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This paper investigates the undrained vertical bearing capacity of surface strip footings on clay with sin-
gle and dual continuous voids. Numerical solutions for a wide range of geometric and material combina-
tions are obtained by small strain finite element analysis. Based on the results, design charts are provided
for the calculation of the undrained bearing capacity factors as a function of the dimensionless parame-
ters related to the vertical and horizontal void distances from the footing, void width and height, and
spacing between the two voids as well as soil rigidity and non-homogeneity. In the footing-above-void
system, the ultimate bearing capacity of the footing is governed by the three failure mode: roof, wall,
and combined failure mechanisms.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In engineering practice, the existence of underground voids
under rigid surface structures (e.g., pavements, pipelines and
footings) requires special attention because voids can influence
the integrity of structures. Voids in ground are known to form
for many reasons, some of which are the thawing of subsurface
ice lenses [1], the dynamic loadings induced by mining and tun-
neling activities [2], the dissolution of soluble materials such as
salt, gypsum, limestone and dolomite [3], the dissociation of
methane hydrate [4], and the presence of leaking CO2 storage
reservoirs [5]. The size, shape and evolution of voids depend on
the lithology of soils and rocks, and the initial depth of voids
[6]. In particular, large voids are often found in karstic
environment [7].

The performance of footings underlain by subsurface voids has
been investigated by several researchers. Baus and Wang [8] stud-
ied experimentally and numerically the bearing capacity behavior
of strip footings on silty clay with single continuous voids, and
showed that for a given void size, the bearing capacity decreases
as the distance between the footing and void reduces. Wang and
his colleagues continuously explored the effects of void location,
size, shape, and orientation with respect to the footing axis on
the stability of square footings with different sizes, shapes and
embedment depths [9,10]. Wood and Larnach [11] conducted
another study on this subject by using physical modeling and
numerical simulation, and reported similar behaviors observed in
Wang’s works. Wang and Hsieh [12] developed the three failure
mechanisms that are considered to model the collapse of strip
footing centered above a single circular void by using the upper
bound theorem of limit analysis. Al-Tabbaa et al. [13] observed
the load-settlement characteristics of model strip footings over
continuous circular voids in cemented mixed sand. The results
indicated that the greater depth and offset of voids cause the
higher strength and stiffness of the system. Sreng et al. [14] pre-
sented the result of rotation response of strip footings above con-
tinuous square voids, which is obtained by measuring both
vertical and horizontal displacements during 1 g model tests. More
recently, Kiyosumi et al. [15] performed plain strain finite element
(FE) analyses to examine the influence of multiple voids on the
yield pressure of strip footing resting on calcareous soil, and stated
that the failure zone developed significantly towards the nearest
void from the footing and does not typically extend to the other
voids. Kiyosumi et al. [16] reported the results of laboratory scale
model tests of strip footing on stiff ground with continuous square
voids and revealed the three types of collapse modes for a single
void: bearing failure without void collapse, bearing failure with
void collapse, and void failure without bearing failure. Even though
several studies have been reported on the footing-above-void sys-
tem, most works have focused on cohesive-frictional soils. In con-
trast, the undrained stability of footings overlying voids has not
been discussed in the literature.

The bearing capacity of surface strip footings (both drained and
undrained) is usually estimated using the bearing capacity formula
suggested by Meyerhof [17]. The solution for the simplest case of
undrained condition is identical to the exact solution of Prandtl
[18], which is expressed as
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Fig. 1. Problem definition (modified from Kiyosumi et al. [15]).
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Fig. 3. Load–displacement curves for strip footing centered above single voids.
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qu ¼
Q u

B
¼ suNc ð1Þ

where qu is the ultimate bearing stress on the footing, Qu is the ulti-
mate vertical force, B is the footing width, su is the undrained shear
strength of the soil, and Nc is the dimensionless undrained bearing
capacity factor.

This paper presents FE analyses for the calculation of the bear-
ing capacity of surface strip footings on undrained clay with single
and dual continuous voids. Consideration is given to the effects of
void location, shape and number as well as soil rigidity and non-
homogeneity. The results of the analyses are compared to other
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Fig. 2. Typical finite element mesh and boundar
available solutions. Based on the analyses, design charts are pre-
sented in form of the undrained bearing capacity factor with
respect to the dimensionless influencing parameters, and the gov-
erning failure mechanisms are discussed.
2. Problem definition

Fig. 1 illustrates the problem geometry studied and defines the
key parameters. As shown in Fig. 1(a), a strip rigid footing of width
B is placed on an isotropic, non-homogenous soil with a undrained
Young’s modulus Eu, a uniform unit weight c, a surface undrained
shear strength su0, and a rate of strength increasing with depth k.
The undrained strength of the soil at a depth z is given as

suðzÞ ¼ suo þ kz ð2Þ

The undrained shear strength profile is common in normally
consolidated (NC) clay, and k ¼ 0 corresponds to the homogeneous
clay with uniform strength. Such strength variation is quantified in
terms of the nondimensional parameter kB=suo, which ranges typ-
ically between 0 and 1 for onshore applications [19,20].

