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SUMMARY 

The paper presents a hypoplastic constitutive model for the three-dimensional non-linear stress-strain and 
dilatant volume change behaviour of sand. The model is developed without recourse to the concept in 
elastoplasticity theory such as yield surface, plastic potential and decomposition into elastic and plastic 
parts. Benefited from the non-linear tensorial functions available from the representation theorem the model 
possesses simple mathematical formulation and contains only four material parameters, which can be easily 
identified with triaxial compression tests. Comparison of the predictions with the experimental results shows 
that the model is capable of capturing the salient behaviour of sand under monotonic loading and is 
applicable to both drained and undrained conditions. 

1. INTRODUCTION 

Following the pioneer Cam-clay model developed by the Cambridge soil mechanics school,' 
much effort has been devoted to the development of constitutive models that are capable of 
predicting the mechanical behaviour of soils. The varying emphasis on describing different 
aspects of the behaviour of soils has given rise to a large number of models with different levels of 
sophistication and complexity. The capability of the models has been greatly enhanced by 
introducing various concepts such as the double yield surfaces,' the bounding ~ur face ,~  the 
anisotropic hardening rule4 and the endochronic intrinsic time.5 

When the various models proposed in the past are examined, it is evident that the capacity of 
the models has been gained at the cost of their simplicity. Along with the sophistication of the 
models, more complicated mathematical formulations have been adduced and the number of the 
material parameters has also increased considerably. However, complex mathematical relations 
have rendered a clear insight into the models impossible, and the identification of the many 
parameters has been proved to be more than difficult. The question arises whether such complex 
formulations can be justified, particularly in view of the fact that soils are natural products and 
usually show large variation in their property. The Cam-clay model provides an answer to the 
above question, since the model captures the salient features of normally consolidated clays with 
only three easily measurable material parameters. From the practical point of view, a constitutive 
model capable of reproducing the essential features, although not all facets, of the material 
behaviour with simpler mathematical formulations and fewer material parameters is to be 
favoured. 
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A perusal of the relevant literature also reveals that while there exist several well-established, 
relatively simple constitutive models for clay, comparably simple models for sand are still lacking. 
This situation is mainly due to the more complex behaviour of sand as compared with clay. 
Whereas the volume change of loose and is contractant throughout, dense sand shows an initial 
contractancy and a subsequent dilatancy. As a consequence, the associated flow rule in elasto- 
plasticity does not apply. Liquefaction and cyclic mobility mark further characteristics that are 
substantially different from that of clay. The existing models for sand are often rather complicated 
in their formulations and usually involve many material parameters. 

Our primary purpose is to develop a constitutive model that is capable of capturing the salient 
behaviour of sand and is yet as simple as the Cam-clay model. In developing such a constitutive 
model, an ensuing question is whether we should follow the elastoplastic theory or we had better 
tread a radically new way. It seems that the various modifications of the existing elastoplastic 
models lead inevitably to rather involved formulations. In fact, it is a common phenomenon in the 
developement of science that a simple model, e.g. the Cam-clay model, which is originally 
proposed to describe the salient features of the observations, fails to account for more refined 
experiments. Modifications are then included to describe the new observations. This process of 
modifications will continue until the model becomes too complicated to be applied. A new theory 
with simpler mathematical formulation and fewer material parameters is bound to emerge. We 
believe that this new theory cannot be achieved through modifications to the existing elastoplas- 
tic model. To quote from Roscoe? “I have always rejected the idea that the best way to make 
progress is continually to apply small modifications to current methods.” 

Based on the non-linear tensorial functions, a hypoplastic model is developed as an alternative 
approach to the prevailing elastoplastic models in describing the mechanical behaviour of sands. 
The corner-stones pertinent to elastoplasticity such as yield surface, plastic potential, decomposi- 
tion of the deformation into elastic and plastic parts, hardening and flow rule are abandoned to 
be used in formulating the constitutive model. In this way, a constitutive model with elegant 
mathematical formulation and with only four material parameters is achieved. It is shown that 
many well-established concepts in soil mechanics can be unified with the constitutive model, and 
failure surface, flow rule and the earth pressure coefficient at rest, which have to be prescribed 
a priori in most elastoplastic models, now turn out as natural outcomes of the constitutive model. 

Our previous publications have been addressed mainly to researchers in continuum mechan- 
i c ~ . ’ - ~ ~  The present paper is an attempt to communicate with geotechnical engineers. To skirt 
the difficulties of engineers with tensorial calculations, second-rank matrices are used. To make 
the constitutive model more comprehensive, explicit expressions for simulating the laboratory 
tests are provided where necessary. Special emphasis is placed on the identification of the material 
parameters in the model through correlation with some widely used parameters in soil mechanics. 

2. FRAMEWORK OF HYPOPLASTICITY 

Let the motion of a granular body be referred to some fixed rectangular Cartesian co-ordinates 
and let the granular body occupy the position X in some reference configuration. Suppose the 
motion of the granular media can be described by x = x(X, t).  

The following dynamic and kinematic quantities are used in formulating the constitutive 
equation: the Cauchy stress tensor (r, the strain rate and spin tensors, I: and ci,. The strain rate and 
spin tensors are related to the velocity gradient as follows: 

I: = )[(VX) + (VX)T], ci, = f[(VX) - (VX)T] 
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where V stands for the gradient and the superscript T denotes a transposition. Throughout the 
paper, we will use bold letters to denote tensors and matrices. A superposed dot implies material 
time differentiation. To comply with the sign convention in soil mechanics tensile stress, elon- 
gative strain and their rate are taken to be negative. 

2. I .  Hypoplastic constitutive equation 

model by assuming that there exists a tensorial function H such that 
Following the recent work by Wu and Kolymbas,* we define our hypoplastic constitutive 

6 = H(G, C) (2)  

(3) 

where 6 is the Jaumann stress rate defined as follows: 

6 = i + ah - ciw 

Furthermore, we require that the function H in (2) is not differentiable in and only in i = 0. 
It should be remarked that by virtue of constitutive equation (2), the stress rate depends solely 

on the instantaneous stress state and is independent of the way in which this stress state is 
reached. Note that the above remark is only valid for the instantaneous behaviour. The overall 
behaviour predicted by (2) depends in general on the stress path. 

