Estimating the size of web applications by using a simplified function point
method

Edilson J. D. Candido*
University of Sao Paulo
Inst. de Ciéncias Mat. e de Computacdo
Sdo Carlos, Sdo Paulo, Brazil
edilson@icmc.usp.br

Abstract

Software size estimation is a key factor to determine
the amount of time and effort needed to develop software
systems, and the web applications are no exception. In
this paper a simplified way of the IFPUG (International
Function Point Users Group) function points based on
the simplification ideas suggested by NESMA (Nether-
lands Software Metrics Association) to estimate size of
management information systems is presented. In an
empirical study, twenty web applications were analyzed.
The estimates using the simplified method were close
to the ones using the IFPUG detailed method. Based
on the results, it was possible to establish a simplified
method to estimate the size of web applications accord-
ing to the development characteristics of the studied
company.

1 Introduction

A software company needs an effective management
of the software process to construct applications main-
taining the schedule and the quality [28]. The software
process includes quantifying and qualifying projects,
products, processes and resources of software [12].

In terms of the perspective of the project, it is widely
accepted that software size estimates are fundamental to
determine the costs (regarding the amount of time and
effort) of a software project [3], [6], [13], [26]. Software
models like SW CMMI, SPICE and ISO 12207 discuss
the importance of software size estimates as one of the
project planning activities.

*Supported by CNPg-Brazil.

0-7695-2237-8/04 $20.00 © 2004 1IEEE

Rosely Sanches
University of Sdo Paulo
Inst. de Ciéncias Mat. e de Computac¢do
Sdo Carlos, Sdo Paulo, Brazil
rsanches @icmc.usp.br

The web applications are not an exception of the
premises cited above. However, some research carried
out by the Ministério da Ciéncia e Tecnologia (Min-
istry of Science and Technology) shows that in Brazil,
only approximately 29% of the software companies ef-
fectively do software size estimates [9]. Although there
is no study exclusively related to companies which de-
velop web applications, the fact that 45% of the compa-
nies analyzed develop web applications [10] indicates
that these companies are in a similar situation.

A study of a simplified method to estimate the soft-
ware size of web applications could help change this
situation. Thus, the purpose of this paper is to describe
a simpler, faster and more consistent method to help
carry out effective software size estimates. Moreover,
it encourages the use of software size estimates to ob-
tain quality in the software process development.

The simplified method was created using a case study
in a small company [11] whose main work is the de-
velopment of web applications. It is based on counting
function points from the IFPUG and on the ideas sug-
gested by NESMA to determine simplified formulas of
software sizes to measure management information sys-
tems.

Although the NESMA method, which is effective in
estimating the size of management information systems,
did not work satisfactorily concerning the web applica-
tions, it helped to obtain the simplified method, in which
the media error was 4% when compared with the de-
tailed method from IFPUG. This result enables us to use
the simplified form, which is simpler and faster, instead
of the detailed method to estimate the size of the appli-
cations developed in the studied company.

Other companies which have similar characteristics

of software development to the studied company can
verify the utility of the method in terms of their develop-
ment environment or use them as a role model to create
their own methods.

This research was undertaken using data from twenty
web applications from the company. The rest of the ar-
ticle is organized as follows: section 2 presents a short
description of a software size estimate. Section 3 shows
the simplified method and the results which were ob-
tained. In section 4, the modeling of a tool to support
the process is described. Finally, in section 5, the scope
for future research and the conclusions are given.

2 Software Size Estimation

Software size estimation is considered as a funda-
mental activity regarding software management tasks.
Work planning and subsequent estimates of the amount
of time and effort are predicted based on the size of the
software [25], [22]. The lines of code (LOC) and the
functionalities of the software are two measures which
are often used to determine the size of an application.

LOC are direct measures that can easily be counted
and manipulated [27]. There are several ways to calcu-
late the LOC. Jones [6] suggests eleven possible vari-
ations for counting the LOC of a program. Fenton et.
al [12] presents some variations and the implications
that they can cause. Still according to Fenton et. al,
the most accepted definition of LOC is from Hewlett-
Packard, where each program is considered as a simple
list of archives and commentaries and blank lines are
removed.