The performance of a footing above voids is affected by the loca-
tion, shape and number of voids [15], which are expressed through
dimensionless parameters, i.e., the vertical void distance a (defined
as the ratio of vertical distance from the ground surface to the
15B
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center of the void), horizontal void distance b (defined as the ratio
of the horizontal distance from the centerline of the footing to the
center of the void), void width n (defined as the ratio of the void
width to the footing width), and void height m (defined as the ratio
of the void height to the footing width). The dual voids separated
by the void spacing s (defined as the ratio of the center-to-center
spacing of two voids to the footing width) are considered in this
study, and their configuration is designed to two groups, i.e., paral-
lel and symmetrical configurations, as shown in Fig. 1 (b) and (c),
respectively.

3. Finite element analysis

Small strain finite element analyses of surface strip footings
above voids were carried out using a commercially available Plaxis
2D Version 2012 [21]. The soil was modeled with fifteen-node tri-
angular elements while the footing was composed of six-node tri-
angular plate elements that are compatible with triangular side of
the degenerated soil elements.

The soil surrounding the voids was modeled as a Tresca mate-
rial using the elastic-perfectly plastic Mohr–Coulomb failure crite-
ria. Poisson’s ratio of m ¼ 0:495 and friction and dilation angles of
/ ¼ w ¼ 0 were set to simulate the undrained clay. The undrained
Young’s modulus and bulk unit weight were assumed to be
Eu ¼ 30 MPa and c ¼ 20 kN=m3, respectively. It is worth noting
that the undrained bearing capacity of a surface footing resting
on level ground is insensitive to the soil unit weight [22]. The three
different values of undrained shear strength of the soil were taken
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Fig. 4. Effect of soil rigidity on bearing capacity factor of strip footings above single
voids.
as su = 60, 100 and 300 kPa, and the soil rigidity Eu=su was constant,
irrespective of depth. The footing was modeled as a non-porous
linear elastic material with 1 m thickness and Young’s modulus
for concrete Ec ¼ 30 GPa. The geostatic stress was generated by
taking the coefficient of earth pressure at rest, K0 ¼ 1.

Fig. 2 shows a typical finite element (FE) mesh and boundary
extensions of the soil domain for the plain strain surface footing.
The external boundaries were positioned 9:5B laterally from the
edge of the foundation and 15B below the ground surface, which
minimizes possible boundary effect on the predicted bearing
capacity. Zero horizontal displacements were prescribed at the lat-
eral boundaries and full fixities at the bottom boundary. The voids
were introduced by excavation of the soil at the designed depth for
each analysis. Since the mesh density in the area adjacent to the
footings, particularly at level ground, is of most importance for
the bearing capacity factor calculation, element density was
increased in this area. The optimum size and distribution of ele-
ments were taken to be obtained when further modification of ele-
ments did not provide a further reduction in the value of bearing
capacity factor calculated. The total number of elements varied
from 3003 to 5235, depending on geometrical parameters.

No special interface elements along the soil and footing inter-
face were used, indicating that the footing was simulated as rough
with the same shear strength and shear modulus for the interface
and adjacent soil elements. Instead, to allow an effective gap to
form between part of the footing and the soil, a very thin 0.03 m
zone of zero tensile strength soil elements was modeled beneath
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the footing, indicating that the interface elements cannot sustain
tension [23].

Fig. 3 shows the typical normalized load–displacement curves
for the footings centered above voids (i.e., b ¼ 0), where w repre-
sents the displacement of the footings corresponding to the mobi-
lized vertical force Q . For all cases, the footing reaches a clear limit
load, which was taken as the ultimate bearing capacity.
4. Results and discussion