By virtue of relation (2), the history dependence of the constitutive model is reduced to the 
instantaneous stress. It is certainly true that the history dependence in general might be more 
complex. We will, however, consider (2) as a reasonable assumption to get a simple formulation. 
The non-differentiability of H at i = 0 means that the hypoplastic constitutive model is necessar- 
ily incrementally non-linear. Recalling the hypoelastic constitutive equation proposed by 
Tr~esdell, '~ it can be seen that our definition of hypoplasticity is furnished by requiring that H is 
not differentiable at i = 0. As we know, irreversible deformation cannot be described within the 
framework of hypoelasticity. The non-differentiability of H in i is therefore a decisive step 
towards taking the irreversible behaviour into consideration. Consider a constitutive equation 

= H(a, 8 )  and a closed strain cycle by applying E and - E sequentially. If the constitutive 
equation in concern is differentiable at 8 = 0, we obtain the same tangential stiffness for both 
E and - t ,  i.e. limD_,o+ aH/& = limD,o- aH/at. Apparently, the resultant stress after the strain 
cycle will be zero. As a consequence, the dissipative behaviour cannot be accounted for. If, 
however, the constitutive equation is not differentiable at 8 = 0, the tangential stiffness and 
therefore the stress rate for i and - 8 will be in general different giving rise to the desired 
dissipative behaviour. For comparison, the non-differentiability in an elastoplastic model is 
achieved by using different relations for loading and unloading, whereas a single relation is used 
in the hypoplastic model. 

We seek to obtain a concrete formulation by imposing several restrictions on constitutive 
equation (2). Some of these restrictions are based on the general principles of continuum 
mechanics, while others are based on experimental observations. Assume that the behaviour to be 
described is rate-independent. In this case, no material parameter with the dimension of time can 
enter the constitutive equation. l S  For constitutive equation (2), rate-independence is equivalent 
to the following statement. 

Restriction 1: The function H should be positively homogeneous of the first order in C: 
H(a, LC) = LH(a, i) (4) 

where 1 is a positive but otherwise arbitrary scalar. 
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The second restriction results from the requirement of objectivity. l6 The material response, as 
described by constitutive equation (2), should remain invariant under rigid rotations. 

Restriction 2: The function H should fulfil the following condition of objectivity: 

H(QaQT, QiQT) = QW, &)QT ( 5 )  

is which Q is an orthogonal tensor. 
The requirement of objectivity is satisfied if the function H is chosen according to the 

representation theorems for isotropic tensorial functions. In the most general case, the representa- 
tion theorem for a tensorial function of two symmetric tensors can be written as1' 

i = a,l + ala  + cxzi + a3a2 + a4i2 + a,(& + in) 

+ a,(a2i + in2) + a7(aEZ + C2a) + a8(a2i2 + i2a2) (6) 
where 1 is the unit tensor. The coefficients in (6), mi (i = 0 , .  . . , 8) are functions of the invariants 
and joint invariants of a and i: 

m i  = a,(tr a, tr a2, tr a3, tr i, tr i2, tr i3, tr(oi), tr (a2i), tr(ai2), tr (a2i3)) (7) 
where tr represents the trace of a tensor. Note that the isotropy of the tensorial function does not 
necessarily mean that the response is also isotropic. In fact, anisotropy due to variation of stress 
can be accounted for. 

The third restriction is based on the following experimental observation made by Gol- 
scheider" with a true triaxial apparatus on sand: 

A proportional strain (stress) path starting from a nearly stress free and undistorted state yields 
a proportional stress (strain) path. 

This observation is of fundamental importance for developing constitutive equations. Mathemat- 
ically, it can be expressed by the following restriction. 

Restriction 3: The function H should be homogeneous in a, i.e. 

H ( h ,  i) = I"H(a, i) (8) 
where 1 is an arbitrary scalar and n denotes the order of homogeneity. Restriction 3 implies that 
the tangential stiffness is proportional to the nth power of the stress level (tra)", so that 
experiments conducted under different stress levels can be normalized by (tr a)". This so-called 
normalized behaviour for granular materials has been widely reported in the literature.' 

2.2. A subclass of hypoplastic constitutive equations 

Without loss in generality, we confine ourselves to constitutive equations of the tensor 
generators from the representation theorem (6) and assume further that the constitutive equation 
can be decomposed into two parts representing reversible and irreversible behaviour of the 
material 

6 = L(G, i) - N(G, i) (9) 
where L is assumed to be linear in i and N is non-linear in i. It is worthwhile to notice that if we 
drop N(a, E) in (9), then the hypoelastic constitutive equation due to Truesdell14 is recovered. In 
this sense, hypoplastic constitutive equations can also be regarded as an extension of the 
hypoelastic constitutive equation. Application of hypoelasticity to granular materials has been 
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attempted by Stutz,” Romano” and Davis and Mullenger.” Several critiques on the hypoelas- 
tic models for soils can be found in the work by G ~ d e h u s . ~ ~  In particular, the response of such 
constitutive models may show jumps for certain directions of strain rate. 

L(a, i) in (9) can be specified by invoking the representation theorem for isotropic tensorial 
functions. Keeping in mind that the non-linear dependence on N on i should also satisfy the 
restriction of rate-independence, we consider the following constitutive equation: 

6 = L(a):i - N(~)llill (10) 
where L = aL/dt is, in analogy to the elastic stiffness matrix, a fourth-order tensor and 
11 i 11 = Jtr i2 stands for the Euclidean norm. The colon : denotes an inner product between two 
tensors. Without inducing confusion the same symbol N is retained in (10). The concrete form of 
N can also be obtained with the help of the representation theorem for isotropic tensorial 
functions. Due to the non-differentiable term containing [Id 11, constitutive equation (10) is in- 
crementally non-linear. Constitutive equation (10) defines a class of hypoplastic constitutive 
equations, which can be used to describe the behaviour of granular materials. 

Note that the concepts in elastoplastic theory such as yield surface, plastic potential and 
decomposition of deformation into elastic and plastic parts are not used in developing the 
constitutive model. There is even no need to define loading and unloading explicitly, since they 
are implied by the constitutive equation. To show how loading and unloading can be accounted 
for by (10) and to bring out the relationship between hypoplastic and elastoplastic models, let us 
consider the case of one-dimensional stress and strain and apply two strain rates of the same 
magnitude and in opposite directions, i (loading) and - i (unloading), The following equations 
are obtained by substituting i and -i into (10): 

[ L - N ] i :  i > O  
[ L + N ] i :  i < O  

The terms in the brackets in (1 1) represent the tangential stiffness. As can be seen from the above 
equations, two distinct stiffnesses are obtained for loading and unloading. 

