal with electricity forecasting 
problems. Those models were showing impressive results in terms 
of forecasting accuracy. However, they might not be as effective 
dealing with Big Data, where more efficient schemes must be em-
ployed to deal with large volumes and complexity of datasets. On 
the other hand, large penetration of renewable energy sources, 
such as wind and solar systems, increases the uncertainty in gen-
eration [29,30].

It is important to forecast the power generation in order to 
allocate resources that produce the power and to calculate the 
demand and the quantity to be imported from neighboring coun-
tries. To reach this goal, ML methods based on Artificial Neural 
Network (ANN) algorithms have been developed. However, there 
still remains the problem of how to deal with large data size and 
complex mining process, and how to make the algorithms scalable 
and intact in their performance. In this study, a prediction method 
is developed based on a three step framework that incorporates 
Big Data analytics. First, raw data were processed and converted to 
suitable format; then, the data were normalized to get better per-
formance from the ML algorithm; and finally, the data were fed 
into an ANN model for training purposes. The deployment begins 
by collecting past power generation data from all the states in the 
U.S., and storing it in a distributed database. Then Big Data tools 
are used to deal with the processing of the data. Data are first 
distributed to a group of computing nodes inside Hadoop cluster, 
and distributed algorithms are implemented in form of MapRe-
duce to take advantage of distributed high performance computing 
paradigm in the laboratory environment. Afterwards, data are fed 
into the ANN algorithm to train the network. Finally, forecasted re-
sults from ANN are compared to the actual generation.

Fig. 3 depicts different steps in the framework for the proposed 
strategy. In the first step, the framework collects past power gen-
eration data from all U.S. states and stores them in a distributed 
database. This is the raw data with redundant information, some 
of which are in a completely unstructured format such as text files; 
others are not in any desired structured format such as csv format-
ted file. In the next step, Big Data tools are applied, MapReduce 
is implemented on top of Hadoop cluster to deal with such large 
datasets. Data are stored in multiple computing nodes, and dis-
tributed algorithms are implemented in the form of MapReduce. 
MapReduce is used to allocate assignment and to handle large 
datasets. Manipulated data is extracted from each computing node 
in the desired format. Then, data are normalized to increase the 
effectiveness of the ML algorithm. Finally, data from each node are 
used on ANN for training to predict the future power generation.

Forecasting electricity generation will eventually yield informa-
tion on the demand, since there is a linear relationship between 
the two. Also, it is easier to deploy centralized control if we have 
enough information about generation and consumption for individ-
ual states as well as for the entire nation. Therefore, knowing the 
total generation eventually determines the amount of electricity to 
be imported from neighboring countries.

The remainder of this paper is organized as follows. Section 2
briefly introduces ML and ANN methods. Section 3 describes some 
related works, and Section 4 presents the detailed strategy and the 
design of the framework, followed by the results in Section 5. Fi-
nally, Section 6 concludes the paper with a discussion.

2. Background

Machine Learning (ML) and Artificial Neural Networks (ANN) 
are parts of cognitive science, initially evolved from two important 
concepts, pattern recognition and computational learning, both 
parts of Artificial Intelligence (AI) [4,7,8]. ML deals with analyzing 
algorithms that can be trained to make predictions for the future 
based on the past information. ANN is a learning process based on 
statistical models and human biological neural networks. ANN is 
used to estimate values based on a large number of inputs. ANN 
interconnects neurons with numeric values, adjustable based on 
experience, allowing them to use the inputs in the learning pro-
cess. In this study we employ these concepts to build a framework 
for the electricity generation predictions with large volume of data.

ML and data mining processes have strong ties with mathe-
matical optimization to build complex models, where designing 
and programming explicit and rule-based algorithms are infeasi-
ble. There are several ML algorithms, where the learning process 
can be supervised or unsupervised. ANN is one of the popular su-
pervised learning process methods [7,26,27].
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Fig. 3. Workflow for the proposed strategy.
Fig. 4. Backpropagation Neural Network (BPNN).

