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Vibration-based structural damage identification
By Charles R. Farrar, Scott W. Doebling and David A. Nix
MS P-946, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Many aerospace, civil and mechanical systems continue to be used despite ageing and
the associated potential for damage accumulation. Therefore, the ability to monitor
the structural health of these systems is becoming increasingly important. A wide
variety of highly effective local non-destructive evaluation tools is available. However,
damage identification based upon changes in vibration characteristics is one of the
few methods that monitor changes in the structure on a global basis. A summary
of developments in the field of global structural health monitoring that have taken
place over the last thirty years is first presented. Vibration-based damage detection
is a primary tool that is employed for this monitoring. Next, the process of vibration-
based damage detection will be described as a problem in statistical pattern recogni-
tion. This process is composed of three portions: (i) data acquisition and cleansing;
(ii) feature selection and data compression; and (iii) statistical model development.
Current research regarding feature selection and statistical model development will
be emphasized with the application of this technology to a large-scale laboratory
structure.

Keywords: damage detection; structural health monitoring;
statistical pattern recognition

1. Introduction

In the most general terms, damage can be defined as changes introduced into a system
that adversely affect the current or future performance of that system. Implicit in
this definition is the concept that damage is not meaningful without a comparison
between two different states of the system, one of which is assumed to represent
the initial, and often undamaged, state. This discussion is focused on the study of
damage identification in structural and mechanical systems. Therefore, the definition
of damage will be limited to changes to the material and/or geometric properties of
these systems, including changes to the boundary conditions and system connectivity,
which adversely affect the current or future performance of the systems.
The interest in the ability to monitor a structure and detect damage at the earliest

possible stage is pervasive throughout the civil, mechanical and aerospace engineer-
ing communities. Current damage-detection methods are either visual or localized
experimental methods such as acoustic or ultrasonic methods, magnetic field meth-
ods, radiograph, eddy-current methods and thermal field methods (Doherty 1987).
All of these experimental techniques require that the vicinity of the damage is known
a priori and that the portion of the structure being inspected is readily accessible.
Subjected to these limitations, these experimental methods can detect damage on or
near the surface of the structure. The need for quantitative global damage-detection
methods that can be applied to complex structures has led to the development of,
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and continued research into, methods that examine changes in the vibration charac-
teristics of the structure.
The basic premise of vibration-based damage detection is that the damage will

alter the stiffness, mass or energy dissipation properties of a system, which, in
turn, will alter the measured dynamic response of the system. Although the basis
for vibration-based damage detection appears intuitive, its actual application poses
many significant technical challenges. The most fundamental challenge is the fact
that damage is typically a local phenomenon and may not significantly influence
the lower-frequency global response of a structure that is typically measured during
vibration tests. This challenge is supplemented by many practical issues associated
with making accurate and repeatable vibration measurements at a limited number
of locations on structures often operating in adverse environments.
In an effort to emphasize the extent of the research efforts in vibration-based

damage detection, a brief summary of applications that have driven developments in
this field over the last thirty years is first presented. Recent research has begun to
recognize that the vibration-based damage-detection problem is fundamentally one
of statistical pattern recognition and this paradigm is described in detail. Current
damage-detection methods are then summarized in the context of this paradigm and
an application of the statistical pattern recognition methodology is presented.

2. Historical perspective

It is the authors’ speculation that damage or fault detection, as determined by
changes in the dynamic properties or response of systems, has been practised in
a qualitative manner, using acoustic techniques, since modern man has used tools.
More recently, this subject has received considerable attention in the technical lit-
erature and a brief summary of the developments in this technology over the last
thirty years is presented below. Specific references are not cited; instead the reader
is referred to Doebling et al . (1998) for a review of literature on this subject.
The development of vibration-based damage-detection technology has been closely

coupled with the evolution, miniaturization and cost reductions of fast Fourier trans-
form (FFT) analyser hardware and computing hardware. To date, the most successful
application of vibration-based damage-detection technology has been for monitoring
rotating machinery. The rotating machinery application has taken an almost exclu-
sive non-model based approach to damage detection. The detection process is based
on pattern recognition applied to time histories or spectra generally measured on the
housing of the machinery during normal operating conditions. Databases have been
developed that allow specific types of damage to be identified from particular fea-
tures of the vibration signature. For these systems, the approximate location of the
damage is generally known making a single-channel FFT analyser sufficient for most
periodic monitoring activities. Today, commercial software integrated with measure-
ment hardware is marketed to help the user systematically apply this technology to
operating equipment.
During the 1970s and 1980s, the oil industry made considerable efforts to develop

