
A Distributed Real-Time Operating System with Distributed Shared Memory
for Embedded Control Systems

Takahiro Chiba∗, Myungryun Yoo and Takanori Yokoyama
Tokyo City University

1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557 Japan
∗Presently with Systems Engineering Consultants Co., LTD.

Email: chiba@sec.co.jp, {yoo, yokoyama}@cs.tcu.ac.jp

Abstract—The paper presents a distributed real-time op-
erating system (DRTOS) that provides a distributed shared
memory (DSM) service for distributed control systems. Model-
based design has become popular in embedded control software
design and the source code of software modules can be
generated from a controller model. The generated software
modules exchange their input and output values through
shared variables. We develop a DRTOS with a real-time DSM
service to provide a location-transparent environment, in which
distributed software modules can exchange input and output
values through the DSM. The DRTOS is an extension to OSEK
OS. We use a real-time network called FlexRay, which is
based on a TDMA (Time Division Multiple Access) protocol.
The consistency of the DSM is maintained according to the
order of data transfer through FlexRay, not using inter-node
synchronization. The worst case response time of the DSM is
predictable if the FlexRay communication is well configured.

Keywords-operating systems; real-time systems; embedded
systems; distributed shared memory; distributed control sys-
tems;

I. INTRODUCTION

An application program of an embedded control system
is designed as a set of software modules. For example, an
automotive engine control application program consists of
a number of software modules for fuel injection, ignition,
emission control and diagnosis. The software modules are
executed by tasks on a real-time operating system (RTOS).
For example, OSEK OS [1], a de facto standard operating
system presented by OSEK/VDX, is widely used in auto-
motive control systems.
Model-based design has become popular in embedded

control software design, especially in the domain of auto-
motive control design. In model-based design, a controller
model is designed and verified using a CAD/CAE tool such
as MATLAB/Simulink [2]. The source code of software
modules can be generated from the controller model by
a code generator such as Real-Time Workshop/Embedded
Coder [2]. The generated software modules exchange their
input and output values through global variables.
Distributed embedded control systems are used in the

domains of automotive control, factory automation, building

control, and so on. Time predictability is one of the most
important issues for design of distributed automotive control
systems [3]. Real-time and location-transparent distributed
computing environments are required.
Message-based communication environments are used in

distributed embedded control systems. For example, OSEK
COM [4], a de facto standard communication environment
presented by OSEK/VDX, is widely used in automotive
control systems. Messages of OSEK COM are represented
as message objects. An application program sends a message
by calling SendMessage() and receives a message by calling
ReceiveMessage(). If we build a distributed control system
with software modules developed by model-based design on
a message-based communication environment, we have to
rewrite the generated source code to exchange input and
output values by messages, not global variables.
Distributed shared memory (DSM) provides location-

parent shared variables, so distributed software modules
developed by model-based design can exchange their input
and output values through shared variables on DSM. How-
ever, existing DSM systems are not suitable for embedded
control systems. Most DSM systems are based on page-
based DSM [5][6]. The response time of page-based DSM is
difficult to predict in a distributed computing environment.
It is also difficult to implement a page-based based DSM
mechanism in a small RTOS with no virtual memory on a
microcontroller without MMU (Memory Management Unit),
which is widely used in embedded control systems.
The goal of the research is to develop a distributed real-

time operating system (DRTOS) with DSM for embedded
distributed control systems. To achieve the goal, we present
a real-time DSM service suitable for distributed embed-
ded control systems with software modules generated from
Simulink models.
We have already developed a DRTOS with location-

transparent system calls for task management and event
control as an extension to OSEK OS [7]. An application
task activates or synchronizes with remote tasks using the
same APIs as local tasks. The DRTOS manages distributed
tasks based on the global time, which is supported by the

2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing

978-1-4799-3381-5/13 $31.00 © 2013 IEEE

DOI 10.1109/DASC.2013.71

248

2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing

978-1-4799-3381-5/13 $31.00 © 2013 IEEE

DOI 10.1109/DASC.2013.71

248

2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing

978-1-4799-3381-5/13 $31.00 © 2013 IEEE

DOI 10.1109/DASC.2013.71

248

SubsystemX

SubsystemW

SubsystemZ

x
z

x
w

x

SubsystemY

y y

y

Figure 1. Example Structure Layer of Simulink Model

clock synchronization of FlexRay [8]. FlexRay is a real-
time network for automotive control systems based on a
TDMA (Time Division Multiple Access) protocol. We add a
real-time DSM mechanism to the DRTOS. The consistency
of the DSM is maintained according to the order of data
transfer through FlexRay. If the FlexRay communication is
well configured, the worst case response time of the DSM
is predictable.
The rest of the paper is organized as follows. Section II

describes the DSM model for embedded control software.
Section III describes the details of the DRTOS with DSM.
Section IV describes implementation and experimental eval-
uation of the DSM. Section V concludes the paper.