ANN system acts like a human brain to process information 
and can be employed to determine the complex relationship be-
tween inputs and outputs of processes. A trained ANN system has 
the capability to predict the output as a set of previously unseen 
inputs once it is successfully trained. Numerous ANN algorithms 
have been proposed in the literature. Backpropagation (BP) algo-
rithm was employed in this study. Fig. 4 shows a basic BP Neural 
Network (BPNN) consisting of three layers: input, hidden and out-
put. There are two input, three hidden and only one output layer 
nodes (2-3-1) [14].

Forecasting electricity generation and consumption parameters 
is a difficult task because of the complex characteristics of data 
such as high volatility, inherent noise, hidden relationship and de-
pendency on other parameters, such as climate, tariffs, and effort 
to uplift the energy conservation. However, much research has 
been done to deal with those difficulties. Among them, ANN is 
found to be more efficient than other intelligent forecasting sys-
tems. Several ANN algorithms and their modified versions were 
implemented [19,23], and [24] to predict the electricity demands. 
Many research projects have proposed the improved versions of 
ANN in solving forecasting problems, which are proven to be more 
efficient than native ANN. For instance, in reference [20] the au-
thors used feed forward NN, and in [15] they used fuzzy logic NN. 
Other ML algorithms such as Support Vector Machine (SVM) [18]
and Recurrent SVM with Genetic algorithm (RSVMG) [21] are also 
used to forecast electricity demand, which also outperform other 
ANN schemes.

Those systems proved to be efficient in analyzing small-scale 
datasets. Prediction of large datasets might not work as efficiently 
because of difficulties in the structure of large datasets and elim-
ination of noise at the same time. Big Data tools can be used 
to deal with large electricity datasets, and ANN can be applied 
after processing those datasets. A similar approach was applied 
by D. Xian et al. [11], in which the authors predicted stock fea-
tures using decision tree and SVM. They used Big Data tools to 
handle large datasets. Mining valuable data from a large volume 
of complex datasets is a challenge. However, several studies fo-
cus on overcoming the data mining challenges with Big Data tools 
[6,25].
3. Framework design for the proposed strategy

In this work, efficient electricity forecasting is built using the 
ML approach with Big Data to overcome the challenges related to 
large datasets. The proposed framework is designed not only to 
build an effective forecasting system, but also to solve the prob-
lems related to unstructured and semi-structured datasets that 
have noise, using distributed algorithms in the form of MapReduce 
[9,10]. The framework consists of three main phases including data 
collection and processing, data normalization, and prediction train-
ing.

Fig. 5 shows the design of the framework in detail. The three 
main stages of the framework are designed as follows: (i) process 
raw data and extract features, (ii) normalize the data in structured 
format, and (iii) train BP algorithm for ANN forecasting. There 
are also two additional stages that complete the entire process as 
shown in Fig. 5. Prior to the three stages, data have to be prepared 
by storing it in Hadoop Distributed File System (HDFS), and dis-
tributing it among appropriate nodes. Initially, data is stored in a 
database, then it is loaded into the HDFS, which distributes data 
to different nodes. Then to extract features from data using high 
performance distributed computing, an algorithm in the form of 
MapReduce is implemented. Featured data in structured format is 
saved again into HDFS. Then the data from each computing node 
is normalized before it is used to train the BP network. Finally, the 
fully trained network is used to forecast future electricity genera-
tion.

3.1. Process raw data and extract features

Datasets for monthly power generation in each state was col-
lected for the past 15 years [5]. The data contained redundant in-
formation and texts in different sets since the consumption varies 
from one state to the next. Some sets were in a completely un-
structured format. Those datasets form a typical Big Data problem 
in terms of complexity and noise related to size. In order to deal 
with such Big Data problem efficiently, the designed framework 
goes through several stages for raw data treatment.