vibration-based damage-detection methods for offshore platforms. This damage-de-
tection problem is fundamentally different from that of rotating machinery because
the damage location is unknown and because the majority of the structure is not read-
ily accessible for measurement. To circumvent these difficulties, a common method-
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ology adopted by this industry was to simulate candidate damage scenarios with
numerical models, examine the changes in resonant frequencies that were produced
by these simulated changes, and correlate these changes with those measured on
a platform. A number of very practical problems were encountered including mea-
surement difficulties caused by platform machine noise, instrumentation difficulties
in hostile environments, changing mass caused by marine growth and varying fluid
storage levels, temporal variability of foundation conditions, and the inability of wave
motion to excite higher modes. These issues prevented adaptation of this technology,
and efforts at further developing this technology for offshore platforms were largely
abandoned in the early 1980s.
The aerospace community began to study the use of vibration-based damage detec-

tion during the late 1970s and early 1980s in conjunction with the development of
the space shuttle. This work has continued with current applications being inves-
tigated for the National Aeronautics and Space Administration’s space station and
reusable launch vehicle. The Shuttle Modal Inspection System (SMIS) was developed
to identify fatigue damage in components such as control surfaces, fuselage panels and
lifting surfaces. These areas were covered with a thermal protection system making
these portions of the shuttle inaccessible and hence impractical for conventional local
non-destructive examination methods. This system has been successful in locating
damaged components that are covered by the thermal protection system. All orbiter
vehicles have been periodically subjected to SMIS testing since 1987. Space sta-
tion applications have primarily driven the development of experimental/analytical
damage-detection methods. These approaches are based on correlating analytical
models of the undamaged structure with measured modal properties from both the
undamaged and damaged structure. Changes in stiffness indices as assessed from
the two model updates are used to locate and quantify the damage. Since the mid
1990s, studies of damage detection for composite materials have been motivated by
the development of composite fuel tanks for a reusable launch vehicle.
The civil engineering community has studied vibration-based damage assessment

of bridge structures since the early 1980s. Modal properties and quantities derived
from these properties such as mode-shape curvature and dynamic flexibility matrix
indices have been the primary features used to identify damage in bridge structures.
Environmental and operating condition variability present significant challenges to
the bridge monitoring application. Regulatory requirements in eastern Asian coun-
tries, which mandate the companies that construct the bridges to periodically certify
their structural health, are driving current research and development of vibration-
based bridge monitoring systems.
In summary, the review of the technical literature presented by Doebling et al .

(1998) shows an increasing number of research studies related to vibration-based
damage detection. These studies identify many technical challenges to the adapta-
tion of vibration-based damage detection that are common to all applications of this
technology. These challenges include better use of the nonlinear response charac-
teristics of the damaged system, development of methods to optimally define the
number and location of the sensors, identification of the features sensitive to small
damage levels, the ability to discriminate changes in features cause by damage from
those caused by changing environmental and/or test conditions, the development
of statistical methods to discriminate features from undamaged and damaged struc-
tures, and performance of comparative studies of different damage-detection methods
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applied to common datasets. These topics are currently the focus of various research
efforts by many industries, including defence, automotive and semiconductor manu-
facturing, where multi-disciplinary approaches are being used to advance the current
capabilities of vibration-based damage detection.

3. Vibration-based damage detection and
structural health monitoring

The process of implementing a damage-detection strategy is referred to as structural
health monitoring. This process involves the observation of a structure over a period
of time using periodically spaced measurements, the extraction of features from these
measurements, and the analysis of these features to determine the current state of
health of the system. The output of this process is periodically updated information
regarding the ability of the structure to continue to perform its desired function in
light of the inevitable ageing and degradation resulting from the operational environ-
ments. Figure 1 shows a chart summarizing the structural health-monitoring process.
The topics summarized in this figure are discussed below.

(a) Operational evaluation

Operational evaluation answers two questions in the implementation of a structural
health-monitoring system.

(1) What are the conditions, both operational and environmental, under which the
system to be monitored functions?

(2) What are the limitations on acquiring data in the operational environment?

Operational evaluation begins to set the limitations on what will be monitored
and how the monitoring will be accomplished. This evaluation starts to tailor the
damage-detection process to features that are unique to the system being monitored
and tries to take advantage of unique features of the postulated damage that is to
be detected.

