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The majority of the existing literature on castellated members is focused on beams. Very little work has been
done on the stability of castellated columns although they have been increasingly used in buildings in recent
years. This paper presents a new analytical solution for calculating the critical buckling load of simply supported
castellated columns when they buckle about the major axis. This analytical solution takes into account the
influence of web shear deformations on the buckling of castellated columns and is derived using the stationary
principle of potential energy. The formula derived for calculating the critical buckling load is demonstrated for
a wide range of section dimensions using the data obtained from finite element analyses published by others.
It was found that the influence of web shear deformations on the critical buckling loads of castellated columns
increased with the cross-sectional area of a tee section and the depth of web opening, but decreased with the
length and theweb thickness of the column. It is shown that the inclusion ofweb shear deformations significantly
reduces the buckling resistance of castellated columns. Neglecting the web shear deformations could
overestimate the critical buckling load by up to 25%, even if a reduced second moment of area is used.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Castellated beams have been used as structural members in struc-
tural steel frames [1]. An example is shown in Fig. 1. A castellated
beam or column is fabricated from a standard steel I-shape by cutting
the web on a half hexagonal line down the centre of the beam. The two
halves are moved across by one spacing and then rejoined by welding
[1]. This process increases the depth of the beam and hence the major
axis bending strength and stiffness without adding additional materials.
This allows castellated beams to be used in long span applications
with light or moderate loading conditions in floors and roofs. The
fabrication process creates openings on the web, which can be used to
accommodate services. Despite the increase in the beam depth the
overall building height can hence be reduced, compared with a solid
web solution, where services are provided beneath the beam. This leads
to savings in the cladding costs. Despite the increase in the fabrication
costs caused by cutting and welding, the advantages outweigh the
disadvantages.

Some design guidance on the strength and stiffness of castellated
beams is given [1–3]. Due to the opening in the web, castellated beams
are more susceptible to lateral-torsional buckling. Intensive research on
the lateral stability [4–13] of castellated beams started in the early
1980s. Experimental investigations [4–6,9,13] were carried out and finite
element methods [6–8,10–12] were used to predict the buckling
behaviour of such beams and to compare the predictions with the results
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from the experiments [6,12]. The effects of slenderness on the moment-
gradient factor [7] and of elastic lateral bracing stiffness on the lateral-
torsional buckling [8,13] of simply supported castellated beams were
studied using 3-D finite element models. The failure modes [4–6,9–11]
and the interaction of the buckling modes [10] of castellated beams
were investigated. It was found that the web opening of castellated
beams had little influence on the lateral-torsional buckling [4] and the
failure mode by lateral-torsional buckling of castellated beams was
shown to be similar to that for solid web beams [5], while web
distortional buckling was prone when an effective lateral brace was
provided at the mid-span of the compression flange [9,13] and this type
of failure reduced significantly the failure load [10] of slender castellated
beams.

In recent years castellated members have also been widely used as
columns in buildings [14]. Themain benefit of using a castellated column
is to increase its buckling resistance about the major axis. However,
because of the openings in the web, castellated columns have
complicated sectional properties, which make it extremely difficult to
predict their buckling resistance analytically. Compared to a solid web
column, the castellated column has weak web shear stiffness and thus
the shear deformations are more pronounced when the column has a
flexural buckling, which can significantly reduce the buckling capacity
of the columns [14]. The effect of shear on the buckling capacity of
built-up columns was reported by Gjelsvik [15], who showed that
the columns exhibit reduced shear stiffness and this reduces their
buckling capacity due to the increase in the lateral deflection. This
indicates that the buckling theory taking into account shear
deformations developed by Timoshenko and Gere [16] for solid
web columns may not be suitable for castellated columns.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcsr.2013.10.013&domain=pdf
http://dx.doi.org/10.1016/j.jcsr.2013.10.013
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Fig. 1. Definitions of notations for (a) geometry where a is the half depth of a hexagon, (b) deformations, and (c) internal forces of a castellated member with hexagonal holes.
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The above survey of the literature shows that the majority of the
existing literature on castellated members dealt with the research into
castellated beams using experiments and/or numerical studies. Very
little work has been found on castellated columns. The stability of
castellated columns was studied by El-Sawy et al. [14] using finite
element methods. Their solution takes into account shear and flexural
deformations for the calculation of the buckling capacity. However,
their study used finite element methods and only numerical solutions
were provided. To the best of the authors' knowledge, no analytical
work is available to predict the buckling capacity of castellated columns.