Initially, the raw data is stored in HDFS inside the Hadoop clus-
ter. HDFS stores files in a distributed fashion, and it also replicates 
data blocks in different nodes (for this work the replication fac-
tor was set to default value of 3). Hadoop breaks the data into 
chunks or blocks to be stored inside HDFS. The data can be di-
vided into blocks of 64, 128, and 256 MB. In this work, default 
block size of 64 MB is chosen. The data are first divided into blocks 
and then placed into HDFS; later the replication is performed. The 
reason for storing data in a distributed format is to perform par-
allel processing and computation of large data, while increasing 
reliability, flexibility, and scalability. Then we applied MapReduce, 
a low level language to retrieve desired features from data. We 
have implemented Mapper and Reducer algorithms in MapReduce 
to perform their tasks. The Mapper function tells the cluster which 
data points are required to be retrieved, and then the Reducer ac-
quires and aggregates all the data, and converts it to a suitable 
format [32]. The Hadoop cluster contains one master and sev-
eral slave nodes (NameNode acts as master and data nodes act 
as slaves). MapReduce has one master that is JobTracker, and the 
slave is TaskTracker. NameNode stores the metadata where the raw 
data are located, and data node stores the data. JobTracker keeps 
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Fig. 5. The framework design stages.
track of the tasks to be performed and TaskTracker performs the 
task on the data. The master node distributes the assignment to 
the group of slaves. Slave nodes carry out the computation and 
are periodically monitored by the master. Once the computation 
is performed, the results from those nodes are submitted to the 
master and stored in HDFS. In the MapReduce, job is performed in 
a pseudo-distributed mode (that means all the Hadoop daemons 
are running under separate Java Virtual Machine (JVM) process), 
on both single and multi-node clusters (in our multi-mode cluster 
all the master and slaves have their own VMs).

Algorithm 1 (MapReduce operational model to extract data).

1: // Map Class
2: Input: (Key: name of the input; Value: Value of the input)
3: Output: (Key, Value) // Pair of Key & Value
4: Map (Key, Value) Start

5: Intermediate (‘Key’, Value);
6: // Reducer Class
7: Input: (Key: name of the Mapped data;
8: Value: List of all map data with same key)
9: Output: Key of the Mapped data into row and column and

save into CSV file
10: Reducer (key, Value) Start
11: i = 0;
12: While (values.hasNext () ){
13: value = values.next().get();
14: output = values + line.split(cvsSplitBy);
15: i + +
16: If (i = 13){
17: return; // for 12 months value and next month as target
18: }
19: }
20: Output (key, Row, Column);

Algorithm 1 shows the operation of the MapReduce process, 
concluded in three steps. Raw data are stored in HDFS and ex-
tracted to clean up and to be converted to structured format. The 
MapReduce operation is performed to mine the data from clus-
ter and transform into structured format, which is suitable for ML 
process.
3.2. Normalize the data in structured format

The data features are extracted from raw data in order to be 
converted to structured format. Now a separate algorithm is con-
structed to do the normalization task. Feature extraction and nor-
malization can be done in one MapReduce process. However, the 
framework demonstrates separate algorithms for the ease of fea-
ture extraction process. There are several normalization techniques 
in the literature [13]; their algorithm performance could be varied 
based on the normalization methods. Statistical column normaliza-
tion is selected in this study for the structured data for its ability 
to diminish the error quickly and reduce the chance of local max-
ima and minima [13]. The normalization factor is calculated using 
Equation (1).

Normalized value of each column data (V nor) is:

V nor = Value ∗ NF (1)

where,
Normalization factor, NF = V max/F .
V max = Maximum value of the column
F = Convert the value of V max to floating point

Algorithm 2 (MapReduce operational model for normalization).

1: // Map Class
2: Input: (Key: name of the input;
3: Value: Value of the input)
4: Output: (Key, Value) // Key & Value Pair
5: Map (Key, Value) Start
6: Intermediate (‘Key’, Value);
7: // Reducer Class
8: Input: (Key: name of the Mapped data;
9: Value: List of all map data with same key)

10: Output: Key of the Mapped data into normalization function
11: Reducer (key, Value) Start
12: While (values.hasNext()){
13: Normalization Factor = Normalization Equation;
14: value = values.next().get() * Normalization factor;
15: }
16: Output (key, Value);
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Algorithm 2 shows the operation of the normalization process. 
The main goal of normalization is to increase the power and the 
quality of ML. Although normalization can be done by other al-
gorithms, MapReduce is used to achieve high performance and 
scalability.