The relationship between hypoplastic and elastoplastic models will become apparent by 
comparing the stiffnesses in (1 1) to the stiffnesses in an elastoplastic model 

L’P:i:  i > O  
L “ : i :  i < 0 

( T = {  

where LeP and Lee denote the elastoplastic and the elastic stiffness, respectively. The following 
relations can be easily seen by comparing (1 1) with (12): 

It should be reminded that the relations in (13) are merely formal, since the stiffness predicted by 
a hypoplastic model need not be identical with that by an elastoplastic model. Furthermore, the 
one-dimensional models in (1 1) and (12) are certainly oversimplified for the three-dimensional 
behaviour, since stress, strain and their rates are tensorial quantities. 

The underlying difference between hypoplastic and elastoplastic models can be further demon- 
strated with the help of the stress-strain curves in Figure 1. We first consider the elastopiastic 
model as specified by (12) and rewrite the constitutive equation for loading as follows: 
8 = Lee(i - 2)  = Leei - LeeiP with .P being the plastic strain rate. To calculate the stress rate 
upon loading, i A t  (c in Figure l(a)), one can first compute the stress rate, which results from the 
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T 
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Figure 1. Schematic interpretation of constitutive equation (10) 

total strain rate Lee: (a in Figure l(a)), and then subtract the amount LeekP on account of the 
plastic effect (b in Figure l(a)), i.e. c = a - b. For unloading, -<At, the stress rate, a’ in 
Figure l(a), is calculated elastically from the total strain rate. It is clear from Figure l(a) that 
a = - a‘. 

Next, the hypoplastic constitutive model as given by (1 1) is considered. The stress rate upon 
loading, c in Figure 1 (b), can be calculated as the difference between the stress rate resulting from 
the linear term LE: (a in Figure l(b)) and the stress rate from the non-linear term NE: (b in 
Figure l(b)), i.e. c = a - b in Figure l(b). For unloading, however, the behavior of a hypoplastic 
model differs substantially from an elastoplastic model. The behavior upon unloading is not 
assumed to be purely elastic. Rather, the stress rate is the sum of the stress rates resulting from the 
linear and the non-linear terms, i.e. c’ = a’ + b’ in Figure l(b). From Figure l(b) we have a = - a’ 
and b = b‘. On unloading, the stress rate from the elastoplastic model in Figure l(a) can be 
regarded as a special case of the hypoplastic model in Figure l(b) with b’ = 0. 

To show the difference between hypoplasticity and elastoplasticity in more detail, constitutive 
equation (10) can be recast in a more convenient form by virtue of Euler’s theorem for homogene- 
ous functions: 

(14) 

in which 2 = i/IIiII stands for the direction of strain rate. The symbol 0 denotes an outer 
product between two tensors. 

The two terms in the brackets in (14) represent the tangential stiffness tensor. It is apparent 
from (14) that the tangential stiffness tensor depends not only on stress but also on the direction of 
strain rate. As compared with elastoplasticity theory, hypoplastic constitutive models are in- 
crementally non-linear. Note that the distinction between loading and unloading is unimportant 
for the hypoplastic constitutive equation, since the non-linear part is always active for both 
loading and unloading. As a matter of fact, the determination of the yield surface for granular 
materials is usually rather subjective, since the stress-strain curves generally do not show a clear 
yielding point as many metallic materials do.18 

- 
& = ( L - N 0 i):  i, 
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To facilitate numerical implementation in a finite element code, constitutive equation (10) can 
be recast in the following matrix form: 

where [L] is 6 x 6 matrix and (81, {i} and {N) are 6 x 1 matrices. 

2.3. Failure surface and flow rule 

is exhausted. The term failure is defined within the framework of hypoplasticity as follows. 

i # 0 such that the stress rate vanishes, i.e. 

As we know, granular materials fail under increasing shear deformation, i.e. the shear strength 

A material element is said to be at failure if, for a given stress a, theie exists a strain rate 

& = H ( a , i ) = O  (16) 
If the total set of stress a E {a 16 = 0 }  forms a surface in the stress space, it will be called failure 
surface. Note that any stress at failure is accompanied by the corresponding strain rate 
E E {i 1 i = 01, which will be further specified below. Failure is characterized by the pair (a, E). 

Note further that the critical state in the Cam-clay model" is included in the above definition as 
a special case for simultaneously vanishing volumetric strain rate, namely 
Q E  {ali = On t r i  = O } .  

Referring to constitutive equation (lo), we are now in a position to derive explicit expressions of 
the failure surface and the flow rule according to the above definition. To facilitate derivation, it is 
convenient to align the co-ordinates with the principal stress direction. By definition, the stress 
rate at failure vanishes. That is 

{&} = CLl{ i}  - {N}Ilill = (0) (17) 

The direction of strain rate at failure can be readily obtained from equation (17): 

-T- = [L]-'{N) 
I1 E I1 

Equation (1 8) relates the direction of strain rate to the stress at failure and characterizes the flow 
rule. Note that (18) should not be confused with the flow rule in elastoplasticity, where only the 
plastic strain rate is concerned. More detailed treatment of the failure criterion and the flow rule 
of hypoplastic constitutive equations can be found in a recent work by Wu and Niem~nis. '~ 

By making use of the definition of the norm Ilill we have 

Substitution of (18) into (19) yields the equation for the failure surface: 

f(a) = {N}T([L]T)-'[LI-'{N} - 1 = O  (20) 

From the above derivations it can be seen that failure concerns two aspects, namely kinematic 
and dynamic. As a result, there are two equations which follow from the definition of failure. The 
first one specifies the direction of strain rate at failure and is called the flow rule while the second 
one concerns the stress and specifies the failure surface. It is worth noting that the failure surface 
and the flow rule in hypolasticity can be derived as by-products from the constitutive equation, 
whereas in elastoplasticity they must be prescribed a priori, e.g. the Mohr-Coulomb failure 
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surface and the associated or non-associated flow rule. A further remark is relevant as to whether 
the flow rule (17), with reference to the failure surface (20), is associated. A perusual of (18) and (20) 
suggests that the flow rule is non-associated, since in general df( { Q } ) / ~ { Q }  # [L]-' {N}. 

3. A SIMPLE HYPOPLASTIC CONSTITUTIVE MODEL 

Bearing in mind that constitutive equation (10) should be homogenous in Q, we begin with the 
simplest case in assuming that the tensorial functions L and N in (10) are homogeneous of the first 
order in Q. Now, we turn our attention to the following specific version of hypoplastic constitutive 
equation:" 

tr Q 

tr ( a i ) ~  ii = c,(tra)i + c2 ~ 

tr Q 

where ci (i = 1,. . . ,4) are dimensionless material parameters. The deviatoric stress tensor a* in 
(21) is defined by 

Owing to the fact that constitutive equation (21) is homogeneous of the first degree in stress, the 
predicted behaviour, e.g. tangential stiffness and shear strength, depends linearly on the stress 
level. Many experimental investigations in the literature indicate that the deviation from the 
linear dependence on the stress level may become significant, if large variation of the stress level 
O C C U ~ S . ~ ~ , ~ ~  Nevertheless, the linear dependence on the stress level in (21) can be regarded as 
a reasonable approximation for small to moderate variation of the stress level. 