II. DISTRIBUTED SHARED MEMORY FOR EMBEDDED
CONTROL SYSTEMS

A. Distributed Control Software

A controller model built with MATLAB/Simulink is a
layered model. According to the modeling guidelines pre-
sented by MAAB (Mathworks Automotive Advisory Board)
[9], a controller model consists of the top layer, the trigger
layer (optional), the structure layer and the dataflow layer. A
structure layer model represents the structure of a controller
model, which is a set of subsystem blocks. A data flow layer
model represents detailed control logic (control algorithm).
The source code a software module is generated from a
subsystem block of a controller model.
Figure 1 illustrates a part of an example structure layer

model, which consists of SubsystemX, SubsystemY, Subsys-
temZ and SubsystemW. The signal line from output x of
SubsystemX is connected to input x of SubsystemZ and input
x of SubsistemW. This means that SubsystemX outputs the
value of x and SubsustemZ and SubsystemW input the value.
The signal line from output y of SubsystemY is also similar.
Data x and data y are represented as global variables in the
source code generated from the model.
Figure 2 illustrates the structure of an example control

software corresponding to the model shown by Figure 1.
SubsystemX, SubsytemY, SubsystemZ and SubsystemW are
respectively executed by Task1, Task2, Task3 and Task4.
SubsystemX reads and writes the value of global variable
x and SubsystemY writes the value of global variable y.
SubsytemZ and SubsystemW read the value of x and the

SubsystemX

Embedded Computer

write

x

Task1

Global Variables

SubsystemZSubsystemY

read read

Task2 Task3

RTOS

Application

read

mutual exclusion

SubsystemW

Task4

y

write read read

Figure 2. Example Control Software

SubsystemX SubsystemWSubsystemZ

Node4Node1 Node3

FlexRay

write

x

Application Application

DRTOS DRTOS

read

x x

read

DRTOS

Application

read

SubsystemY

Node2

write

y

Application

DRTOS

y y

read read

Shared Variables

Consistency Maintenance

Task11 Task21 Task31 Task41

Figure 3. Example Distributed Control Software

SubsystemX SubsystemWSubsystemY

Node1

FlexRay

write

x

Application Application

DRTOS

x

readread

SubsystemZ

Node2

writeread read

Shared Variables

Consistency Maintenance

Task11 Task12 Task21 Task22

read

yy

DRTOS

mutual exclusion

Figure 4. Another Example Distributed Control Software

value of y. Mutual exclusion is generally needed to access
a global variable in a preemptive multi-task environment.
Software modules corresponding to subsystem blocks are

distributed to a number of nodes in a distributed embedded
control system. Figure 3 illustrates the structure of an
example distributed control software with DSM. Software
modules generated from the Simulink model shown by Fig-
ure 1 are distributed to four nodes. SubsystemX, SubsytemY,
SubsytemZ and SubsytemW are respectively executed by
Task11 on Node1, Task21 on Node2, Task31 on Node3 and
Task41 on Node4. The copies of shared variables x and y are
located on the nodes. The consistency of the shared variables
is maintained by the DSM service of the DRTOS.
Figure 4 illustrates the structure of another example

distributed control software. The software modules are
distributed to two nodes. SubsystemX and SubsytemZ are