In this paper an analytical solution using the energy method is
presented to determine the buckling capacities of castellated columns.
A simple close-form solution for determining the critical buckling load
of simply supported castellated columns of doubly-symmetric sections,
subject to axial compression load is developed. The critical buckling load
derived is demonstrated using the results from the finite element
analysis published in the literature.
2. Analytical study

The classical bending theory of beams, based on Bernoulli's
hypothesis that the plane normal cross sections of a beam remain
plane and normal to the deflected centroidal axis of the beam during
deflection, ignores the deformation caused by shear forces. When a
column buckles, however, the axial load causes not only bending
moments in the cross sections, but also shear forces. This is particularly
so in castellated columns because the web is flexible in shear. The
deformations due to shear forces in castellated columns can be taken
into account by using either the generalized form of the classical
bending theory called Timoshenko beam theory [16] or the bending
theory of sandwich beams [17]. In the former the assumption that the
plane cross sections remain normal to the deflected beam axis is
relaxed, that is, the slope of the deflected beam axis is no longer required
to be equal to the rotation of the cross section. The difference of these two
rotations is defined as the shear angle, which is produced by shear forces
that are normal to the deflected beamaxis. In the latter the outer layers of
the sandwich beam are assumed to deform according to Bernoulli's
hypothesis and the cross section of the middle layer behaves as a shear
wall. However, the rotation of the middle layer due to shear forces does
not need to be equal to the slope of the deflected beam axis.

In addition to the shear deformation, another difficult problem
that arises in castellated members is the second moment of area that
varies periodically from that of an “I-section” shaped beam (i.e. with
no openings) to that of a “two-tee-section” shaped beam (i.e. with
openings). This unique nature makes the castellated beam more like a
sandwich beam, in which the two tee sections behave as the outer
layers of the sandwich beam to take the bending moment, whereas
the discontinuous parts of the web behave as the middle layer of the
sandwich beam to take shear forces.

Consider a doubly-symmetric section castellated member shown in
Fig. 1a, in which the flange width and thickness are bf and tf, the web
depth and thickness are hw and tw, and the half depth of hexagons is a.
The distance between the centroids of the top and bottom tee sections
is 2e as shown in Fig. 1b. Let u1(x) and u2(x) be the axial displacements
of the centroids of the top and bottom tee sections, and w(x) be the
transverse displacement of the section (i.e. all points on the section
have the same transverse displacement). According to the displacement
assumptions shown in Fig. 1b, the axial displacement at any point at the
section with distance x from the origin can be expressed as follows:

For the top tee section,−(hw/2+ tf)≤ z≤−a

u x; zð Þ ¼ u1 xð Þ− zþ eð Þdw
dx

: ð1Þ

For the bottom tee section, a≤ z≤ (hw/2+ tf)

u x; zð Þ ¼ u2 xð Þ− z−eð Þdw
dx

: ð2Þ

For the middle part between the two tee sections, −a≤ z≤a

u x; zð Þ ¼ u1 xð Þ þ u2 xð Þ
2

− z
a

u1 xð Þ−u2 xð Þ
2

− e−að Þ dw
dx

� �
: ð3Þ

The axial strains in the two tee sections can be obtained using the
strain-displacement relation as follows:
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For the top tee section,−(hw/2+ tf)≤ z≤−a

ε1x x; zð Þ ¼ ∂u
∂x ¼ du1

dx
− zþ eð Þ d

2w
dx2

: ð4Þ

For the bottom tee section, a≤ z≤ (hw/2+ tf)

ε2x x; zð Þ ¼ ∂u
∂x ¼ du2

dx
− z−eð Þ d

2w
dx2

: ð5Þ

The shear strain in themiddle part between the two tee sections can
also be obtained using the shear strain-displacement relation as follows:

γxz x; zð Þ ¼ ∂u
∂z þ

∂w
∂x ¼ −u1−u2

2a
þ e
a
dw
dx

: ð6Þ

The internal forces defined in Fig. 1c can be obtained as follows:

N1 xð Þ ¼ Ebf

Z−hw=2

− t fþhw=2ð Þ
ε1xdzþEtw

Z−a

−hw=2

ε1xdz ¼ EAtee
du1

dx
ð7Þ

M1 xð Þ ¼ Ebf

Z−hw=2

− t fþhw=2ð Þ
zþ eð Þε1xdzþ Etw

Z−a

−hw=2

zþ eð Þε1xdz ¼ −EItee
d2w
dx2

ð8Þ

Q3 xð Þ ¼ Gtw

Za
−a

γxzdz ¼ 2Gtw e
dw
dx

−u1−u2

2

� �
ð9Þ

N2 xð Þ ¼ Etw

Zhw=2
a

ε2xdzþ Ebf

Zt fþhw=2

hw=2

ε2xdz ¼ EAtee
du2

dx
ð10Þ

M2 xð Þ ¼ Etw

Zhw=2
a

zþ eð Þε2xdzþ Ebf

Zt fþhw=2

hw=2

zþ eð Þε2xdz ¼ −EItee
d2w
dx2

ð11Þ

where E is the Young's modulus, G is the shear modulus, Atee and Itee are
the area and second moment of area of the tee-section defined in its
own coordinate system as follows:

Atee ¼ bf t f þ tw
hw
2

−a
� �

ð12Þ

Itee ¼
bf t

3
f

12
þþbf t f

hw þ t f
2

−e
� �2

þ tw
12

hw
2

−a
� �3

þ tw
hw
2

−a
� �

hw þ 2a
4

−e
� �2

: ð13Þ

The strain energy of the member due to the axial and transverse
displacements can be expressed as follows:

U ¼ Ebf

2

Zl
o

Z−hw=2

− t fþhw=2ð Þ
ε21xdzdxþ

Etw
2

Zl
o

Z−a

−hw=2

ε21xdzdxþ
kshGtw

2

Zl
o

Za
−a

γ2
xzdzdx

þ Etw
2

Zl
o

Zhw=2
a

ε22xdzdxþ
Ebf

2

Zl
o

Zt fþhw=2

hw=2

ε22xdzdx

ð14Þ
where l is the member length and ksh=1/4 is the modified shear factor
which is derived in the Appendix A. Substituting Eqs. (4) to (6) into
Eq. (14) yields,

U ¼ EAtee

2

Zl
o

du1

dx

� �2
þ du2

dx

� �2� �
dxþ EItee

Zl
o

d2w
dx2

 !2

dx

þ kshGtw
a

Zl
o

e
dw
dx

−u1−u2

2

� �2
dx: ð15Þ

For simplicity of presentation, the following two notations are
introduced,

uα ¼ u1 þ u2

2
ð16Þ

uβ ¼ u1−u2

2
: ð17Þ

Hence, Eq. (15) can be rewritten in terms of uα(x), uβ(x), andw(x) as
follows:

U ¼ EAtee

Zl
o

duα

dx

� �2
þ duβ

dx

� �2
" #

dx

þ EItee

Zl
o

d2w
dx2

 !2

dxþ kshGtwe
2

a

Zl
o

dw
dx

−
uβ

e

� �2
dx: ð18Þ

Physically, the first term in Eq. (18) represents themembrane strain
energy, the second term is the bending strain energy, whereas the third
term stands for the shear strain energy. For the case where the
castellated member is subjected to an axial compression load, P, the
potential change of the applied load due to the axial and transverse
displacements can be expressed as follows:

W ¼ −P
Zl
o

duα

dx
þ 1
2

dw
dx

� �2� �
dx: ð19Þ

The buckling load can be determined by finding the value of the
applied load at which bifurcation buckling occurs, that is, the load at
which the castellated member can be in equilibrium both in a straight
configuration (uβ(x) =w(x)= 0) and in a slightly bent configuration
about its major axis (i.e. bending occurs in the plane of the web). This
is accomplished through setting the variational of the total potential
energyΠ=U+W equal to zero. This operation results in an eigenvalue
problem that can be solved for nontrivial solutions that are discrete
values of the applied load. The lowest eigenvalue is the actual physical
buckling load, and is defined to be the critical buckling load.