There is much discussion about the use of LOC in
software size estimates. The critics are based on the ar-
guments that lines of code are dependents of program-
ming language and require details that can be difficult
to overcome before the analysis and project have been
finished [3], [5].

On the other hand, size estimates based on the func-
tionalities of the software define elements that can be
counted previously, in the beginning of the software de-
velopment. The concepts of this type of counting were
first made public by Albrecht in 1979 [21]. Since then,
they have been refined, mainly after the creation of orga-
nizations exclusively directed towards the development
of the technique [20], [24].

Last year, four methods (IFPUG, NESMA,
MarkIl, COSMIC-Full Function Points) of soft-
ware size estimate were approved as an ISO standard
for functional software size measurements, called
ISO\IEC 20926:2003 (IFPUG), ISO\IEC 24570:2003

0-7695-2237-8/04 $20.00 © 2004 1IEEE

(NESMA), ISO\IEC 20968:2003 (MarkIl), and
ISO\IEC 19761:2003 (COSMIC-FFP). These four
methods of functional software size estimation will
now be presented.

2.1 IFPUG Function Points

The IFPUG [20] is a non-profit organization which
was established in 1986 that promotes the use of func-
tion point analysis to measure the functionality provided
by software. The IFPUG maintains the Function Point
Counting Practices Manual (CPM), currently in version
4.1.1 [17], and the aim is to standardize the counting
process.

The procedure of counting function points promoted
by the IFPUG and described in the CPM has seven steps,
as can be seen in figure 1.

Determine

Type of
Count
P - = — — — ——————_—
/ Count \
l Data - l
Functions Determine
l 2 Unadjusted '
l Function Point '
l Identify . ('"‘”_“ ' Count Calculate '
(:()“"“”" ransactiona Adiusted
1 [g I ey
l Application Point Count l
[| Boundary Determine VAF I
. Factor /
\———————————————————&

Figure 1. FP Counting Procedure

The counting procedure is described in the following
summary:

1- Determine type of count: Development project
function point count, enhancement project function
point count or application function point count.

2- Identify counting scope and application bound-
ary: The counting scope defines the functionality
that will be included in a particular function point
counting. The application boundary indicates the
border between the software being measured and
the user.

3- Count data functions: Data functions represent The
functionality provided to the user to meet inter-
nal and external data requirements. Data functions
are either internal logical files (ILF) or external
logical files (EIF). The complexity of them is as-
signed based on the number of data element types

(DETs)! and record element types (RETs). A DET
is a unique user recognizable, non-repeated field.
A RET is a user recognizable subgroup of data el-
ements within an ILF or EIF.

4- Count Transactional functions: Transactional func-
tions represent the functionality provided to the
user to process data. Transactional functions are
either external inputs (EI), external outputs (EO)
or external inquiries (EQ). The complexity of them
is based on the number of DETs and file type refer-
enced (FTR). A FTR is an ILF read or maintained
by a transactional function or an EIF read by a
transactional function. Each transactional function
has specific rules for the identification of FTRs.

5- Determine unadjusted function point count: The
counts for each function type are classified accord-
ing to complexity and then weighed using table 1.
The total of all function types is the unadjusted
function point count.

Table 1. Unadjusted FP Calculation

Function = Functional =~ Complexity Function
Type Complexity Totals Type Totals
ILFs _ Low X7T=___
__Average x10=___
__High x15=___
EIFs __ Low X5=___
__Average x7=___
__High x10=__
Els __ Low x3=__
__Average x4=___
__High X6=___
EOs __ Low x4=__
__Average x5=___
__High X7T=__
EQs __ Low x3=__
__Average x4=___
__High X6=___
Total Unadjusted FP Count

6- Determine value adjustment factor (VAF): The
value adjustment factor indicates the general func-
tionality provided to the user of the application.
The VAF consists of 14 general system character-
istics (GSC) that assess the general functionality

Itules of identification and counting of the DETs, RETs and FTRs
are not presented in this paper. For this, [17] must be consulted

0-7695-2237-8/04 $20.00 © 2004 IEEE

of the application. Each characteristic has associ-
ated descriptions that help determine the degree of
influence of the characteristic. The degrees of in-
fluence range from zero to five, from no influence
to strong influence.