(b) Data acquisition and cleansing

The data-acquisition portion of the structural health-monitoring process involves
selecting the types of sensors to be used, the location where the sensors should be
placed, the number of sensors to be used, and the data-acquisition/storage/trans-
mittal hardware. This process will be application specific. Economic considerations
will play a major role in making these decisions. Another consideration is how often
the data should be collected. In some cases, it may be adequate to collect data
immediately before and at periodic intervals after a severe event. However, if fatigue
crack growth is the failure mode of concern, it may be necessary to collect data
almost continuously at relatively short time intervals.
Because data can be measured under varying conditions, the ability to normalize

the data becomes very important to the damage-detection process. One of the most
common procedures is to normalize the measured responses by the measured inputs.
When environmental or operating condition variability is an issue, the need can
arise to normalize the data in some temporal fashion to facilitate the comparison
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1. OPERATIONAL EVALUATION
A. Define system-specific damage
B. Operational evaluation
C. Constraints on data acquisition

2. DATA ACQUISITION AND CLEANSING
A. Define data to be acquired
B. Define data to be used (or not used)
 in the feature selection process

Types and amount of data to be acquired?
A. Where should the sensors be placed?
B. Define the data acquisition, storage and
 transmittal system

Data normalization procedures
A. Level of input
B. Temporal

Feedback from model development

3. FEATURE SELECTION
A. What features of the data are best for
 damage detection?
B. Statistical distribution of features
C. Data condensation

How often should data be acquired?
A. Only after extreme events
B. Periodic intervals
C. Continuous

Sources of variability
A. Changing environmental/testing/data
 reduction conditions
B. Unit to unit

Feedback from feature selection

Basis for feature selection
A. Numerical analysis
B. Past experience
C. Component testing

Sources of variability

Feedback from model development

Physical models for feature
A. Linear vs nonlinear
B. Purely experimental or
 analytical/experimental

4. STATISTICAL MODEL DEVELOPMENT
A. Data available from undamaged and damaged system
B. Data available only from undamaged system

Is it damaged or undamaged?
(group classification)
(identification of outliers)

Where is the damage located?
(group classification)
(regression analysis)

What is the extent of the damage?
(group classification)
(regression analysis)

What type of damage is it?
(regression analysis)
(group classification)

Remaining useful life of the system
Incorrect diagnosis of damage

false-negative results
false-positive results

Figure 1. Flow chart for implementing a structural health-monitoring program.
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of data measured at similar times of an environmental or operational cycle. Sources
of variability in the data-acquisition process and with the system being monitored
need to be identified and minimized to the extent possible. In general, all sources of
variability can not be eliminated. Therefore, it is necessary to make the appropriate
measurements such that these sources can be statistically quantified.
Data cleansing is the process of selectively choosing data to accept for, or reject

from, the feature selection process. The data-cleansing process is usually based on
knowledge gained by individuals directly involved with the data acquisition. Finally,
it should be noted that the data-acquisition and cleansing portion of a structural
health-monitoring process should not be static. Insight gained from the feature selec-
tion process and the statistical model development process will provide information
regarding changes that can improve the data-acquisition process.

(c) Feature selection

The area of the structural damage-detection process that receives the most atten-
tion in the technical literature is the identification of data features that allow one to
distinguish between the undamaged and damaged structure. Inherent in this feature
selection process is the condensation of the data. The operational implementation
and diagnostic measurement technologies needed to perform structural health mon-
itoring typically produce a large amount of data. A condensation of the data is
advantageous and necessary, particularly if comparisons of many datasets over the
lifetime of the structure are envisioned. Also, because data may be acquired from
a structure over an extended period of time and in an operational environment,
robust data-reduction techniques must retain sensitivity of the chosen features to
the structural changes of interest in the presence of environmental noise.
The best features for damage detection are typically application specific. Numer-

ous features are often identified for a structure and assembled into a feature vector.
In general, it is desirable to develop feature vectors that are of low dimension. It is
also desirable to obtain many samples of the feature vectors. There are no restric-
tions on the types or combinations of data contained in the feature vector. As an
example, a feature vector may contain the first three resonant frequencies of the
system, a time when the measurements were made, and a temperature reading from
the system. A variety of methods are employed to identify features for damage detec-
tion. Past experience with measured data from a system, particularly if damaging
events have been previously observed for that system, is often the basis for fea-
ture selection. Numerical simulation of the damaged system’s response to simulated
inputs is another means of identifying features for damage detection. The applica-
tion of engineered flaws, similar to ones expected in actual operating conditions,
to specimens can identify parameters that are sensitive to the expected damage.
Damage accumulation testing, during which significant structural components of the
system under study are subjected to a realistic accumulation of damage, can also
be used to identify appropriate features. Fitting linear or nonlinear, physical-based
or non-physical-based models of the structural response to measured data can also
help identify damage-sensitive features. Common features used in vibration-based
damage-detection studies are briefly summarized below. A more detailed summary
can be found in Doebling et al . (1998).
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(i) Basic modal properties