As compared with the general representation theorem (6) and (7) the coefficients in constitutive 
equation (21), ci ( i  = 1,. . . ,4), are independent of the invariants and joint invariants of Q and i. 
The constitutive equation is constructed by picking out several items provided by the representa- 
tion theorem. In doing so, it is unnecessary to employ the entire irreducible integrity bases 
provided by representation theorem (6). The choice of a feasible constitutive equation relies 
largely on numerical simulations of various laboratory tests. To this end, the parameters in the 
constitutive equation chosen must be at first identified. For this purpose, a computer program has 
been written to identify the material parameters of constitutive equations within the framework of 
(10). Details of the procedure to identify the material parameters can be found in the recent work 
by Wu and Bauer.13 Here we will focus our attention on the specific constitutive equation (21) 
and show how the four parameters can be related to some well-established parameters in soil 
mechanics such as tangent modulus, Poisson ratio and friction angle. 

Explicit expressions of the matrices in (15) for constitutive equation(21) are provided in 
Appendix I. These expressions can be implemented in a finite element program. For details of the 
implementation and numerical examples, the reader is referred to S i k ~ r a . ~  

Q* = Q - +(tra)l (22) 

3.1. Identijication of parameters 

Various laboratory tests have been introduced to investigate the mechanical behaviour of soils. 
We are concerned with the so-called element tests, in which the stress and strain in a specimen can 
be inferred from the traction and constraints applied on the boundaries of the specimen. To this 
end, the matrices of Q, i, & and C;, characterising the laboratory tests are given in Table I. The 
governing equations for various laboratory tests can be obtained by substituting the correspond- 
ing matrices into constitutive equation (21). 
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Table I. Expressions of stress, strain rate, stress rate and spin tensors for several laboratory tests 

Oedometer Triaxial Plane strain Simple shear 
test test test test 

Among the various kinds of tests in soil mechanics, the most widely used is the triaxial test. 
Therefore, it is advantageous if the parameters in a constitutive model can be determined from 
triaxial tests. In what follows, we will show how the four parameters in constitutive equation (21) 
can be identified with a single triaxial compression test under constant confining pressure. 

Let us consider a triaxial test and write out constitutive equation (21) explicitly. By inserting 
the corresponding matrices in Table I1 into constitutive equation (21) we obtain the following 
system of two differential equations: 

Taking the four material parameters ci ( i  = 1, . . . ,4) as unknowns, (23) and (24) are two linear 
equations. Provided the stress rates ( k l ,  b3)  and the strain rates (il, i2) are known for two 
arbitrary stress states (al, a3), setting these quantities into the above equations we obtain a system 
of four linear equations. On solving the equation system, the four parameters ci ( i  = 1, . . . ,4) can 
be obtained. For solution of the equation system many standard numerical schemes are readily 
available. In order to relate the four parameters ci (i = 1 , .  . . , 4) to some well-established 
parameters in soil mechanics, let us consider two specific stress states. The first stress state is 
chosen to  be hydrostatic (al = a2 = a3), i.e. before any deviatoric stress is applied, while the 
second is chosen to be the stress state at failure. Furthermore, we consider a triaxial test under 
constant confining pressure, namely k2 = k3 = 0. With R = c1/03 being the stress ratio, the 
following parameters are introduced the initial tangent modulus, Ei = [ (k l  - k3)/i1IR= 1; the 
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initial Poisson ratio, vi = [i3/i1]R=1; the failure stress ratio, Rf = [al/a3]max; and the failure 
Poisson ratio, vf = [i3/i1]R=Rr. With the above notation the four linear equations obtained from 
(23) and (24) can be written out in the following matrix form: 

with di = ,/(l + 2vz) and df = ,/(l + 2~;) .  Explicit expressions for ci (i = 1, .  . . , 4) can be 
obtained with the help of the symbolic computational program Mathernatica.28 They are 

(27) 
9d,vi(R: - 4) + di(2 + Rf)’(l + 4Vf) 

df(1 - 2Vi)(R,2 - 4) + di(2Vf - Rf)(Rf - 4) C’ = C1 

(28) 
9vi(2vf - Rf)(Rf - 4) - (1 - 2vi)(Rf + 2)’(1 + 4vf) 

df(1 - 2vi)(R: - 4) + di(2vf - Rf)(Rf - 4) c3 = C1 

(29) 
9[(Rf2Vf + l)(R, + 2)2cl + (Rf - l)Rf(2Vf - Rf)C21 

c 4 =  - 
df(Rf - 1)2(R: - 4) 

As might be expected, c 2 ,  c3 and c4 in (26)-(29) are proportional to c l ,  i.e. to the initial tangent 
modulus, since constitutive equation (21) is homogeneous of the first order in stress. 

It is not unusual in engineering practice that sufficient experimental data are not avialable to 
have a refined calibration of the constitutive model. In this case, it is desirable to reduce further 
the number of parameters to enable a crude calibration. For this purpose, the expressions in 
(26)-(29) can be further simplified in view of the triaxial compression tests on Karlsruhe sand 
reported by Hettler and Vardoulaki~.’~ Starting from a hydrostatic stress state, the radial strain 
at the initiation of deviatoric loading was found to remain zero, i.e. vi = 0. This experimental 
finding was also verified by extensive experiments on various granular materials, e.g. wheat, sugar 
and artificial granulates.” The general validity of this observation for other granular materials 
needs to be further investigated. In the case of vanishing initial Poisson ratio, the expressions in 
(26)-(29) simplify to 

Ei 
3a3 

c1 = - 

(Rf + 2)’(1 + 4vf) 
c2 = c3 = 

df(Rf - 4) + (2vf - Rf)(Rf - 4) 