249249249

SubsystemX1

SubsystemZ

SubsystemY

x y

x z

x Merge

SubsystemX2

x

Figure 5. Example Structure Layer of Simulink Model with Merge Block

SubsystemX1 SubsystemZSubsystemY

Node1 Node2

FlexRay

write

x

Application

DRTOS

read

x

read

DRTOS
Consistency Maintenance

Application

SubsystemX2

write

Task11 Task21

Shared variable

Figure 6. Example Distributed Control Software with Multiple Writers

respectively executed by Task11 and Task12 on Node1.
SubsytemY and SubsytemW are respectively executed by
Task21 and Task22 on Node2. Mutual exclusion is used
between the tasks on the same node. The consistency of
the shared variables between different nodes is maintained
by the DSM service of the DRTOS.
We call a task that performs just read operations to a

shared variable a reader task, call a task that performs just
write operations to a shared variable a writer task, and call
a task that performs both read and write operations to a
shared variable a reader-writer task. For example, Task11 is
a reader-writer task of x, Task21 is a writer task of y, and
Task31 and Task41 are reader tasks of x and y in Figure 3.
There are three kinds of DSM models: single reader/single

writer (SRSW) model, multiple reader/single writer
(MRSW) model and multiple reader/multiple writer
(MRMW) model [6]. A signal line of a Simulink model
is connected to just one output of a subsystem block and
connected to one or more inputs of other subsystem blocks.
So the MRSW model usually fits the distributed software
modules generated from Simulink models.
The MRMWmodel of DSM may be needed when a single

shared variable is used for a special block that connects a
number of signal lines. For example, Figure 5 illustrates
a Simulink model with a Merge block, which merges the
output signal lines of SubsystemX1 and SubsystemX2. The
merged signal line is connected to the inputs of Subsys-
temY and SubsystemZ. If SubsystemX1 and SubsystemX2 just
perform write operations to x, SubsystemX1, SubsystemX2,
SubsystemY and SubsystemZ can be connected with a shared
variable corresponding to x.
Figure 6 illustrates the structure of an example distributed

control software for the Simulink model shown by Figure 5.

Shared variable x is used to store both the output value
of SubsystemX1 and the output value of Subsystemx2. The
MRMW model of DSM is needed in this case because both
Task11 and Task21 perform write operations to x. So we
support not only the MRSW model but also the MRMW
model. However, note that a single shared variable can not
be used if either SubsystemX1 or SubsystemX2 performs both
read and write operations to x because the calculation of
SubsystemX1 and the calculation of SubsystemX2 must be
executed independently.

B. Distributed Shared Memory Model

We present a DSM mechanism based on a shared-variable
DSM architecture [5], not a page-based DSM architecture,
because only certain variables are shared in distributed
control software developed with MATLAB/Simulink.
The design policies of the DSM are shown below.
• MMU should not be used because most microcon-
trollers used in embedded control systems have no
MMU.

• Inter-node synchronization should not be used because
it may cause a performance problem (Intra-node syn-
chronization (inter-task synchronization) is acceptable).

• No new API of DRTOS for DSM is required because
new API may violate the compatibility (an extension
of the semantics of an API is acceptable).

• Consistency sufficient for the control software gener-
ated from Simulink models should be provided.

The consistency of the DSM is maintained according
to the order of data transfer through FlexRay. FlexRay
communication is periodically performed with a communi-
cation cycle. The DRTOS receives the transferred data by
cyclic polling, not by interrupt, for the predictability of the
response time [7].
Some consistency models for DSM have been presented

[5][6][10]. Sequential consistency [11] is the strongest con-
sistency other than strict consistency. Sequential consistency
is not needed for the control software generated from
Simulink models, but the same sequential order of write
operations to the same shared variable is required. We call
this partially-sequential consistency.
To realize the partially-sequential consistency model not

using inter-node synchronization, we present a method that
the next access operation (write or read operation) after a
write operation to the same shared variable is inhibited until
the data transfer for the write operation is completed. If a
write operation to a shared variable is performed by a task,
the task cannot access the shared variable until its value is
transferred to other nodes.
Figure 7 illustrates an example DSM access sequence in

the case of Figure 3. The operations performed by a task
on each node are shown horizontally, with time increasing
to the right. Symbol R(x)a means that a task reads value