The most common features that are used in vibration-based damage detection, and
that represent a significant amount of data condensation from the actual measured
quantities, are the common modal properties of resonant frequencies and mode-
shape vectors. These features are identified from measured response time histories,
most often absolute acceleration, or spectra of these time histories. The technol-
ogy required to accurately make these measurements is summarized in McConnell
(1995). Often these spectra are normalized by spectra of the measured force input
to form frequency response functions. Well-developed experimental modal analysis
procedures are applied to these functions or to the measured-response spectra to
estimate the system’s modal properties (Ewins 1995; Maia & Silva 1997).
The amount of literature that uses resonant frequency shifts as a data feature for

damage detection is quite large. The observation that changes in structural prop-
erties cause changes in vibration frequencies was a primary impetus for developing
vibration-based damage identification technology. In general, changes in frequencies
cannot provide spatial information about structural changes. For applications to
large civil engineering structures, the somewhat low sensitivity of frequency shifts
to damage requires either very precise measurements of frequency change or large
levels of damage. An exception to this limitation occurs at higher modal frequen-
cies, where the modes are associated with local responses. However, the practi-
cal limitations involved with the excitation and identification of the resonant fre-
quencies associated with these local modes, caused in part by high modal den-
sity and low participation factors, can make these resonant frequencies difficult to
identify.
Damage detection methods using mode-shape vectors as a feature generally analyse

differences between the measured modal vectors before and after damage. Mode-
shape vectors are spatially distributed quantities; therefore, they provide informa-
tion that can be used to locate damage. However, a large number of measurement
locations can be required to accurately characterize mode-shape vectors and provide
sufficient resolution for determining the damage location.

(ii) Mode-shape curvature changes

An alternative to using mode shapes to obtain spatially distributed features sen-
sitive to damage is to use mode-shape derivatives, such as curvature. Mode-shape
curvature can be computed by numerically differentiating the identified mode-shape
vectors twice to obtain an estimate of the curvature. These methods are motivated
by the fact that the second derivative of the mode shape is much more sensitive
to small perturbations in the system than is the mode shape itself. Also, for beam-
and plate-like structures, changes in curvature can be related to changes in strain
energy, which has been shown to be a sensitive indicator of damage. A comparison
of the relative statistical uncertainty associated with estimates of mode-shape curva-
ture, mode-shape vectors and resonant frequencies showed that the largest variability
is associated with estimates of mode-shape curvature followed by estimates of the
mode-shape vector. Resonant frequencies could be estimated with least uncertainty
(Doebling et al . 1997).
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(iii) Dynamically measured flexibility

Changes in the dynamically measured flexibility matrix indices have also been
used as damage sensitive features. The dynamically measured flexibility matrix, [G],
is estimated from the mass-normalized measured mode shapes, [Φ], and measured
eigenvalue matrix (diagonal matrix of squared modal frequencies), [Λ], as

[G] ≈ [Φ][Λ]−1[Φ]T. (3.1)

The formulation of the flexibility matrix is approximate because in most cases all of
the structure’s modes are not measured. Typically, damage is detected using flexibil-
ity matrices by comparing the flexibility matrix indices computed using the modes
of the damaged structure to the flexibility matrix indices computed using the modes
of the undamaged structure. Because of the inverse relationship to the square of the
modal frequencies, the measured flexibility matrix is most sensitive to changes in the
lower-frequency modes of the structure.

(iv) Updating structural model parameters

Another class of damage-identification methods is based on features related to
changes in mass, stiffness and damping matrix indices that have been correlated
such that the numerical model predicts, as closely as possible, the identified dynamic
properties (resonant frequencies, modal damping and mode-shape vectors) of the
undamaged and damaged structures, respectively. These methods solve for the up-
dated matrices (or perturbations to the nominal model that produce the updated
matrices) by forming a constrained optimization problem based on the structural
equations of motion, the nominal model and the identified modal properties (Friswell
& Mottershead 1995). Comparisons of the matrix indices that have been correlated
with modal properties identified from the damaged structure to the original corre-
lated matrix indices provide an indication of damage that can be used to quantify the
location and extent of damage. Degree of freedom mismatch between the numerical
model and the measurement locations can be a severe limitation for performing the
required matrix updates.

(v) Nonlinear methods

Identification of the previously described features is based on the assumption that
a linear model can be used to represent the structural response before and after
damage. However, in many cases, the damage will cause the structure to exhibit
nonlinear response. Therefore, the identification of features indicative of nonlinear
response can be a very effective means of identifying damage in a structure that
originally exhibited linear response. The specific features that indicate that a system
is responding in a nonlinear manner vary widely. Examples include the generation of
resonant frequency harmonics in a cracked beam excited in a manner such that the
crack opens and closes (Prime & Shevitz 1996). For extreme events, such as an earth-
quake, the normalized Arias intensity provides an estimate of kinetic energy of the
structure and has been successfully used to identify the onset of nonlinear response
of buildings subject to damaging earthquake excitations (Straser 1998). Deviations
from a Gaussian probability distribution function of acceleration response amplitudes
for a system subjected to a Gaussian input have been used successfully to identify
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that loose parts are present in a system. Temporal variation in resonant frequencies,
as identified with canonical variate analysis, is another method to identify the onset
of damage (Hunter 1999). In general, features based on the nonlinear response of
a system have only been used to identify that damage has occurred. Few methods
have been described that locate the source of the nonlinearity. Because all systems
will exhibit some degree of nonlinearity, it becomes a challenge to establish a thresh-
old at which changes in the nonlinear response features are indicative of damage.
The statistical model building portion of the structural health-monitoring process is
essential for establishing such thresholds.