(32) 
9(Rf + 2)’CRfdfvf + R f ~ f ( 2 ~ f  - Rf)  + df + (2vf - Rf)] 

c4 = - c1 
df@f - 1)’CddR: - 4) + (2vf - &)(& - 411 

Normalizing c2 and c4 in the above expressions by cl, we are left with two independent 
parameters, cz/cl and ~ 4 / ~ 1 ,  which can be determined by the failure stress ratio Rf and the failure 
Poisson ratio vf. At this stage, c1 is left unspecified. The failure stress ratio Rf is related to the 
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Table 11. Material constants for Karlsruhe medium sand 
~~~ 

Material constants C1 c2 c3 c4 

Loose Karlsruhe sand (D, = 0.10) - 69.4 - 673.1 - 655.9 699.6 
Dense Karlsruhe sand (D, = 0.95) - 101.2 -962.1 - 877.3 1229.2 

friction angle 4 as follows: 

4 = arcsin - (:;: :) (33) 

Acccording to (30)-(32) contours of c2/c1 and c4/c1 are provided in Figures 2(a) and 2(b) for 
a wide range of the friction angle 4 and the failure Poisson ratio v f .  If, however, no experimental 
data on the failure Poison ratio are available, vf can be roughly estimated with the help of 
Rowe’s3’ dilatancy theory, where the dilatancy relations based on extensive experiments on 
granular materials with different mineral components, e.g. quartz and feldspar, are given. After 
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Figure 2. Contours for parameter identification: (a) c,/c,;  (b) c4/c1 
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cz/cl and c4/c1 are determined, c1 can be specified by fitting the initial tangent modulus of 
a triaxial compression test. The material constants ci ( i  = 1, . . . ,4) for loose and dense Karlsruhe 
medium sand are given in Table 11. 

It should be pointed out that with the help of Mathernatica the above identification procedure 
may be easily performed for any constitutive equation within the framework of (10). In addition, 
the four material parameters can also be identified with other kinds of tests, e.g. the oedometer 
test 31 and the plane strain test.32 A combined identification procedure by using experimental 
data from both triaxial and oedometer tests was shown by Bauer.” More refined identification of 
the parameters might be achieved by optimizing the stress and strain paths to be fitted. 

3.2. Failure surface and flow rule 

The failure surface and flow rule can be derived for constitutive equation (21) according to (20) 
and (18). The tedious matrix manipulations in deriving the failure surface are greatly eased by 

g 1  (4 

Figure 3. Failure surface and flow rule on an octahedral plane: (a) predicted and experimentally obtained failure 
surface;33 (b) direction of strain rate at failure 



HYPOPLASTIC CONSTITUTIVE MODEL 845 

using the symbolic computational program Mathematica. Explicit expressions of the components 
of CL] and (N} can be obtained by setting the shear components of the matrices in Appendix I to 
zero. 

The failure surface calculated from constitutive equation (21) using the constants for dense 
Karlsruhe sand in Table I1 are shown on an octahedral plane in Figure 3(a) together with the 
experimental data by G ~ l d s c h e i d e r ~ ~  obtained with a true triaxial apparatus. The tested sand is 
Karlsruhe medium sand, which is composed mainly of quartz with subrounded grains. The index 
properties and mineral components of Karlsruhe sand can be found in a recent publication by 
Wu and K o l y m b a ~ . ~ ~  As compared with the Mohr-Coulomb failure criterion, where the friction 
angle is assumed to be independent of the intermediate principal stress, the calculated failure 
surface shows a relatively large influence of the intermediate principal stress. As can be seen from 
Figure 3(a), the stress at failure away from triaxial compression is slightly over estimated by the 
constitutive model. This is probably due to the strain localization in the  experiment^.^^ A detailed 
treatment of strain localization with constitutive equation (21) is beyond the scope of this 
investigation. It remains to point out that the stress at localized failure is reduced and better 
agreement can be achieved.36 

Since constitutive equation (21) is homogeneous of first order in 6, the tangential stiffness is 
proportional to the stress level tr c and the friction angle is independent of it. In principal stress 
space, the failure surface is a cone with the apex at the origin of the co-ordinate system (ol, 02, 
03). The calculated directions of strain rate at failure are shown on an octahedral plane in 
Figure 3(b) together with the failure surface. A visual inspection of Figure 3(b) suggests that the 
flow rule is non-associated. This is also in agreement with the well-known fact that the flow rule of 
granular materials is generally non-associated. 

Finally, the effect of the initial density on the failure surface is investigated in Figure 4, where 
the failure surfaces calculated with the constants for loose and dense Karlsruhe medium sand in 
Table I1 are shown on an octahedral plane. It can be seen from Figure 4 that the failure surface for 
dense sand is more angular than that for loose sand which is in agreement with numerous 
experimental results in the 1iteratu1-e.~~ 

Figure 4. Failure surfaces on an octahedral plane for loose sand (----) and for dense sand (-) 
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3.3. Performance of the proposed model 

Now, we proceed to validate the effectiveness of constitutive equation (21) by simulating 
several laboratory tests. Explicit expressions for a specific kind of test can be obtained by 
substituting the corresponding matrices in Table I into constitutive equation (21). 

3.3.1. Triaxial tests. The governing differential equations for triaxial tests are (23) and (24). 
Starting from an initial stress state (al, 03), equations (23) and (24) contain four unknowns, 
namely k1 , k 3 ,  dl  and 4. Following a given stress or strain path, two of the four unknowns can be 
specified. In a restricted sense, the specification of a stress or a strain path is eqauivalent to the 
specification of the corresponding boundary condition. Take the conventional triaxial compres- 
sion test with constant confining pressure for example, we have k 3  = 0 and tl = - 1, respective- 
ly. Note that any positive scalar can serve as the norm of strain rate, since the constitutive 
equation in concern is rate-independent. In each time step, the radial strain rate is to be calculated 
from (24). For the solution of (24), any well-established numerical scheme will serve. The radial 
strain increment obtained in this way will be set into (23) to get the axial stress increment. The 
stress is then updated to get the initial stress for the next time step. In general, the updating of 
stress for a time step At can be performed as follows: 

a ( t  + At) = a(t) + &[a(z), i(z)] dz (34) 

Due to the complexity of the constitutive equation, the above integral can be rarely performed 
analytically. Therefore, numerical schemes are often resorted to.38 We will not pursue this matter 
further. In the present paper, a simple one-step, Euler forward scheme is adopted. For more 
refined integration methods, e.g. the Runge-Kutta method, the reader is referred to S i k ~ r a . ~ ~  

Numerical simulation of triaxial compression tests on loose and dense Karlsruhe sand with 
a constant confining pressure of o3 = 100 kPa is shown in Figures 5 and 6. Both the numerical 
simulation and experiment are started from a hydrostatic stress state. It can be seen from the 
numerical results in Figures 5(a) and 6(a) that the tangential stiffness decreases gradually with 