Statistical normalization is employed here since the BPNN per-
formance depends on normalized value of the input data [12]. 
Normalization improves the quality of the ML and also the per-
formance of the algorithm. Structured datasets are again saved to 
the Hadoop cluster after the normalization operation is performed.

3.3. Train BPNN for generation forecast

The output data in structured format stored in HDFS is re-
trieved for training the BPNN, which is an important part of the 
framework. Data is divided into two sets: 90% used for training 
the network and the remaining 10% for testing the network. For 
each prediction; In the input layer, there are 12 nodes; in the hid-
den layer, 6 nodes; and in the output layer one node (12-6-1). 
The size of the input layer contains the number of features in the 
data. Before setting the number of input nodes to 12, the fore-
casting results are evaluated using the 3rd, 4th, 6th and 8th input 
nodes. After this evaluation, the generation of next month is fore-
casted by the past 12 months’ generation data, which has been 
included into the network. Hence, the algorithm outputs optimal 
results for the past 12 months as input into 12 nodes. The algo-
rithm can recognize the pattern very well if the entire year is used. 
The size of output layer is also determined in a similar manner. 
BPNN can be run in two different ways: ML mode and Regression 
mode. ML mode determines the output as class label, and the re-
gression mode returns values (e.g. predicting price). In this work, 
BPNN runs on regression mode and the output layer has a single 
node. There is one hidden layer with 6 nodes. Usually with the 
increase of hidden layer numbers, the performance improvement 
is very small, it also increases computation overhead. The size of 
hidden layer nodes depends on the size of input and output layers 
nodes. Empirical studies suggest the optimal size for hidden layer 
nodes lies between the size of input layer and the size of output 
layer [31]. The framework is tested for 6, 7 and 8 nodes in hidden 
layer. However, the performance is identical for any case above 5 
nodes in hidden layer. In each node we have activation function, 
triggered after a certain level of inputs. The activation function is 
given in Equation (2).

f = 1

(1 + exp−(net input))
(2)

where the net input is the total generation for 12 months.
Fig. 6 shows the error graph of the BPNN training process. It 

can be observed from the figure that error value decreases as the 
training iteration number increases due to Backpropagation pro-
cess. Error values shown in Fig. 6 are in normalized form. The 
algorithm is trained by setting the iteration value to 4000. Each set 
of input data is trained 4000 times, but the designed framework is 
tested by varying the iteration number from 2600 to 12000. Error 
value remains at a constant level after training is done 2800 times. 
Iteration value is kept at 4000 by performing an optimum tradeoff 
between simulation accuracy and speed. Although the algorithm 
has the risk of overtraining and/or local maxima and minima, the 
statistical normalization would reduce these kinds of risks.

Algorithm 3 shows the flow chart for BPNN. Datasets are di-
vided into two sets: training set and testing set.

Algorithm 3 (Flow Chart for BPNN algorithm).

1: Input: Training Datasets in structured format
2: Output: Electricity Generation Forecast Model: BPNN
// Procedure
Fig. 6. BPNN error graph.

Fig. 7. Actual and predicted forecast for Connecticut. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

Although the BP algorithm has problems such as local minima 
and overtraining, yet it is a good choice for its outstanding per-
formance, and once it is successfully trained, it has the ability to 
detect patterns with excessive noise.

4. Results and analysis

In this section performance of the algorithm is evaluated and 
the output forecasts are compared with actual generation. The 
forecasts are performed for individual states and the collected val-
ues are used to find the total generation. The total generation is 
also separately forecasted using net generation data. The results 
are presented for three states with different climates and different 
energy demands. Figs. 7, 8, 9, and 10 show forecast with actual 
generation for the three states and total U.S. generation.