7- Calculate adjusted function point count: The fi-
nal adjusted function point count is calculated us-
ing a specific formula for a development project,
enhancement project or application function point
count.

In the last decade the method had been criticized.
The way the counting is elaborated [2], the indepen-
dence of technology [4], [16], [23], as well as the ad-
justments used were reasons for many controversies [2],
[12].

In 1999, the IFPUG presented the concept of the el-
ementary process:

e The Elementary Process: is the smallest unit of ac-
tivity that is meaningful to the user(s). For exam-
ple, a user requires the ability to add a new em-
ployee to the application. The user definition of
employee includes salary and information about
any dependents. From the user perspective, the
smallest unit of activity is to add a new employee.
Adding one of the pieces of information, such as
salary or dependent, is not the kind of activity that
would qualify as an elementary process.

Considering this, the method is better understood and
the research is related more to ways of simplifying or
comparing it to other techniques created to estimate the
software size in a specific environment [14], [19], [29].

The publication of the method as an ISO standard
(ISO\IEC 20926:2003) is another fact that shows the
recognition of it. However, the ISO standard considers
the unadjusted function points. The use of CGS became
optional from 2002 as a condition for the method to be
considered as an ISO standard. The CGS is still one of
the most criticized points of the method because there
are different interpretations of it and some are out of
date. Due to this, this research does not consider the
CGS. The analysis is based on the unadjusted function
point count.

2.2 NESMA

The NESMA [24] was founded in 1989 and is the
largest function point analysis user group in Europe.

The organization maintains its own manual, and the cur-
rent version is 2.0. The objectives of NESMA are to
collect, maintain, exchange and develop the knowledge
about function points analysis, to promote a standard-
ization of the method, and to promote the increase of its
use.

The NESMA recognizes three types of function point
counts: detailed, estimate and indicative. The detailed
count is similar to the used by IFPUG. According to
it, they are similar in up to 95% [20]. This count is
performed as follows:

- determine all functions of all function types (ILF,
EIF, El, EO, EQ).

- rate the complexity of every data function (low, av-
erage, high)

- calculate the total unadjusted function point count

The other two methods, the estimate and the indica-
tive one (referred to as "the Dutch method") have been
developed by NESMA to enable a simplified function
point count early in the system life cycle.

The difference between detailed and estimate counts
is that the complexity is not determined for each individ-
ual function, but by default. After identification of all
data and transactional functions, ILF and EIF complex-
ity are assigned as low, and EI, EO, and EQ complexity
are assigned as average.

The Indicative function point count is based solely on
the number of data function (ILF and EIF). The number
of unadjusted function points is calculated as follows:

Indicative = (35« NrolILF's) + (15« NroEIF's)

This formula is based on the assumption that there
will be about three Els (to add, change, and delete in-
formation in the ILF), two EOs, and one EQ on average
for every ILF, and about one EO and one EQ for every
EIF.

The numbers 35 and 15 are obtained assigning the
complexity of transactional functions as average and the
complexity of data functions as low. Furthermore, some
extra functionality of two function points to ILF and one
function point to EIF for some general supporting func-
tionality are assumed.

2.3 Mark1l

In the decade of 1980, the Mark II or Mk II method
was defined by Charles Symons, inspired by Albrecht’s

0-7695-2237-8/04 $20.00 © 2004 IEEE

proposal. After its development within KPMG between
1985 and 1986, with the protected status of a proprietary
method, it is now in the public domain. Today, UKSMA
(United Kingdom Software Metrics Association) is re-
sponsible for its continuing development.