250250250

Task11
Node1

W(x)b

R(x)a

R(x)b

W(x)c

R(y)p

R(x)b

FlexRay

Communication Cycle

n th cycle n+1 th cycle

receive
send

receive

R(x)a

R(x)a

R(x)b

n+2 th cycle

T(x)b T(x)c

send receive

R(y)p

W(y)qW(y)p

T(y)p
send

R(x)b

Task21
Node2

Task31
Node3

Task41
Node4

Time
access inhibit interval
for shared variable x

Figure 7. Example DSM Access Sequence

Task11

Task21

W(x)b

Task22

FlexRay

Communication Cycle

n th cycle n+1 th cycle

receivereceive

R(x)a

R(x)a

R(x)b

T(x)b

access inhibit interval
for shared variable x

send

Task12
R(y)p

W(y)p

T(y)p
send

R(x)bR(x)a R(y)p

R(y)o

R(y)o

R(x)bR(y)o

R(x)a

Node1

Node2

Time

Figure 8. Another Example DSM Access Sequence

a from shared variable x. Symbol W(x)b means that a task
writes value a into shared variable x.
The value of a shared variable written by a task is

transferred to other nodes through FlexRay. Symbol T(x)b
in Figure 7 means that value b of variable x is transferred
to other nodes. The transferred value is received and written
into the copy of the shared variable in each node at the
beginning of the communication cycle. In Figure 7, value
b of variable x sent by Task11 on Node1 and value p of
variable y sent by Task21 on Node2 during the nth cycle are
received by Task31 on Node2 and Task41 on Node3 at the
beginning of the n+1th cycle.
Partially-sequential consistency is realized by the access

inhibit interval. In the example of Figure 7, after Task11
on Node1 performs R(x)a and W(x)b, Task11 cannot access
x until T(x)b is completed. The access inhibit interval is
needed just for reader-writer tasks, not for reader tasks or
writer tasks.
Figure 8 illustrates an example DSM access sequence in

the case of Figure 4. W(x)b by Task11 on Node1 and W(y)p
by Task21 on Node2 are performed independently. Task12 on
Node1 observes that W(x)b is performed before W(y)p and
Task22 on Node2 observes that W(y)p is performed before
W(x)b. Access operations to different shared variables may
be observed in different order.
Figure 9 illustrates an example DSM access sequence in

the case of Figure 6. Task11 on Node1 and Task21 on Node2

Task11

Task21

W(x)b

Task22

FlexRay

Communication Cycle

n th cycle n+1 th cycle

receive

receive

R(x)c

T(x)b
send

Task12

W(x)c

T(y)c
send

R(x)bR(x)a

R(x)b R(x)b

R(x)c

Node1

Node2

Time

receive

R(x)a

R(x)a

n+2 th cycle

R(x)a

R(x)c

W(x)b

send
T(x)d

R(x)d

R(x)c

Figure 9. Example MRMW DSM Access Sequence

are writer tasks, not reader-writer tasks, so no access inhibit
interval is needed. Task12 on Node1 and Task22 on Node2
observe that the write operations to x by Task11 on Node1
and by Task21 on Node2 are performed in the same order,
for example, W(x)b is observed before W(x)c. The same
sequential order of write operations is observed by Task12
and Task22.
We assume the FlexRay communication cycle period is

sufficiently shorter than the periods of periodic application
tasks. The assumption is proper because the typical FlexRay
communication cycle is 1msec and the typical period of
automotive application tasks is 10msec or longer. So the
access inhibit intervals are also sufficiently shorter than the
interval time between write operations performed by peri-
odic application tasks. If multiple data transfers for the same
shared variable are performed during one communication
cycle (this rarely occurs because of the above assumption),
just the value of the last transfer is received. This is not
a problem because it looks like the write operations are
performed consecutively.

C. API of Distributed Shared Memory
OSEK OS provides resource access system calls for mu-

tual exclusion: GetResource() and ReleaseResource(). When
a task accesses a global variable that are shared with another
task, the task calls GetResource() before the access and calls
ReleaseResource() after the access.
We extend the semantics of the resource management

system calls and use them to access shared variables on
the DSM. A set of distributed shared variables is dealt with
as a distributed shared resource. When a task accesses a
distributed shared variable, the task calls GetResource() be-
fore the access and calls ReleaseResource() after the access.
However, inter-node mutual exclusion is not supported as
described in Section II-B.
Figure 10 shows a fragment of example source code of

application program. The name of the shared variable is
shared x and the identifier of the resource for shared x is
Res shared x. We have to insert system calls GetResource()
and ReleaseResource() into the source code generated from

251251251

.

/* get the resource for the shared variable */

GetResource(Res_shared_x);

/* update the shared variable */

shared_x = a * shared_x + b;

/* release the resource for the shared variable */

ReleaseResource(Res_shared_x);

.