4. Statistical model development

The portion of the structural health-monitoring process that has received the least
attention in the technical literature is the development of statistical models to
enhance damage detection. Almost none of the hundreds of studies summarized in
Doebling et al . (1998) make use of any statistical methods to assess if the changes
in the selected features used to identify damage are statistically significant. Statis-
tical model development is concerned with the implementation of the algorithms
that operate on the extracted features and unambiguously determine the damage
state of the structure. The algorithms used in statistical model development usually
fall into three categories and will depend on the availability of data from both an
undamaged and a damaged structure. The first category is group classification, that
is, placement of the features into respective ‘undamaged’ or ‘damaged’ categories.
Analysis of outliers is the second type of algorithm. When data from a damaged
structure are not available for comparison, do the observed features indicate a sig-
nificant change from the previously observed features that can not be explained by
extrapolation of the feature distribution? The third category is regression analysis.
This analysis refers to the process of correlating data features with particular types,
locations or extents of damage. All three algorithm categories analyse statistical
distributions of the measured or derived features to enhance the damage-detection
process.
The statistical models are used to answer the following questions regarding the

damage state of the structure (Rytter 1993).

(1) Is there damage in the structure (existence)?

(2) Where is the damage in the structure (location)?

(3) How severe is the damage (extent)?

Successively answering these questions in the order presented requires increasing
knowledge of the structure’s damage state. Experimental structural dynamics tech-
niques can be used to address the first two questions. Analytical models are usually
needed to answer the third question unless examples of data are available from the
system (or a similar system) when it exhibits varying levels of the damage. Statis-
tical model development can also determine the type of damage that is present. To
identify the type of damage, data from structures with the specific types of damage
must be available for correlation with the measured features.
Finally, an important part of the statistical model development process is the

testing of these models on actual data to establish the sensitivity of the selected
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features to damage and to study the possibility of false indications of damage. False
indications of damage fall into two categories: (i) false-positive damage indication
(indication of damage when none is present); and (ii) false-negative damage indi-
cations (no indication of damage when damage is present). Although the second
category is usually very detrimental to the damage detection process and can have
serious life-safety implications, false-positive readings can also erode confidence in
the damage-detection process.
This paper will now summarize the application of methods from statistical pat-

tern recognition and machine learning to the vibration-based damage-detection prob-
lem. A damage-detection experiment performed on concrete bridge columns will be
described in terms of the statistical-pattern-recognition damage-detection paradigm
that has just been summarized.

5. Application of vibration-based damage detection
to concrete bridge column

A damage-detection study was conducted on two concrete columns that were quasi-
statically loaded to failure in an incremental manner. The focus of this study was to
establish a relatively simple feature vector coupled with a simple statistical model
that would unambiguously identify that the columns had been damaged.

(a) Test structure geometry

The test structures consisted of two 24 in (61 cm) diameter concrete bridge columns
that were subsequently retrofitted to 36 in (91 cm) diameter columns. Figure 2 shows
the test structure geometry. The first column tested, labelled column 3, was retro-
fitted by placing forms around the existing column and placing additional concrete
within the form. The second column, labelled column 2, was retrofitted to the 36 in
diameter by spraying concrete in a process referred to as shotcreting. Column 2 was
then finished with a trowel to obtain the circular cross-section.
The 36 in diameter portion of both columns was 136 in (345 cm) in length. The

columns were cast on top of a 56 in2 (142 cm2) concrete foundation that was 25 in
(63.5 cm) high. A 24 in2 concrete block that had been cast integrally with the column
extends 18 in (46 cm) above the top of the 36 in diameter portion of the column. This
block was used to attach the hydraulic actuator to the columns for quasi-static cyclic
testing and to attach the electro-magnetic shaker used for the experimental modal
analyses. As is typical of actual retrofits in the field, a 1.5 in (3.8 cm) gap was left
between the top of the foundation and the bottom of retrofit jacket. Therefore, the
longitudinal reinforcement in the retrofitted portion of the column did not extend into
the foundation. The concrete foundation was bolted to the 2 ft (0.6 m) thick testing
floor in the University of California at Irvine structural-testing laboratory during
both the static cyclic tests and the experimental modal analyses. The structures
were not moved once testing was initiated.