The Mk II method is applied in the countries of the
United Kingdom and presents some differences in re-
lation to the one of IFPUG. The Mk II considers all the
requirements as logical transactions, calculated from the
numbers of input data elements, output data elements
and entities. Moreover, the MK II gives higher function
point counts than the IFPUG method for larger systems

[71.
2.4 COSMIC-FFP

COSMIC (Common Software Measurement Interna-
tional Consortium) was created in 1998 with the pur-
pose of developing a new method of functional soft-
ware size measurement. The group analyzed existing
methods of software size estimate (IFPUG, Mark II,
NESMA) to create a method based on their best char-
acteristics.

This new method was published in November of
1999 as the release 2.0 of the Cosmic-FFP (COSMIC
Full Function Points) [6]. The manual has been avail-
able (in English, French, Japanese and Spanish) for pub-
lic access since then. The Cosmic-FFP measurement
method is designed to be applicable to software from
the following domains [8]:

- Business application software which is especially
needed in support of business administration, such
as banking, insurance and accounting.

- Real-time software, whose task is to keep up with
or control events happening in real-time. The
method has not yet been designed to support soft-
ware which is characterized by complex mathemat-
ical algorithms or by processing continuous vari-
ables such as audio sounds or video images.

The research about Cosmic-FFP is related to its ap-
plicability in the size estimate of real time software.
Diab et. al [18] report a formalization of the Cosmic-
FFP measure for the Real-Time Object Oriented Model-
ing (ROOM). The benefits of its formalization are elim-
inate variation which may lead to different counts for
the same specification, depending on the interpretation
made by each evaluator, and allows the automation of
COSMIC-FFP measurement for ROOM specifications.

Moreover, the formal definition of the method can pro-
vide a clear and unambiguous characterization of it con-
cepts, which is helpful for measuring COSMIC-FFP for
other object-oriented notations like UML.

Raman [1] develops a model of effort estimate for the
Cosmic-FFP through logic fuzzy, based on the fuzzy set
model and on the fuzzy regression linear model. Finally,
Bootsma [15] describes how full function points had en-
abled more completely estimates of real-time software.

3 Simplified Method

3.1 The Company’s Characteristics

The software development company investigated has
25 employees and is considered a small-sized company
in Brazil, according to the Ministério da Ciéncia e Tec-
nologia [11]. The company’s main business is to work
like an Internet provider and to develop web applica-
tions. The technologies used for application develop-
ment are PHP, HTML, Java, and MySQL.

3.2 Case Study

The simplified method was created through a case
study where twenty web applications developed by the
company were analyzed. These applications have the
same characteristics of the most developed software in
the company. The case study is divided into four steps:

1) Counting the function points of web applications
using the detailed method promoted by the IF-
PUG: The first step is to count function points for
each application using the IFPUG detailed method.
The count was based on the requirements analysis,
its applications, and was supported by the project
manager of the company. The main purpose of the
project manager was to clarify some doubts related
to the requirements and to show the user’s view
when in doubt. In table 2, the result of the count
is shown.

2) Counting the function points of web applica-
tions using the estimated and indicative meth-
ods suggested by NESMA: Firstly, the function
points were calculated using the indicative method,
which formula is ((ILF Number)*35 + (EIF Num-
ber)*15). The result can be seen in Table 3.

Secondly, the function points were calculated using
the estimate counting. Regarding this, data func-
tions complexity are assigned as low and transac-

0-7695-2237-8/04 $20.00 © 2004 1IEEE

Table 2. IFPUF FP count

Application 1 - 350 fp

Application 11 - 168 fp

Application 2 - 157 fp

Application 12 - 265 fp

Application 3 - 188 fp

Application 13 - 111 fp

Application 4 - 283 fp

Application 14 - 248 fp

Application 5 - 282 fp

Application 15 - 131 fp

Application 6 - 69 fp

Application 16 - 274 fp

Application 7 - 192 fp

Application 17 - 240 fp

Application 8 - 101 fp

Application 18 - 251 fp

Application 9 - 89 fp

Application 19 - 206 fp

Application 10 - 238 fp

Application 20 - 163 fp

Table 3. Indicative FP count

Application 1 - 470 fp

Application 11 - 280 fp

Application 2 - 245 fp

Application 12 - 385 fp

Application 3 - 280 fp

Application 13 - 175 fp

Application 4 - 385 fp

Application 14 - 330 fp

Application 5 - 435 fp

Application 15 - 210 fp

Application 6 - 105 fp

Application 16 - 385 fp

Application 7 - 245 fp

Application 17 - 350 fp

Application 8 - 175 fp

Application 18 - 330 fp

Application 9 - 140 fp

Application 19 - 245 fp

Application 10 - 365 fp

Application 20 - 260 fp

tional functions complexity are assigned as aver-

age. The result can be seen in Table 4:

Table 4. Estimate FP count

Application 1 - 396 fp

Application 11 - 202 fp

Application 2 - 188 fp

Application 12 - 316 fp

Application 3 - 224 fp

Application 13 - 130 fp

Application 4 - 350 fp

Application 14 - 277 fp

Application 5 - 313 fp

Application 15 - 160 fp

Application 6 - 84 fp

Application 16 - 330 fp

Application 7 - 228 fp

Application 17 - 289 fp

Application 8 - 116 fp

Application 18 - 283 fp

Application 9 - 103 fp

Application 19 - 229 fp

Application 10 - 281 fp

Application 20 - 199 fp

3)

Comparison of steps 1 and 2: The results found
in the counts using indicative and estimate meth-
ods were compared with the numbers of the IFPUG
detailed method. The comparison showed that, in
this case, the NESMA methods are not applicable
to determine the function points of web applica-
tions correctly. However, these counts indicated

that most functions had low complexity. This fact
motivated the creation of the simplified method.

4) Simplified method creation: The simplified
method was based on maintaining all the functions
with low complexity. The count result can be seen

in table 5:

Table 5. Simplified Method

Application 1 - 324 fps

Application 11 - 166 fps

Application 2 - 154 fps

Application 12 - 257 fps

Application 3 - 183 fps

Application 13 - 107 fps

Application 4 - 283 fps

Application 14 - 227 fps

Application 5 - 258 fps

Application 15 - 131 fps

Application 6 - 69 fps

Application 16 - 267 fps

Application 7 - 185 fps

Application 17 - 235 fps

Application 8 - 97 fps

Application 18 - 232 fps

Application 9 - 85 fps

Application 19 - 186 fps

Application 10 - 230 fps

Application 20 - 163 fps

After performing the counts for the four methods, a
comparison among the methods is shown in table 6. The
function points determined using the IFPUG detailed
method can be seen in the second column. The function
points determined by the other methods and the errors
found (in percentage), when compared with the IFPUG
detailed method, are shown in columns 3, 4 and 5.

Regarding the table 7, it is possible to observe that
the indicative method showed bad results, an error vary-
ing between 19% (application 19) and 73% (application
08). The counting with this method showed, on aver-
age, an error of 48%. The estimate count presented er-
rors between 11% (applications 5 and 19) and 26% (ap-
plication 4). The counting using the estimate method
showed, on average, an error of 18%. In the indica-
tive and estimate counting, the function points found
were higher than the ones found in the IFPUG detailed
method.

The simplified method, whose function complexities
were assigned as low, showed satisfactory results. The
error was between 1% (application 11) and 10% (appli-
cation 19), four applications presented an identical num-
ber of function points to the IFPUG detailed method
and the average error was 4%. Moreover, considering
five applications that presented an error higher than 5%,
four are similar software (e-commerce applications) and
the other application was developed with another com-
pany (only some modules were developed by the studied
company). This is an unusual fact in the development
process of the company.

0-7695-2237-8/04 $20.00 © 2004 1IEEE

Table 6. Methods’ Comparison

IFPUG NESMA NESMA Simplified
Indicative Estimate Method
350 34% (470) | 13%(396) -T%(324)
157 56% (245) | 20% (188) | -2% (154)
188 49% (280) | 19% (224) | -3% (183)
283 39% (385) | 26% (350) 0(277)
282 54% (435) | 11% (313) | -9% (258)
69 52% (105) | 22% (84) 0(69)
192 28% (245) | 19% (228) | -4% (185)
101 73% (175) | 15% (116) -4% (97)
89 57% (140) | 16% (103) -4% (85)
238 53% (365) | 18% (281) | -3% (230)
168 67% (280) | 20% (202) | -1% (166)
265 45% (385) | 19% (316) | -3% (257)
111 58% (175) | 17% (130) | -4% (107)
248 33% (330) | 12% (277) | -8% (227)
131 60% (210) | 22% (160) 0(131)
274 41% (385) | 20% (330) | -3% (267)
240 46% (350) | 20% (289) | -2% (235)
251 31% (330) | 13% (283) | -8% (232)
206 19% (245) | 11% (229) | -10% (186)
163 60% (260) | 22% (199) 0(163)