The examination of Eqs. (18) and (19) reveals thatuα is independent
of uβ and w, and thus will vanish after the variational. In this case, the
total potential energy for finding the critical buckling load can be
simplified as follows:

Π� ¼ EAtee

Zl
o

duβ

dx

� �2

dx

þ EItee

Zl
o

d2w
dx2

 !2

dxþ kshGtwe
2

a

Zl
o

dw
dx

−
uβ

e

� �2
dx−P

2

Zl
o

dw
dx

� �2
dx:

ð20Þ



43W. Yuan et al. / Journal of Constructional Steel Research 92 (2014) 40–45
For a simply supported castellated column, uβ(x) and w(x) can be
assumed to be as follows:

uβ xð Þ ¼ C1 cos
πx
l

ð21Þ

w xð Þ ¼ C2 sin
πx
l

ð22Þ

where C1 and C2 are constants. Obviously, uβ(x) and w(x) satisfy the

simply supported displacement boundary conditions, w ¼ d2w
dx2

¼ duβ
dx ¼ 0,

at both ends. Substituting Eqs. (21) and (22) into Eq. (20) yields,

Π� ¼ EAteel
2

π
l

� �2
C2
1 þ

EIteel
2

π
l

� �4
C2
2 þ

kshGtwe
2l

2a
πC2

l
−C1

e

� �2
− Pl

4
π
l

� �2
C2
2: ð23Þ

The variational of Eq. (23) with respect to C1 and C2 results in the
following two algebraic equations,

EAteeC1−
kshGtwel

πa
C2−

lC1

πe

� �
¼ 0 ð24Þ

EItee
π
l

� �2
C2 þ

kshGtwe
2

a
C2−

lC1

πe

� �
−PC2

2
¼ 0: ð25Þ

Eqs. (24) and (25) are the eigen-equations where C1 and C2 are the
eigenvector and P is the corresponding eigenvalue. The smallest
eigenvalue, Pcr of Eqs. (24) and (25) can be obtained as follows:

Pcr ¼
2π2EItee

l2
þ 2π2EAteee

2

l2
1

1þ π2aEAtee

kshtwGl
2

: ð26Þ

It can be seen from Eq. (26) that, if G≈ 0, then the whole second
term vanishes, and thus the critical buckling load can be calculated by
considering that the two tee-section beams are independent of each
other, while if G≈∞, the second part of the second term vanishes, and
thus the critical buckling load can be calculated by considering the
two tee beams as a whole (i.e. they are rigidly assembled together).
The actual critical buckling load of a castellated column thus is in
between these two extreme cases. It also can be seen from Eq. (26)
that the influence of the shear deformation on the critical buckling
load increases with the area of the tee section and the depth of web
opening but decreases with the column length and the web thickness.

Note that ksh=1/4 and if Poisson's ratio, v=1/3 then E=8G/3.
For twl2 NN aAtee Eq. (26) can be simplified into,

Pcr ¼
2π2EItee

l2
þ 2π2EAteee

2

l2
1−π2aEAtee

kshtwGl
2

 !
¼ Po 1−64π2A2

teeae
2

3Iotwl
2

 !

ð27Þ

where Po is the critical buckling load of the column calculated based on a
reduced constant secondmoment of area, Io, due to the existence ofweb
openings but ignoring the shear deformation as follows:

Po ¼
π2EIo
l2

ð28Þ

Io ¼ 2 Itee þ Ateee
2

� �
¼ 2

bf t
3
f

12
þ bf t f

hw þ t f
2

� �2
" #

þ tw
12

h3w− 2að Þ3
h i

:

ð29Þ

Eqs. (27) and (28) indicate that the critical load of a castellated
column can be calculated using the simple Euler formula if a proper
reduction factor due to the shear is applied. The reduction factor,
however, is dependent upon several dimensions, including column
length, the cross sectional area of a tee section, open depth, web
thickness, the second moment of area, and the distance between the
centroids of the two tee sections.