Figs. 7, 8, and 9 show results for Connecticut, Texas and Cali-
fornia respectively; the blue line shows actual generation, and the 
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Fig. 8. Actual and predicted forecast for Texas. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

Fig. 9. Actual and predicted forecast for California. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 10. Actual and predicted total electricity forecast in the U.S.A. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

orange line indicates the forecast. It is observed from the figures 
that the forecasted values closely match those of the actual gener-
ations.

Fig. 10 depicts the total generation forecast for the U.S. The blue 
line at the top shows actual generation and the red line in the mid-
dle indicates our forecasted generation, by summing all individual 
state generation forecasts. The green line at the bottom represents 
the overall forecast, prepared by sum of all the states’ actual gen-
eration using the summed data to forecast the overall generation. 
In both cases (red and blue lines) we can see our forecast provides 
a close match to the actual generation.

The results show that the forecasted values for power gener-
ation closely match those of the actual measurements. This indi-
cates that the system can recognize the data pattern properly and 
forecast the values accurately. The BPNN performance is reliable 
once it has been successfully trained. In the proposed framework, 
the network is properly trained, and the error rate is minimized. 
The network can accurately forecast from noisy input, and it has 
the capability to detect abnormal demand from forecast results af-
ter learning from examples.

The results show a close proximity between forecasted and ac-
tual data. In order to verify the results, an analytical approach 
is applied. The Mean Absolute Percentage Error (MAPE) is calcu-
lated for the developed BPNN model results. MAPE is a measure 
of accuracy of a method to construct forecasting values of a cer-
tain time series. It expresses accuracy as a percentage, defined by 
Equation (3).

M = 1

n

n∑

t=1

∣∣∣∣
At − Ft

At

∣∣∣∣ (3)

where At is the actual value and Ft is the forecasted value.
MAPE is calculated for both the total generation forecast and 

some individual state’s forecasted results. MAPE percentage was 
calculated to be 4.13% for total generation forecast and the individ-
ual forecast values are in the range of 4–9% for all the states. The 
normalization process has an impact on MAPE percentage. Nor-
malization reduces the error and helps ML methods to learn more 
quickly. It also reduces the mean absolute error. Hence, the perfor-
mance of BPNN algorithm satisfies both analytical and forecasted 
results.

The main contributions of this work are as follows: 1) A BP al-
gorithm is implemented and shown to be able to efficiently deal 
with large datasets by means of simulation results; 2) The prob-
lems with dealing with large datasets are solved with the Big Data 
approach; 3) The ML approach with Big Data is integrated and 
shown to be a viable forecasting solution when dealing with large 
datasets having complex noise.

5. Conclusion

In this study, a ML scheme is implemented to deal with Big 
Data analytics. Big Data has the ability to deal with large datasets 
in different formats, hence a suitable solution for analytics. ML 
combined with Big Data is a novel approach to solve a complex 
problem related to power generation prediction. Electricity gen-
eration forecasting is a challenging issue, especially when one is 
dealing with a large dataset complemented with noise. Experimen-
tal results of this work have been compared to predicted future 
power generations, and it provides a close match between their 
respective values. The role of Big Data approach is to extract the 
desired statistical features from the data using a distributed algo-
rithm in the form of MapReduce on high performance platform 
and applied to ANN to find a relationship or specific patterns in 
the data. This relationship is used to forecast future generations. 
The results show a close proximity between the forecasted and the 
actual power generation values.

In future we plan to add other metrics such as load in our 
analysis. There are numerous studies in the literature on load fore-
casting as it is extremely important for the operation and planning 
of utility companies [28]. Considering accuracy of integrating the 
ML with Big Data analytics in forecasting, the proposed strategy 
will be further developed to predict the load demands in future. 
Accurate prediction will provide a clear picture for power system 
operators to effectively dispatch the electricity generation, reduce 
power losses, and enhance the energy security.
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