Fig. 4 shows the effect of soil rigidity on the bearing capacity
factor of strip footings above single square voids. The soil rigidity
has little influence on the capacity factor, irrespective of the void
location. It is noted that the bearing capacity of a surface footing
resting on ground is independent of the soil rigidity [24]. The soil
rigidity is taken as Eu=su ¼ 500 for further numerical calculations.
The results also indicate that the influence of void location on
the footing bearing capacity decreases as the distance between
the void and footing increases, and there exists a certain location
beyond which the void effect on the undrained stability of the foot-
ing become negligible, as described by Baus and Wang [8]. Fig. 4(a)
shows that for a given value of b ¼ 0, the capacity factor increases
linearly with the value of a up to a limiting value, defined as the
maximum bearing capacity factor Nc;max. The value of Nc;max

obtained from the current FE analyses is 5.16, which is 0.4% higher
than the Prandtl solution of 2þ p. A similar variation of capacity
factor with respect to b for a constant value of a ¼ 1:5 is shown
in Fig. 4(b). The values of the capacity factors for b ¼ 0 and
a ¼ 1:5 can be approximated by the following equations:
Fig. 6. Bearing capacity factor of strip footings above single rectangular voids.
Nc ¼ 1:47a 6 Nc;max ð3Þ

Nc ¼ 1:26bþ 2:00 6 Nc;max ð4Þ

Fig. 5(a) shows the variation of the bearing capacity factor of
strip footing with b for different values of a. The capacity factor
increases with an increase in the value of a, but the capacity factor
with lower a significantly increases with the value of b. It is also
found that the value of bcr , representing the critical void eccentric-
ity at which the capacity factor becomes equal to the maximum
bearing capacity factor, decreases with increasing the value of a.
From Fig. 5(a), the critical void location is determined, which is
denoted by the solid line in Fig. 5(b). When the void is located
above the line, the existence of the void can be ignored, implying
that the capacity factors are same as Nc;max. When the void is
located below the line, however, the capacity factor varies with
the void location, obviously less than the value of Nc;max. The equiv-
alent lines of the capacity factors with 0:9Nc;max and 0:8Nc;max are
represented by the dotted lines in Fig. 5(b).

Fig. 6 shows the bearing capacity factor of strip footings cen-
tered above the single rectangular voids that are wider than they
are high. Fig. 6(a) shows the results for void cases with varying
the void width parameter n but the constant void height parameter
of m ¼ 1. At a given value of a, the capacity factor normally
decreases as the value of n increases. The rate of reduction in
capacity factor is insensitive to the overall value of a, particularly
for the value of n > 1:5. Fig. 6(b) shows the results for void cases
with different combinations of n and m but the constant area of
the cross-section, i.e., mn ¼ 1. At a given value of a, the capacity
Fig. 7. Bearing capacity factor of strip footings on inhomogeneous clay with single
voids.
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factor is found to increase gradually with an increase in the value
of m.

Fig. 7 shows the variation of bearing capacity factor as a func-
tion of soil non-homogeneity for given values of a and b. As
expected, the greater value of kB=suo gives the higher capacity fac-
tor. Furthermore, the maximum bearing capacity factor increases
continuously with an increase in the value of kB=suo. For
kB=suo ¼ 0:5 and 1, the maximum bearing capacity factors of
Skempton [25] are estimated to be 5.83 and 6.67, respectively.
Another solution obtained using the method of characteristics
[26] is 5.79 and 6.47, respectively. The corresponding values of
Nc;max by the current FE analysis are lower than the existing solu-
tions. Meanwhile, the critical void location generally decreases
with increasing the value of kB=suo.

Fig. 8 shows the bearing capacity factor of strip footings above
dual square voids. The results reveal that regardless of the void
configuration (i.e., parallel and symmetrical configurations), the
capacity factor increases as the two voids are moved further apart.
This is attributed to the higher shear resistance provided by a
wider pillar between the adjacent voids. Fig. 8(a) shows that for
all vertical void distance parameter except for a ¼ 4:5, the capacity
factor increases with the value of s and reaches at a certain value,
identical to the capacity factor for single void cases shown in
Fig. 4(a). Fig. 8(b) shows that the capacity factor increases with
increasing the value of s, although this trend is predominant at
the lower values of a. In general, as the value of s increases, the rate
of increase in capacity factor first increases, then decrease and
eventually approaches zero. It is noteworthy that the footing bear-
ing capacity for dual square voids with s ¼ 1 becomes equal to that
Fig. 8. Bearing capacity factor of strip footings above dual voids.
of single rectangular voids with the combination of n ¼ 2 and
m ¼ 1.

From Fig. 8, the critical spacing of dual voids with the parallel
and symmetrical configurations is determined and plotted in
Fig. 9(a). The critical spacing is the spacing beyond which the
capacity factor becomes equals to unity, indicating no interference
effect. For the parallel configuration, the critical spacing is not
affected by the value of a. For the symmetrical configuration, how-
ever, the critical spacing linearly decreases with increasing the
value of a. Fig. 9(b) compares the bearing capacity factors for the
parallel and symmetrical dual-void configurations, together with
the result for the single void cases shown in Fig. 4(a). For all values
of a and s, the capacity factor for the single void cases is higher
than that for the dual void with parallel configuration. It is also
found that the symmetrical configuration has higher capacity fac-
tor compared to the parallel configuration, and their difference is
higher at the lower values of a and the higher values of s.