(b) Quasi-static loading

Prior to applying lateral loads, an axial load of 90 000 lbf (400 kN) was applied
to simulate gravitational loads that an actual column would experience. Next, a
hydraulic actuator was used to apply lateral load to the top of the column in a
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cyclic
static load

24 in2

(61 cm2)

18 in (45.7 cm)

136 in (345 cm)

1.5 in
(3.8 cm)

25 in (63.5 cm)
24 in (61 cm) dia.

56 in2 (142 cm2)

36 in
(91 cm) dia.

9 in (22.9 cm)

Figure 2. Column dimensions and photo of an actual test structure.

cyclic manner. The loads were first applied in a force-controlled manner to produce
lateral deformations at the top of the column corresponding to 0.25∆yT, 0.5∆yT,
0.75∆yT and ∆yT. Here ∆yT is the lateral deformation at the top of the column
corresponding to the theoretical first yield of the longitudinal reinforcement. The
structure was cycled three times at each of these load levels.
Based on the observed response, a lateral deformation corresponding to the actual

first yield, ∆y, was calculated and the structure was cycled three times in a displace-
ment-controlled manner to that deformation level. Next, the loading was applied
in a displacement-controlled manner, again in sets of three cycles, at displacements
corresponding to 1.5∆y, 2.0∆y, 2.5∆y, etc., until the ultimate capacity of the column
was reached. Load deformation curves for column 3 are shown in figure 3. This
manner of loading put incremental and quantifiable damage into the structures. The
axial load was applied during all static tests.

(c) Dynamic excitation

For the experimental modal analyses, the excitation was provided by an electro-
magnetic shaker mounted off-axis at the top of the structure. The shaker rested on
a steel plate attached to the concrete column. Horizontal load was transferred from
the shaker to the structure through a friction connection between the supports of the
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shaker and the steel plate. This force was measured with an accelerometer mounted to
the sliding mass (0.18 lb s2 in−1 (31 kg)) of the shaker. A 0–400 Hz uniform random
signal was sent from a source module in the data-acquisition system to the shaker,
but feedback from the column and the dynamics of the mounting plate produced an
input signal that was not uniform over the specified frequency range. Figure 4 shows
a typical input power spectrum.
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(d) Operational evaluation

Because the structure being tested was a laboratory specimen, operational evalu-
ation was not conducted in a manner that would typically be applied to an in situ
structure. However, the vibration tests were not the primary purpose of this inves-
tigation. Therefore, compromises had to be made regarding the manner in which
the vibration tests were conducted. The primary compromise was associated with
the mounting of the shaker. These compromises are analogous to operational con-
straints that may occur with in situ structures. Environmental variability was not
considered an issue because these tests were conducted in a laboratory setting. The
available measurement hardware and software placed the only constraints on the
data-acquisition process.

(e) Data acquisition and cleansing

Forty accelerometers were mounted on the structure, as shown in figure 5. These
locations were selected based on the initial desire to measure the global bending, axial
and torsional modes of the column. Note that the accelerometers at locations 2, 39
and 40 had a nominal sensitivity of 10 mV g−1 and were not sensitive enough for the
measurements being made. As part of the data-cleansing process, data from these
channels were not used in subsequent portions of the damage-detection process.
Locations 33, 34, 35, 36, and 37 were accelerometers with a nominal sensitivity
of 100 mV g−1. All other channels had accelerometers with a nominal sensitivity
of 1 V g−1.
A commercial data-acquisition system was used to record and digitize all accel-

erometer signals. Data-acquisition parameters were specified such that frequency-
response functions (FRFs), input and response power spectra, cross-power spectra
and coherence functions in the 0–400 Hz range could be measured. Each spectrum was
calculated from 30 averages of 2 s duration time histories discretized with 2048 points.
These sampling parameters produced a frequency resolution of 0.5 Hz. Hanning win-
dows were applied to all measured time histories prior to the calculation of spectral
quantities. A second set of measurements was acquired from 8 s duration time histo-
ries discretized with 8192 points. Only one average was measured. A uniform window
was specified for these data, as the intent was to measure a time history only.

(f ) Feature selection

Typically, systematic differences between time-series from the undamaged and
damaged structures are nearly impossible to detect by eye. Therefore, other features
of the measured data must be examined for damage detection. Originally, damage-
detection features were to be based on common modal properties as has been done
in many previous studies. However, the feedback from the structure and mounting
system to the shaker produced an input that did not have a uniform power spectrum
over the frequency range of interest as previously discussed. This input form coupled
with the nonlinear response observed at higher levels of damage made it extremely
difficult to track changing modal properties through the various levels of damage.
Therefore, other features were sought for the damage-detection process.
The alternative features were selected based on previous experience from speech

pattern recognition where auto-regressive models have been used to estimate the
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Figure 5. Accelerometer locations and coordinate system for modal testing. Accelerometers 3,
6, 9, 12, 15, 18, 21, 22, 24, 26, 28, 30, 32, and 34 are mounted in the −y-direction.