For battened lattice columns, Itee≈ 0, Io≈ 2e2Atee, and e≈ a. In this
case, Eq. (26) can be simplified,

Pcr ¼
Po

1þ 2Po

atwG

: ð30Þ

This is similar to Engesser's buckling formula for battened built-up
columns but with a slight different pre-factor [15,18]. The reason for
this is because Eq. (30) involves both shear and bending of web posts.

3. Comparison of Eq. (27) with finite element analysis results

The critical buckling load formula, Eq. (27), is demonstrated using
the results from the finite element analysis obtained by El-Sawy et al.
[14]. The cross sectional dimensions and lengths of the columns used
for the demonstration are given in Table 1, which are based on those
used commonly in practice, with relative flange-to-web flexural
stiffness ratios varying from 0.62 to 24, flange width-to-thickness ratios
varying from4.0 to 25, andweb open depth-to-web height ratios (2a/hw)
varying from 0.43 to 0.79.

The finite element analysis [14]was performedusing the ANSYSfinite
element software package to determine the critical elastic bifurcation
buckling loads and the associated bucklingmodes of castellated columns.
Three-dimensional 6-noded and 8-noded structural solid elements
(SOLID45) with three translational degrees of freedom at each node
were used to model the geometrical details of the analysed columns.
Across the thickness direction there are two elements used in the flanges
and three elements used in the web. The number and sizes of the
elements used were obtained based on the numerical convergence test
of buckling loads. Fig. 2 shows a typicalfinite elementmesh of amodelled
castellated column.

Due to the symmetry in the column geometry, loading and response,
only a quarter of the column (ahalf length and a half cross-section of the
column) is modelled (see Fig. 2). Zero lateral displacement was applied
to every node on the plane of symmetry. Zero axial displacement was
applied to every node on the section of symmetry. Nodes on the section
of simple supports were assumed to have zero lateral and transverse
displacements and subjected to a uniformly distributed axial compressive
stress.

The comparison between the present analytical solutions and the
results from the finite element analysis [14] is plotted in Fig. 3. The
critical buckling loads calculated using Eq. (28) are also superimposed
in the figure to demonstrate the effect of the shear deformation of the
web on the critical buckling load of a castellated column. It is evident
from Fig. 3 that, ignoring web shear deformations could overestimate
the critical buckling load by up to 25%, even if a reduced secondmoment
of area (Io) is used. However, when web shear deformations are taken
into account, the critical buckling loads calculated are in good agreement
with those obtained from the finite element analysis. This demonstrates
that the analytical model proposed in the present study is appropriate
to predict the buckling capacity of castellated columns.

It should be noticed from the results shown in Table 1 (data with a
star) that, for several sections the critical stresses obtained from the
finite element analyses are slightly greater than those calculated from
Eqs. (27) and (28). This is interesting since this indicates that the effect
of web shear deformations is overtaken by the reduction of the second
moment of area by ignoring the solid part in the middle layer of the
web. Nevertheless, the differences between the three critical stresses
calculated using different models/methods for these sections are not
remarkable as demonstrated in Fig. 3.

The elastic buckling solution developed in the preceding section, i.e.
the critical buckling load given in Eqs. (26) or (27) together with the



Table 1
Dimensions of the castellated columns analysed and the corresponding critical buckling
stress results (E=200GPa, σy= 275MPa).