axial strain and eventually vanishes at failure. The simulation of loose sand in Figure 5(b) shows 
that the volume change is contractant and vanishes at failure. The calculated volume change of 
dense sand in Figure 6(b) is initially contractant and subsequently dilatant. After failure is 
reached, the volumetric strain increases almost linearly with the axial strain. 

The following remark is concerned with the volume change at very large deformation. As may 
be seen from Figure 6(b), the rate of volume change is constant after failure is reached. For large 
deformation, however, it would be plausible to assume that the rate of volume change will 
decrease with the deformation and vanish eventually. Correspondingly, the shear stress will drop 
to the residual shear strength. This phenomenon is called strain softening. In the laboratory, 
however, large deformation can be hardly realized without inducing localization in the form of 
one or more shear bands.39 According to Drescher and Vardoulakis4' pronounced strain 
softening should be attributed to structural or geometrical effect. It remains to point out that the 
analysis of localized bifurcation with constitutive equation (21) results in reduced shear strength 
and volume change.36 

The behaviour of sand is known to depend on the stress path. The capability of the proposed 
model to account for the path dependence is demonstrated by simulating the triaxial tests on 
medium dense Erksak sand.41 The specimens were first subjected to a hydrostatic stress of 
250 kPa. The applied stress paths are depicted in Figure 7. Along paths 1 and 4, the radial stress 
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Figure 5. Comparison of numerical and experimental triaxial compression test on loose sand (u3 = 100 kPa): (a) stress 
ratio vs. axial strain; (b) volumetric strain vs. axial strain 

o3 and the axial stress o1 are kept constant, respectively. Paths 2 and 3 are followed by reducing 
the radial stress and increasing the axial stress simultaneously. The numerical results are 
presented in Figure 8 together with the experimental data. The following material constants are 
used for the numerical simulation: c1 = - 2000, c2  = c3 = - 1572.5, c4 = 2583.3. The variation 
of both strength (Figure 8(a)) and dilatancy (Figure 8(b)) with stress paths is well described by the 
constitutive model. The discrepancy between the numerical and experimental results for path 1 is 
probably due to the relatively large increase of the stress level along path 1. 

We now turn our attention to undrained triaxial tests. According to the kinematical constraint, 
i.e. incompressibility, the constitutive equation can be written as 

(35) 6 = H(G, i) + U l  
The total stress rate 6 in (35) is composed of the sum of the effective stress rate H(o, i), which can 
be calculated according to constitutive equation (21), and the rate of pore water pressure ti, which 
can be obtained from the stress applied on the boundaries. Undrained triaxial compzession tests 
calculated according to constitutive equation (21) are shown in Figures 9(a) and 9(b). The 
experiments carried out by C a ~ t r o ~ ~  are provided in Figures 9(c) and 9(d) for comparison. The 
material constants used for the numerical simulations are: c1 = - 20.0, c2 = c3 = - 193.2, 
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0 2 4 6 8 

Figure 6. Comparison of numerical and experimental triaxial compression test on dense sand (u3 = 100 kPa): (a) stress 
ratio vs. axial strain; (b) volumetric strain vs. axial strain 

0 3  

Figure 7. Schematic illustration of the stress paths investigated 
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Figure 8. Comparison of numerical and experimental triaxial tests along different stress paths? (a) stress ratio vs. axial 
strain; (b) volumetric strain vs axial strain 

c4 = 190.0 for loose sand; el = - 33.3, c2 = c3 = - 279.2, c4 = 354.5 for dense sand. Character- 
istic stress-strain curves and stress paths of loose and dense sand are well reproduced by the 
model. Note that the line of phase transition, characterized by the line connecting the origin and 
the turning point on the stress path, turns out as an outcome of our constitutive model. 
Comparison between Figure9(a) and 9(c) shows that the deviatoric stress for loose sand is 
underestimated by the model. Nevertheless, the numerical results lie on the safe side when the 
model is used to study liquefaction of loose sand. 

3.3.2. Oedometer tests. Let us consider the oedometer test with confined radial deformation 
(i3 = 0). Substitution of the corresponding matrices in Table I into constitutive equation (21) 
results in the following differential equations: 
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c1 + 20, 

E l  + (C3O5 + C 4 0 3  
0 1 6 3  

0 3  = c2 
o1 + 2a3 (37) 

The inclination of the stress path K O  = 03/01, called earth pressure coefficient at rest, is 
important for a variety of engineering problems. Note that the stress path in an oedometer test is 
proportional and therefore 63/61 = K O .  The following equation containing K O  can be obtained 
from (36) and (37) after some algebraic operations: 

( 3 6 ~ 1  - 4 ~ 4 ) K ;  + ( 3 6 ~ 1  + 9 ~ 3  + 9 ~ 4 ) K i  + ( 9 ~ 1  - 9 ~ 3  -- 6 ~ 4 ) K o  + ~4 = 0 (38) 
Equation (38) indicates that KO depends only on the material parameters ci (i = 1, . . . ,4). For the 
determination of K O ,  however, it is easier to calculate the stress ratio g3/01 directly instead of 
solving the above algebraic equation. It can be readily shown from (36) that the axial tangential 
stiffness dl/El is proportional to the axial stress g1. That is 

61/81 = KO1 (39) 
The proportionality factor IC in (39) is a function of the material parameters ci (i = 1, . . . ,4) and 
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1 
1 + 2Ko 

K = -  [(l + 2Ko)2~l + ~2 - ~3 - $(1 - 

Equation (39) can be integrated analytically to give 

ln(ol/%l) = Kin (El - E01) (41) 
where ool and eO1 stand for the initial stress and the initial strain, respectively. If the axial strain 
rate E l  is expressed by the rate of void ratio through C = (1 + e)El, we get the following differential 
equation from (39): 

where C ,  is the compression coefficient and eo represents the initial void ratio. A noteworthy case 
is e x eo, i.e. when the volume change is negligibly small. In this case, equation (42) is identical 
with the widely used compression equation in soil mechanics.43 

Figures 10 and 11 show the numerical simulations of oedometer tests on loose and dense 
Karlsruhe sand using the material constants in Table 11. The experiments including the first 

- experimental I - 
5 - 
W 

3 " " ~ " " ~ ~ " " "  

0 100 200 300 

0 100 200 300 

Figure 10. Comparison of numerical and experimental oedometer test on loose sand: (a) axial strain vs. axial stress; (b) 
radial stress vs. axial stress 
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Figure 11. Comparison of numerical and experimental oedometer test on dense sand (a) axial strain vs. axial stress; (b) 
radial stress vs. axial stress 

loading and the subsequent unloading were performed with specimens of the same densities as the 
specimens in the triaxial tests in Figures 5 and 6. The stress-strain curves in Figures 10(a) and 
1 l(a) show a gradual increase of the axial tangential stiffness along with the densification. The 
compressibility of loose sand is much higher than that of dense sand. Also the drastic change of 
the tangential stiffness from loading to unloading is well described. As may be seen from 
Figures 10(b) and 11 (b), the proportional stress path for the first loading is well reproduced by the 