transfer function of the human vocal track (Morgan & Scofield 1992). The time-
series were modelled using a common method of auto-regressive estimation referred
to as linear predictive coding (LPC) (Rabiner & Shafe 1978). The LPC algorithm is
an Nth-order model that attempts to model the current point in a time-series, s′(n),
as a linear combination of the previous N points. That is,

s′(n) =
N∑

i=1

ais(n − i). (5.1)

Third-order LPC models were developed for each column using 512-point win-
dows with 97% overlap resulting in 480 samples of the ai. Over these segments of the
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time-series, the ai that best model the time-series in a least-squares sense are used
as features that are assumed to be representative of the system’s dynamic response
during those samples. Hanning windows were applied to these data prior to the
estimate of the coefficients. These models were developed with data from sensors 3
and 21 (figure 5). Sensor 3 was located close to the damage, but because of the test
configuration this sensor was not expected to experience large amplitude response,
as it primarily measures torsional motion of the structure near its fixed end. Sen-
sor 21 was located farther from the damage and experienced some of the largest
amplitude response as it primarily measured the bending response at the free end of
this cantilever structure.
Over a time-series, many overlapping ‘windows’ give rise to LPC coefficient vectors,

which become the multi-dimensional data samples to be analysed in the statistical
model development portion of the damage-detection process. While the overlapping
of windows provides a smoother estimate of the features’ changes over time, samples
that result from overlapping windows will not be independent.
Normalization of the data was not attempted because these tests were conducted

in a laboratory environment, where the input could be applied in a very controlled
manner. Other considerations that led to the decision not to normalize the data
included the assumption that environmental and test-to-test variability was negli-
gible, damage was introduced in discrete increments, and it was assumed that the
vibration levels were such that the physical condition of the test structures did not
change during the dynamic tests.

(g) Statistical model development: Fisher’s discriminant

Consider two data generation processes A and B, with independent multi-dimen-
sional samples {x} being generated by both processes. Assuming A and B have some
systematic difference in the samples that they generate, Fisher’s discriminant (Fisher
1936; Bishop 1995) represents the optimal linear projection of the multi-dimensional
sample space that maximally discriminates the {xA} from the {xB}. That is, it
defines a linear projection {w} such that

y = {w}T{x} (5.2)

produces a scalar projection, y, of the multi-dimensional space onto which the dis-
tribution of {xA} is as distinct as possible from the distribution of {xB}. Once this
projection is determined from previous samples of {xA} and {xB}, it can be used to
provide the relative probability that a novel sample {x} was generated by process A
or B. Thus the Fisher discriminant maximizes the function F ({w}), which is the
distance between the means of the transformed distributions, µi, normalized by the
total within-class covariance, s2

k,

F ({w}) = (µA − µB)2

s2
A + s2

B
, (5.3)

where

µi = {w}T{µi}, (5.4)

{µi} = 1
Ni

∑
{xi} (5.5)

Phil. Trans. R. Soc. Lond. A (2001)

 on April 13, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


146 C. R. Farrar, S. W. Doebling and D. A. Nix

and

s2
k =

∑
(yn − µk)

2
. (5.6)

Here Ni is the number of samples and yn are the samples of the scalar projection
obtained by applying (5.2) to each sample {xi}. Using (5.2) and (5.6), and the
definition of a multi-dimensional sample mean given by (5.4), equation (5.3) can be
rewritten explicitly in terms of {w} as

F ({w}) = {w}T[Sb]{w}
{w}T[Sw]{w} , (5.7)

where

[Sb] = ({µB} − {µA})T({µB} − {µA}) (5.8)

is the between-class covariance matrix,

[sw] =
∑

({xA} − {µA})({xA} − {µA})T +
∑

({xB} − {µB})({xB} − {µB})T
(5.9)

is the total within-class covariance matrix and the summations in (5.9) are over the
available samples of {xA} and {xB}, respectively.
To maximize F ({w}), the derivative of F with respect to {w} is set equal to zero,

yielding

({w}T[Sb]{w})[Sw]{w} = ({w}T[Sw]{w})[Sb]{w}. (5.10)

The magnitude of {w} is not of concern, only its direction is, and the scalar
quantities

[({w}T[Sb]{w})] and ({w}T[Sw]{w})
are therefore replaced with arbitrary α and β, respectively. After rearrangement
and multiplication by [Sw]−1 (note that because [Sw] is a covariance matrix, [Sw] is
invertible), the following relation is obtained:

[Sw]−1[Sb]{w} = (α/β){w}. (5.11)