The steps described above are shown in figure 2.

4 Tool Support

The function point analysis method allows measur-
ing the software size. The amount of time and effort
needed to develop the software are obtained from the
software size estimated.

It motivated the modeling of a tool not only to be
able to support the counting of function points but also
to determine the employees’ productivity and the time
necessary (in hours) to develop each one of the applica-
tions. The tool model is shown in figure 3.

The tool consists of two modules. The first one is
a client-server application responsible for obtaining and
the storage information about the activities of software
development. The module has the following functional-
1ties:

e It presents reports to the project manager showing
the number of hours needed to finish each activity
and behavior of the project.

e It presents the single employee and team produc-
tivity for each project.

Step 1 Step 2

(—m A2 A3 A20"\ - A2 A3 A20)
| Utilization of the IFPUG method | [identication of ILFs, EFs, Eis, EOs, EQs_|
1ILF 3ILF 1ILF 2 ILF
2EIF 1EIF 1EIF 1EIF @
3El 4EI 1El 5El
2EO 2EO 1EO 3EO | Utilization of the NESMA methods |
1EQ 2EQ 1EQ 2EQ @ @ @
Step 3
. /)

Step 4 :

[Eraboration of the Simpliified Method |

Figure 2. Creation of simplified method

/-Module 1 —_—

/-Module 2 —%

li' Laptops

|l
0

Workstations

\ J

Figure 3. Tool model

e It sends data to the second module.

The second module is an application in a mobile de-
vice. Its function is to determine the function points
through the simplified method. There is an information
exchange between the two modules allowing the sec-
ond module to receive productivity information from the
first one. Once the function points are determined, it is
possible to determine the amount of time needed to de-
velop the application satisfactorily.

5 Conclusion and Future Work

The simplified method presented results closely to
those found with the IPFUG detailed method. The sim-
plified method is based on assigned low complexity to
all data and transactional functions. Thus, when data
and transactional functions are identified, their com-
plexity is determined automatically.

However, it is important to remember that the re-
sults found are valid for the problem domain, program-

0-7695-2237-8/04 $20.00 © 2004 1IEEE

ming language and systems used by the studied com-
pany. Generalizing this method for the application in
other companies is not the main intention of this re-
search.

Therefore, for future work, there is an intention of
verify if the method can be used by other companies
which develop web applications. Another aspect is to
analyze how to create specific GSC for the company and
calibrate the adjustment factor.

References

[1] Raman A. and Noore A. Software metrics for real-
time systems using fuzzy sets. System Theory. Pro-
ceedings of the 35th Southeastern Symposium on,
pages 74 — 78, March 2003.

[2] Kitchenham B. The problem with function points.
IEEE Software, pages 29 — 31, 1997.

[3] Briand L. C. and Wieczorek I. Software resource
estimation. Encyclopedia of Software Engineer-
ing, vol. 2(P-Z):pag. 1160 — 1196, 2002.

[4] Caldiera G. & Antoniol G. & Fiutem R. & Lokan
C. Definition and experimental evaluation of func-
tions points for object-oriented systems. Proc. of
the 5th International Symposium on Software Met-
rics, pages 167 — 178, November 1998.

[5] Jones T. C. Programming Productivity. McGraw-
Hill, 1986.

[6] Jones T. C. Estimating Software Costs. McGraw-
Hill, 1998.

[7] Symons C. Conversion between ifpug 4.0 and mkii
function points. Software Measurement Services,
1999.