Dimensions of castellated columns (mm) σcr/σy

bf tf hw tw 2a l FEA [1] Eq. (27) Eq. (28)

20 5 100 5 43.30 3000 1.5263 1.5237 1.5415
80 20 400 20 173.20 12000 1.5263 1.5237 1.5415
100 4 200 10 86.60 6000 1.4739 1.4724 1.4897
200 8 400 20 173.20 12000 1.4739 1.4724 1.4897
200 50 200 10 86.60 6000 2.6104 2.6474 3.0453
800 200 800 40 346.40 24000 2.6104 2.6474 3.0453
250 10 100 5 43.30 3000 1.9690 2.0364 2.3472
500 20 200 10 86.60 6000 1.9690 2.0364 2.3472
20 5 100 5 51.96 3000 1.6409 1.6273 1.6485
80 20 400 20 207.84 12000 1.6409 1.6273 1.6485
100 4 200 10 103.92 6000 1.5846 1.5710 1.5916
200 8 400 20 207.84 12000 1.5846 1.5710 1.5916
200 50 200 10 103.92 6000 2.5982 2.5883 3.0668
800 200 800 40 415.68 24000 2.5982 2.5883 3.0668
250 10 100 5 51.96 3000 1.9530 1.9895 2.3628
500 20 200 10 103.92 6000 1.9530 1.9895 2.3628
20 5 100 5 60.62 3000 1.7649 1.7351 1.7593*
80 20 400 20 242.48 12000 1.7649 1.7351 1.7593*
100 4 200 10 121.24 6000 1.6980 1.6728 1.6962*
200 8 400 20 242.48 12000 1.6980 1.6728 1.6962*
200 50 200 10 121.24 6000 2.5912 2.5285 3.0870
800 200 800 40 484.96 24000 2.5912 2.5285 3.0870
250 10 100 5 60.62 3000 1.9236 1.9418 2.3773
500 20 200 10 121.24 6000 1.9236 1.9418 2.3773
20 5 100 5 69.28 3000 1.8899 1.8452 1.8716*
80 20 400 20 277.12 12000 1.8899 1.8452 1.8716*
100 4 200 10 138.56 6000 1.8151 1.7753 1.8007*
200 8 400 20 277.12 12000 1.8151 1.7753 1.8007*
200 50 200 10 138.56 6000 2.5893 2.4678 3.1059
800 200 800 40 554.24 24000 2.5893 2.4678 3.1059
250 10 100 5 69.28 3000 1.8753 1.8933 2.3902
500 20 200 10 138.56 6000 1.8753 1.8933 2.3902
20 5 100 5 77.94 3000 2.0273 1.9540 1.9818*
80 20 400 20 311.76 12000 2.0273 1.9540 1.9818*
100 4 200 10 155.88 6000 1.9266 1.8744 1.9011*
200 8 400 20 311.76 12000 1.9266 1.8744 1.9011*
200 50 200 10 155.88 6000 2.5736 2.4063 3.1230
800 200 800 40 623.52 24000 2.5736 2.4063 3.1230
250 10 100 5 77.94 3000 1.8074 1.8439 2.4012
500 20 200 10 155.88 6000 1.8074 1.8439 2.4012
20 5 50 10 21.65 1500 1.6130 1.6135 1.6322
60 15 450 10 194.85 13500 1.4985 1.4949 1.5125
50 2 50 10 21.65 1500 1.5096 1.5064 1.5240
150 6 450 10 194.85 13500 1.4632 1.4613 1.4785
100 25 50 10 21.65 1500 3.8003 3.8934 4.4605
300 75 450 10 194.85 13500 2.2624 2.2953 2.6435
250 10 50 10 21.65 1500 2.2483 2.4323 2.8000
750 30 450 10 194.85 13500 1.8691 1.9145 2.2074
20 5 50 10 38.97 1500 2.1817 2.0935 2.1232
60 15 450 10 350.73 13500 1.9797 1.9094 1.9366*
50 2 50 10 38.97 1500 1.9871 1.9271 1.9546*
150 6 450 10 350.73 13500 1.9092 1.8571 1.8836*
100 25 50 10 38.97 1500 3.7540 3.5594 4.5862
300 75 450 10 350.73 13500 2.2145 2.0819 2.7076
250 10 50 10 38.97 1500 2.1479 2.2080 2.8694
750 30 450 10 350.73 13500 1.6826 1.7320 2.2567

Fig. 2. (a) Finite element analysis model and (b) finite element mesh ([14]).
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Fig. 3. Comparison of the critical buckling stresses of castellated columns obtained from
different methods (Ao=2Atee, E=200GPa, σy= 275MPa, the FEA data from [14]).
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yield load can be used to determine the slenderness of a castellated
column, from which one can calculate the resistance of a compressed
castellated column based on the “design buckling curves”, which account
for imperfections, specified in various design standards, for example, AISC
360, Eurocode 3, AS 4100 etc.