Thus, with standard numerical methods, {w} is found as an eigenvector of [Sw]−1[Sb].
Once the data have been projected down onto the scalar y dimension, the distri-

bution of yA and yB points can be described by an appropriate probability density
function. Since it was originally assumed that {x} was a multi-dimensional random
variable, then y = {w}T{x} is a sum of random variables and the central limit
theorem is invoked to justify modelling yA and yB with Gaussian density functions.
Novel data {xnew} can be projected to get ynew = {w}T{xnew} and the likelihood,

p, of ynew with respect to the Gaussian for class A and the Gaussian for class B can
be determined. The probability that ynew was generated by class A can be obtained
by integrating over a small region of the likelihood function:

Pr(ynew | A) =
∫

∆y

pA(ynew) dy. (5.12)
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Because Pr(A | ynew) is of interest, and

Pr(B | ynew) = 1− Pr(A | ynew), (5.13)

if A and B are mutually exclusive, Bayes’s rule can be used to obtain

Pr(A | ynew) =
Pr(ynew | A)Pr(A)

Pr(ynew)
, (5.14)

where the denominator is typically ignored when Pr(ynew) is uniform (or unknown)
and Pr(A) is the prior probability (i.e. relative frequency) of class A versus class B.
In the case where class A is ‘undamaged’ and class B is ‘damaged’, a probability
of a damaged system having produced a given observed sample {xnew} can now be
estimated.

(h) Application of Fisher’s discriminant to concrete column data

Fisher’s discriminant was defined using data from the vibration tests conducted on
the undamaged columns and from the vibration tests conducted after the first level
of damage corresponding to initial yielding of the steel reinforcement. Subsequent
damage levels were then identified based on this same Fisher projection. As illus-
trated in figure 6, when Fisher’s discriminant is applied to data from both sensors
on either column, there is statistically significant separation between the LPC coeffi-
cients for the undamaged cases and damage level 1 cases (solid and dashed Gaussian
density functions). The results of using the previously determined Fisher projection
to project many samples of data from increasingly greater levels of damage into
this space are plotted as straight lines in figure 6. While increasing damage is not
necessarily related to increasing Fisher coordinate, all damaged cases have a profile
significantly different from that of the undamaged case. The discrimination between
damaged and undamaged structures is obtained with data from both sensors. This
result is significant because the response measured by sensor 3 was of relatively low
amplitude with noise contributing significantly to the measured signal. Higher-order
LPC models and different size data windows produced similar results.

6. Concluding comments

Recent work in structural health monitoring and vibration-based damage detection
has been briefly reviewed to show that this subject is the focus of many active
research efforts and to identify some of the technical challenges in this field. A major
shortcoming associated with many of these efforts is that statistical models are not
applied to identify when changes in the selected features are significant. Therefore,
a statistical-pattern-recognition paradigm has been proposed for the general prob-
lem of structural health monitoring. This paradigm breaks the process of structural
health monitoring into the four tasks of operational evaluation, data acquisition and
cleansing, feature selection and statistical model development. A structural damage-
detection study of concrete columns subjected to quasi-static cyclic loading to failure
is then posed in terms of this paradigm.
The results of a damage-detection study applied to reinforced concrete bridge piers

were then summarized. This study attempted to identify the relatively simple fea-
tures of the measured data that were sensitive to damage. Other criteria for selecting
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Figure 6. Distribution of LPC-generated feature vectors projected onto the Fisher-D coordinate.
The horizontal lines represent widths of the distributions for higher damage levels. (a) Column 1,
sensor 3; (b) column 2, sensor 3; (c) column 1, sensor 21; (d) column 2, sensor 21. Solid curves
represent undamaged levels and dashed curves represent damage level 1.

the features were to keep the dimension of the feature vector small and have the num-
ber of samples of the vector large. The feature vectors used were the coefficients of
a third-order linear predictive coding model. A well-developed procedure for group
classification, the linear discriminant operator referred to as ‘Fisher’s discriminant’,
was introduced for application to this vibration-based damage-detection problem.
This procedure requires data to be available from both the undamaged and dam-
aged structures. The results of this study indicate a strong potential for using linear
discriminant operators to identify the presence of damage. An attractive attribute of
this statistical model is that it was applied to features obtained from response data
only, implying that it is appropriate for structures subjected to ambient vibration
from sources such as traffic or wind excitation.
The results of this study also suggest that if one or more common forms of damage

occur, it may be possible not only to determine that a system is damaged, but
to determine which form of damage has occurred. Additional data are required to
explore this possibility. Another attractive feature of the linear discriminant operator
that was not fully explored during this investigation is its ability to combine data
from various types of sensors. This feature will become particularly attractive when
monitoring structures that experience significant variations in their dynamic response
resulting from changing environmental and operating conditions. Further analyses
are also required to demonstrate the ability of the linear discriminant operator to
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avoid false-positive indications of damage. However, multiple samples of data from
the undamaged columns were not measured.
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