model. This implies that KO can be regarded as a material parameter. During unloading, the axial 
stress decreases more rapidly than the radial stress giving rise to an increase of K O .  This 
observation is well corroborated by numerous experiments on diverse granular materials.44 

There are several empirical formulae in the literature to estimate K O .  The most widely used 
formula was due to Jaky4' by relating K O  to the friction angle 4:  

(43) K O  = 1 - sin4 

The success of using (43) in estimating K O  has been frequently reported in the literature, e.g. 
Reference 46. By varying 4 in triaxial compression, the relation between K O  and 4 can be 
obtained from constitutive equation (21). It will be of interest to compare the predicted relation 
with the empirical formula (43). In doing so, we assume vi = 0. As may be seen from (30)-(32), 
a further parameter, namely the failure Poisson ratio, needs to be specified. This is furnished by 
relating the failure Poisson ratio vf to the failures stress ratio Rf in analogy to the stress-dilatancy 
theory due to R ~ w e . ~ ~  
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In Figure 12, the relation between Rf and vf evaluated from triaxial compression tests on 
Karlsruhe sand after Kolymbas and Wu26 is shown. The experimental data in Figure 12 can be 
approximated by the following expression: 

Rf = 8.67vr - 1.20 (44) 

In this case, it can be seen from (38) that K O  depends only on the friction angle in triaxial 
compression. The calculated relation between K O  and 4 in triaxial compression is provided in 
Figure 13 together with the experimental data on Reid Bedford sand.47 The tendency that K O  
decreases with increasing 4 is well reproduced by the constitutive model although K O  is slightly 
overestimated for large friction angle. 

3.3.3. SimpZe shear rests. The simple shear test is particularly relevant for modelling field 
situations where failure is expected to occur along thin shear zones. As was pointed out by 
Roscoe,6 the slip zones are of finite thickness (about ten to 20 times of the mean grain diameter); 
and within the shear zone the simple shear may be expected to exist. In addition to the practical 

- R, = 8.67~f - 120 
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Figure 12. Experimental stress-dilatancy relation 
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Figure 13. Comparison of predicted, empirical and experimental relation between KO and c#J~' 
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significance, the simple shear test also plays an important role in developing constitutive models. 
As may be seen from Table I, the spin tensor 6J vanishes except for the simple shear test. The 
simple shear test is one of the few commonly available laboratory tests that permit the application 
of controlled rotation of the principal axes of stress and strain. 

To simulate the simple shear tests numerically, let us consider the motion described by the 
following expressions: 

x1 = x1 + xz fl(t) 

x2 = x2 + X Z f i ( t )  

x3 = x3 

(45) 

fl and f 2  in (45) represent the shear deformation and the volume change, respectively. For simple 
shear tests with constant volume (undrained) we have fz = 0. According to (1) the strain rate and 
the spin tensors can be obtained from (45): 

In performing numerical calculations, the material time rate of stress 6 rather than the 
Jaumann stress rate 6 should be added to the stress in each time step. According to (3) and 
making use of (46), the relation between 6 and 6 can be written out explicitly: 

0 0 6 3 3  0 0 6 3 3  0 

Again, the governing differential equations for the simple shear test can be obtained by substitu- 
ting the corresponding matrices in Table I into constitutive equation (21). The following magni- 
tudes are defined for the representation of the results: 

The shear angle y 

y = arctan (v) = arctan (&) 
The angle between the major principal stress and the horizontal plane xu 

The angle between the major principal strain rate and the horizontal plane x; 

x; = +arctan ( El12:;zz) 

Numerical simulation of simple shear tests can be performed either under constant normal 
stress (drained test), i.e. kZ2 = 0, or under constant volume (undrained test), i.e. fz = 0. Let us 
consider the simple shear test under constant normal stress. The procedure of the numerical 
calculation is similar to that described for the triaxial test and will not be repeated. Numerical 
simulation of the simple shear test with a constant normal stress of cZ2 = 98 kPa reported by 

Xu Guofang
铅笔

Xu Guofang
铅笔
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Figure 14. Comparison of numerical and experimental simple shear test;48 (a) stress ratio vs. shear angle; (b) xe and xr vs. 
shear angle 

Wood et is shown in Figure 14. The simulation was performed with the following material 
constants: c1 = - 73.3, c2 = c3 = - 542.2, c4 = 719.5. The test was carried out on dense 
Leighton Buzzard sand by applying a constant rate of shearing. A gradual transition of the 
stress-strain curve from the initiation of shearing up to failure can be observed from Figure 14(a). 

In most commercially available simple shear apparatus only the normal and shear stress on the 
horizontal plane, namely 022 and o12, are measured.49 Such apparatus, however, suffer from the 
drawback that the stress state cannot be fully determined from the measurements. Several 
attempts have been made to remedy this shortcoming. Roscoe et ~1.'' investigated the rotation of 
the principal stress and the principal strain rate and found out that the principal axes of strain 
rate and stress coincide in the vicinity of failure. Coaxiality, or coincidence of principal axes of 
strain rate and stress, may be expressed as x,, = xi; its validity provides a possibility to determine 
fully the stress state. We observe from the numerical results in Figure 14(b) that x; is initially 
much larger than xu. Both xb and x; increase with shear straining. In the vicinity of failure, we 
have xu = x;. As may be seen from Figures 14(a) and (14(b), fairly good agreement between 
experimental and numerical results is achieved. 

In passing, the coaxiality at failure is also within our expectation since the stress and strain rate 
are related by the isotropic tensorial relation in (18). The significance of coaxiality, which is 
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a basic assumption in elastoplasticity theory, lies not only in the determination of stress state in 
experiments but also in developing constitutive models. Again, the coaxiality need not be 
postulated a priori in hypoplasticity. Rather, it is obtained as a consequence of the constitutive 
model. 

Another approach to fully determine the stress state was due to Oda,51 who related the stress 
ratio 012/022 to the angle x,, through the following linear equation: 

(51) tan cpsm = 012/022 = k tan xc, 
in which k is a material parameter. The subscript s and m stand for simple shear and mobilized 
friction angle respectively. The calculated relation between 012/022 and tanx,, is shown in 
Figure 15 together with the experimental data by Wood et aL4* Note that the calculated relation, 
being in good agreement with the experimental data, is non-linear while the relation in (51) is 
linear. As soon as the angle x,, is known, the stress state can be determined by constructing the 
Mohr’s stress circle. 

Further, the relation between the friction angle calculated with the principal stresses according 
to 

4s = arcsin (e) 