4. Conclusions

This paper has presented an analytical solution for determining the
critical buckling load of simply supported castellated columns subject
to axial compression. The present analysis has highlighted the
importance of taking into account the effect of web shear deformations
on the critical buckling load of castellated columns when they buckle
about the major axis. The present analytical solution has been demon-
strated for a wide range of section dimensions using the published
data obtained from finite element analysis. From the present study the
following conclusions can be drawn:

• The inclusion of web shear deformations significantly reduces the
buckling resistance of castellated columns. Neglecting the web shear
deformations could overestimate the critical buckling load by up to
25%, even if a reduced second moment of area is used.

• The influence of web shear deformations on the critical buckling loads
of castellated columns increases with the cross-sectional area of a tee
section and the depth of web opening, but decreases with the length
and the web thickness of the column.

• The analytical solution agrees well with the finite element solutions.
• Finally, although the present study discusses only simply supported
castellated columns, the method and principle presented in this

image of Fig.�2
image of Fig.�3


Fig. A. Shear strain energy calculation model: (a) unit considered and (b) shear
deformation calculation model.
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paper could be applied for castellated columns with other boundary
conditions.
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Appendix A. Derivation of the modified shear factor ksh

Consider the unit of length, 6a/√3 of a castellated column, shown in
Fig. A(a). The relative displacement of the top and bottom layers of the
unit due to a pair of shear forces F, shown in Fig. A(b) can be calculated
in terms of Timoshenko beam theory as follows:

Δ ¼ αFlb
GAb

þ Fl3b
12EIb

ðA� 1Þ

where α=1.5 is the shear coefficient for beamswith a rectangular cross
section, lb = 2a is the length of the beam, Ab = tw√3a is the cross-
sectional area of the beam, Ib= tw(√3a)3/12 is the second moment of
the cross-sectional area of the beam, which, for simplicity, is based on
the average value of depths as shown in Fig. A(b). From Eq. (A-1) and
using E=8G/3 for ν=1/3, the combined stiffness of the beam due to
the bending and shear thus can be expressed as follows,

kb ¼ F
Δ
¼

ffiffiffi
3

p

4
Gtw: ðA� 2Þ

The strain energy of a beam due to bending and shear can be
expressed in terms of the relative displacement Δ as follows:

Ub ¼ 1
2
kbΔ

2 ¼
ffiffiffi
3

p

8
GtwΔ

2
: ðA� 3Þ
Note that the relative displacement Δ can be expressed in terms of
the shear strain as follows:

Δ ¼ 2aγxz: ðA� 4Þ

Hence, Eq. (A-3) can be expressed as follows:

Ub ¼
ffiffiffi
3

p

2
Gtwa

2γ2
xz: ðA� 5Þ

For a castellated column of n units, of length 6na/√3, the total strain
energy of themiddle layer of the column due to the shear strain γxy can
be calculated as follows:

Ush ¼
ffiffiffi
3

p

2
Gtwa

2Xn
k¼1

γ2
xz ¼

ffiffiffi
3

p

2
Gtwa

2

6a=
ffiffiffi
3

p
Zl
o

γ2
xzdx ¼ Gtwa

4

Zl
o

γ2
xzdx: ðA� 6Þ

Let ksh=1/4, Eq. (A-6) can be expressed as follows:

Ush ¼ Gtwa
4

Zl
o

γ2
xzdx ¼Gtw

8

Zl
o

Za
−a

γ2
xzdzdx ¼ kshGtw

2

Zl
o

Za
−a

γ2
xzdzdx: ðA� 7Þ
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