Fig. 10 illustrates the FE displacement contours at collapse for
strip footings above single voids in homogeneous clay. The failure
mode is strongly dependent on the location and shape of voids. For
shallow square voids, the estimation of collapse loads are given by
the roof failure mechanism, characterized by the downward move-
ment of a rigid soil block immediately above the void. Fig. 10(a)
shows a typical type of the roof failure for the shallowest square
void (a ¼ 1:5, m ¼ 1, and n ¼ 1). As the void location is vertically
and horizontally farther from the footing, the collapse mode
becomes wider and deeper, and involves the combination of the
roof and wall failure mechanisms (Fig. 10(b)–(d)). For the shallow
Fig. 9. Comparisons of critical spacing ratio and undrained bearing capacity for dual
voids with parallel and symmetrical configurations.
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Fig. 10. FE displacement contours for strip footings above single voids.
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rectangular void (a ¼ 1:5, m ¼ 1, and n ¼ 3), the failure pattern is
more complex than the simple roof failure mechanism and
includes the soil mass rotation (Fig. 10(e)). For the moderately
deep rectangular void (a ¼ 4:5, m ¼ 1, and n ¼ 3), the failure mode
constitutes roof and wall movement and the boundaries of the
plastic zone extends laterally outward (Fig. 10(f)). Fig. 10(g) shows
the collapse mechanism for the shallow rectangular void (a ¼ 1:5,
mn ¼ 1, and n ¼ 3), which is similar to that shown in Fig. 10(e) but
higher ration of soil mass above the void. The failure mechanisms
shown in Fig. 10 are similar to the previous observation from the
upper bound theorem of limit analysis in the work by Kiyosumi
et al. [16].

Fig. 11 illustrates the FE displacement contours for strip foot-
ings above dual voids in homogeneous clay. The soil displacement
near each void overlapped, which causes the reduction in bearing
capacity, as shown in Figs. 11(a) and (b). When the void spacing
is large enough, however, the interaction between the voids does
not affect the footing performance. In particular, for the parallel
configuration cases, the footing behaves and collapse as single void
cases. The displacement patterns also show that for the parallel
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Fig. 11. FE displacement contours for strip footings above dual voids.
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configuration cases, the pillar between the two voids is not sup-
porting much of the vertical load. For the symmetrical configura-
tion cases, however, the pillar carries a substantial amount of
load and the clear combined failure mechanism of roof and wall
is observed. This phenomenon suggests that the negative effect
of dual voids is more prominent at the symmetrical configuration
than at the parallel configuration, which is consistent with the
results shown in Fig. 9(b). The relationship between the failure
mode and the horizontal and vertical void distances from the foot-
ing is also shown in Fig. 11(c)–(f).

5. Conclusions

The undrained stability of surface strip footing on clay with con-
tinuous voids has been investigated. By using small strain finite
element analysis (Plaxis [21]), the undrained vertical bearing
capacity factor of footings for various geometrical and material
parameters has been calculated. The validation is performed by
comparing the existing solutions for undrained clay without voids.
The following conclusions can be drawn from the present study:

(1) For single square voids, the bearing capacity factor increases
linearly with increasing the vertical and horizontal void dis-
tances (a and b) up to a certain critical void location (acr and
bcr) beyond which the capacity factor becomes constant.
There exists a critical curve beyond which the effect of void
on the undrained stability of the footings becomes
negligible.

(2) For footing centered above single rectangular voids, the
bearing capacity factor for given value of a generally
decreases with increasing the void width.

(3) The soil rigidity has little effect on the bearing capacity fac-
tor, regardless of void location. For non-homogenous clay,
the values of acr and bcr decreases with an increase in the
value of kB=su0: the parameter quantifies the rate of the
undrained strength increasing with depth. The capacity fac-
tor for given values of a and b is found to increase continu-
ously with an increase in kB=su0.

(4) For dual voids, the bearing capacity factor decreases with
decreasing the spacing between the two voids. The reduc-
tion in the capacity factor resulting from the interference
effect is more pronounced at the symmetrical configuration
than the parallel one. It is has been shown that to eliminate
the interference effect of the voids, the spacing between the
two void requires to be higher than a certain critical spacing
scr . For the symmetrical configuration, the value of scr

decreases continuously with an increase in a. For the parallel
configuration, however, the value of scr is independent of a.
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(5) Three distinct types of failure modes are observed in the FE
displacement contour at the collapse: roof, wall, and com-
bined failure mechanisms, which are similar to the previous
results from upper bound solution of limit analysis in the
literature.
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