01 + 0 3  max 

and another angle defined by 

cps = arctan (53) 

is considered. +s is obtained with reference to the plane of maximum stress obliquity whereas cps is 
calculated for the horizontal plane. As we know, the plane of the maximum stress obliquity in the 
simple shear test does not coincide with the horizontal plane.” In general, +s is not equal to cps. 
The following empirical relation between 4s and ps has been proposed by Stroud:52 

tan +$an cps z 1.2 (54) 
The calculated relation between +sm and qsm is shown in Figure 16. Note that the calculation is 
performed from initial shearing until failure, whereas (54) is only evaluated at failure. According 
to Figure 16 +sm is always larger than qsm. At failure, we have tan +,/tan ps z 1.4. The initial 
stress state was assumed to be a K,-state. Initially, we have +sm = arcsin [(l - K,,)/(l + K O ) ]  
and qsm = 0. This is corroborated by the experimental observation made by B ~ d h u . ~ ~  

tan X o  
0 .5 1 .o I .s 

Figure 15. Comparison of predicted and experimental relation between tan qsm and tan x.48 
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3.3.4. Cyclic simple shear tests. Finally, the capability of the proposed model in describing 
cyclic behaviour of sand is shown by simulating two simple shear tests under cyclic loading. In 
doing so, no attempt is made to get the best fitting of the experimental data. Rather, emphasis is 
placed on qualitative agreement between the predicted and the experimental results. 

In Figure 17, the calculated simple shear test under drained condition is compared to the 
experimental results reported by Pradhan et The experiment was carried out on loose 
Toyoura sand with a constant normal stress of oZ2 = 100 kPa. The material constants 
c1 = - 123.3, c2 = c3 = - 1162.5, and c4 = - 1494.2 are used to obtain the numerical results. 
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Figure 17. Numerical and experimental simple shear test (azz = 100 kPa) after Pradhan et al.:54 (a) and (c) shear stress 

shear angle; (b) and (d) volumetric strain vs. shear angle 
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Figure 18. Numerical and experimental simple shear test under undrained condition (uZZ = 165 kPa) after T a t ~ u o k a : ~ ~  
(a) and (c) shear stress vs. shear angle; (b) and (d) effective stress path 

The predicted stress-strain curve in Figure 17(a) is somewhat stiffer than the experimental 
stress-strain curve in Figure 17(c) upon reversal of shearing. Comparison of Figure 17(b) with 
17(d) indicates that the densification under cyclic loading is well reproduced by constitutive 
equation (21). 

In Figure 18, numerical results of a simple shear test under undrained condition are presented 
together with the experimental data reported by Tatsuoka." The experiment was conducted on 
dense Toyoura sand with a normal stress of uz2 = 165 kPa. The numerical simulation was carried 
out with the following material constants: c1 = - 130.0, cz = c3 = - 984.9, and c4 = - 13749. 
As may be seen by comparing Figures 18(a) and 18(c), qualitative agreement between the 
calculated and the experimental stress-strain curve is achieved. The predicted effective stress path 
in Figure 18(b) shows that both the cyclic mobility and the phase transition manifested in 
Figure 18(d) is properly reproduced by the proposed model. 

4. LIMITATIONS OF THE MODEL 

The limitations of the hypoplastic constitutive model reside in the basic assumptions discussed in 
Section 2. In view of equation (2), the stress rate depends on the instantaneous stress and is 
independent of the way in which this stress state is reached. As a consequence, the model is not 
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well suited for complex loading programs involving closed strain cycles. Another limitation that 
is closely related to equation (2) is that the reduction of the shear strength after failure, so-called 
strain softening, cannot be obtained. A further limitation lies in the fact that constitutive equation 
(21) is homogeneous of the first order in stress. The direct consequences are that the tangential 
stiffness is linearly proportional to the stress level and the friction angle is independent of the 
stress level. Triaxial tests conducted under elevating confining pressure indicate that both the 
tangential stiffness and the friction angle decrease with increasing stress level. Therefore, the 
model should not be applied to engineering problems with large variations of the stress level. 

Of course, these limitations may become important for some engineering problems, e.g. for the 
offshore structures under cyclic loading and in the vicinity of the tip of piles during driving. 
Nevertheless, the great majority of the problems in geotechnical engineering may be simulated 
with relatively simple loading programs and with small to moderate change of the stress level, 
where the model may be applied. In fact, these and other limitations are surmounted in our recent 
p ~ b l i c a t i o n ~ ~  by integrating the critical state into the hypolastic model. With one set of material 
constants, the extended model covers a wide range of the stress level and the whole spectrum of 
initial density from very loose to very dense packing. However, the improvements in the extended 
model with seven material parameters and three index parameters are gained at  the cost of the 
simplicity of the model. In all, the present paper is an attempt to achieve a compromise between 
sophistication and simplicity of the model. 

5. CONCLUSIONS 

It has been shown that the hypoplastic constitutive equation, albeit its simplicity, is capable of 
capturing the salient features of sand under both drained and undrained conditions. Many 
well-established concepts in soil mechanics, e.g. failure, flow rule and K O ,  which have to be 
specified a priori in most elastoplastic models, turn out as natural outcomes of the constitutive 
model. It is the writers’ opinion that the utility of a proper constitutive model lies not only in 
reproducing the experimental results but also in unifying concepts, which might be otherwise 
regarded as entirely independent. 

The proposed constitutive model possesses simple mathematical formulation and contains 
only four material parameters, which can be related to some widely used parameters in soil 
mechanics. Rapid identification of the material parameters is made possible by providing two 
nomographs. To facilitate finite element implementation, explicit expressions in matrix form are 
provided. The constitutive model presented here opens a new avenue to describe the mechanical 
behaviour of sand and presents an attractive alternative to the prevailing elastoplastic constitut- 
ive models. 
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APPENDIX I: MATRICES [L] AND (N) FOR (21) 

The fourth-order tensor L and the second-order tensor N in (10) can be written as a 6 x 6 and 
a 6 x 1 matrices, respectively. The constitutive equation can be recast in the following matrix 



860 WE1 WU AND ERICH BAUER 

- - 

L 1 1  ‘512 L 1 3  L 1 4  L15 L16 

L 2 l  L22 L23 L24 L25 L26 

- L31 L32 L33 L34 L35 L36 

L41 L42 L 4 3  L 4 4  L 4 5  L 4 6  

0 1 3  L51 L52 L53 L54 L55 L56 

- 

- L61 L62 L 6 3  L64 L 6 5  L66 - 

For constitutive equation (21) the matrix [L] can be easily shown to be symmetric. Therefore, it 
suffices to provide the independent components for [L]: 
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p and 2 in the above expressions are defined by 
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