[8] Cosmic-FFP. Measurement Manual. Cosmic, 2.1
edition, May 2001.

[9] MCT Ministério da Ciéncia e Tecnologia. Qua-
lidade e produtividade no setor de software.
http://www.mct.gov.br/Temas/info/Dsi/Quali2001/
Public2001.htm, Tabela 40 - Praticas de Engenha-
ria de Software Adotadas no Desenvolvimento e
Manutencéo de Software, 2001.

[10] MCT Ministério da Ciéncia e Tecnologia. Qua-
lidade e produtividade no setor de software.
http://www.mct.gov.br/Temas/info/Dsi/Quali2001/
Public2001.htm, Tabela 01 - Atividades das
Organizagdes no Tratamento de Software, 2001.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

MCT Ministério da Ciéncia e Tecnologia. Qua-
lidade e produtividade no setor de software.
http:/fwww.mct.gov.br/Temas/info/Dsi/Quali2001/
Public2001.htm, Tabela 06 - Porte das Organiza-
¢des, Segundo a Forca de Trabalho Total e Efetiva,
2001.

Fenton N. E. and Pfleeger S. L. Software Metrics:
A Rigorous and Pratical Approach. PWS, 2 edi-
tion, 1997.

Hastings T. E. and Sajeev A. S. M. A vector-
based approach to software size measurement and
effort estimation. IEEE Trans. Software Eng., vol.
27(nro. 4):pag. 337 — 350, April 2001.

Mendes E., Mosley N., and Counsell S. Early
web size measures and effort prediction for web
costimation. Software Metrics Symposium, 2003.
Proceedings. Ninth International, pages 18 — 39,
September 2003.

Bootsma F. How to obtain accurate estimates
in a real-time environment using full function
points. Proceedings. 3rd IEEE Symposium on
Application-Specific Systems and Software Engi-
neering Technology, pages 105 — 112, March
2000.

Teologlou G. Measuring object oriented software
with predictive object points. [0th Conference
on European Software Control and Metrics, May
1999.

International Function Point Users Group. Func-
tion Point Counting Practices Manual. TFPUG,
4.1.1 edition, January 1999.

Diab H., Frappier M., and Denis R. Formaliz-
ing cosmic-ffp using room. ACS/IEEE Interna-
tional Conference on Computer Systems and Ap-
plications, pages 312 — 318, June 2001.

Tavares H., Carvalho A., and Castro J. Medigéo
de pontos de funcdo a partir da especificagdo de
requisitos. WEROQ2 - Workshop em Engenharia de
Requisitos, pages 278 — 298, November 2002.

IFPUG. International function point users group.
http://www.ifpug.org, last access on April 2004.

Albrecht A. J. Measuring application develop-
ment productivity. Proc. IBM Applications Devel-
opment Symposium, pages pag. 83 — 92, 1979.

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Dolado J. J. A validation of the component-based
method for software size estimation. IEEE Trans.
Software Eng., vol. 26(nro. 10):pag. 1006 — 1021,
October 2000.

Schooneveldt M. Measuring the size of object ori-
ented systems. Proc. of the 2nd Australian Con-
ference on Software Metrics, 1995.

NESMA. Netherlands software metrics associa-
tion. http://www.nesma.org/english/index.htm, last
access on April 2004.

Agarval R., Kumar M., Mallick S., Bharadwaj R.,
and Anantwar D. Estimating software projects.
Software Engineering Notes, vol. 26(nro. 4):pag.
60 — 67, July 2001.

Lai R. and Huang S. A model for estimating the
size of a formal communication protocol specifica-
tion and its implementation. IEEE Trans. Software
Eng., vol. 29(nro. 1):pag. 46 — 62, January 2003.

Pressman R. Engenharia de Software. McGraw-
Hill, 5 edition, 2001.

Humphrey W. S. Managing the Software Process.
Addison-Wesley, 1989.

Kusumoto S., Imagawa M., Inoue K., Morimoto
S., Matsusita K., and Tsuda M. Function point
measurement from java programs. ICSE 2002.
Proceedings of the 24rd International Conference
on, pages 576 — 582, May 2002.