Figure 10. An Example Source Code

FlexRay Controller

ECU

Application Program

CPU

FlexRay

FlexRay Driver

Distributed Real-Time Operating System

OSEK OS
Original

Functions

Remote

System Call

Timer Synchronization

Configu-
ration
Data

Original
System Call

Distributed

Shared

Memory

Figure 11. Structure of Distributed Real-Time Operating System

Simulink models to utilize DSM. However, mutual exclusion
must be also considered even when the software modules are
executed in a preemptive multi-task environment on a single
processor system.
A set of shared variables, not just a shared variable, can

be handled as a distributed shared resource. For example, a
set of shared variables x and y in Figure 3 and Figure 4 can
be handled as the same resource.
The configuration of an application on OSEK OS is

described in OIL (OSEK Implementation Language) [12].
For example, tasks and events are statically declared in an
OIL file. The configuration data of OSEK OS are generated
by the system generator (SG) referring to the OIL file.
We extend OIL to declare distributed shared variables and
distributed resources.

III. DISTRIBUTED REAL-TIME OPERATING SYSTEM
WITH DISTRIBUTED SHARED MEMORY

A. Overview

We have already developed a DRTOS with location-
transparent system calls [7] as an extension to TOP-
PERS/OSEK kernel, an OSEK-compliant operating system
developed by TOPPERS project [13]. We extend the DR-
TOS to support DSM based on the model presented in
Section II-B.
Figure 11 illustrates the structure of the DRTOS, which

consists of the OSEK OS original functions, a timer synchro-
nization module, a remote system call module, a distributed
shared memory module and configuration data.

Table I
OSEK OS SYSTEM CALLS FOR TASK MANAGEMENT AND EVENT

CONTROL

Category API Remote Call
ActivateTask(Task) Yes
TerminateTask() No

Task ChainTask(Task) Yes
Management Schedule() No

GetTaskID(TaskRef) No
GetTaskStatus(Task, StateRef) Yes

SetEvent(Task, Event) Yes
Event ClearEvent(Event) No
Control GetEvent(Task, EventRef) Yes

WaitEvent(Event) No

Communication Cycle

Application
Task

Time

FlexRay
Communication

call

DRTOS

DRTOS

return

request
transmission

cycle start processing

return value transmission

return
processing

system call execution

wait releaseCaller
Node

Callee
Node

n th cycle n+1 th cycle n+2 th cycle

Figure 12. Time Chart of Remote System Call

The timer synchronization module manages the global
time. FlexRay provides the network time that is synchro-
nized between the FlexRay controllers. The timer of the
DRTOS on each node is periodically synchronized with the
clock of the network time. The value of the timer of the
DRTOS is used as the global time.
Table I shows the OSEK OS system calls for task man-

agement and event control. The column Remote Call of
Table I shows whether the system call is extended to be a
remote system call or not, i.e., ActivateTask(), ChainTask(),
GetTaskStatus(), SetEvent() and GetEvent() are extended.
Parameter Task means the task ID. In the extended system
calls, a task ID is a unique ID in a distributed system, not
only unique in a node. If one of these system calls is issued
specifying a remote task, the remote system call module
executes the processing for the remote system call.
Figure 12 shows a time chart of a remote system call.

When an application task issues a remote system call, the
remote system call module determines the node on which
the target task resides, generates a request message, calls the
FlexRay driver to write the request message in the message
RAM of the FlexRay controller, and shifts the caller task to
the waiting state. The communication of the request message
is executed by FlexRay controllers.
Received request messages are stored in the message

RAM of the FlexRay controller of the callee node. The
cycle start processing is executed by an ISR (Interrupt
Service Routine), which is activated at the beginning of each
FlexRay communication cycle. The cycle start processing
executes global time maintenance, calls the FlexRay driver

252252252

to read messages received in the previous communication
cycle, interprets the request message, and calls the original
system calls of OSEK OS. Then the ISR generates a return
message and calls the FlexRay driver to write the return
message in the message RAM.
The ISR of the caller node executes the cycle start

processing, stores the return value and output parameters in a
buffer, and releases the caller task from the waiting state. The
caller task reads the return value and output parameters from
the buffer and resumes executing the application program.
The distributed shared memory module manages the

copies of shared variables and maintains the consistency.
The details of the DSM mechanism are described in Sec-
tion III-B.
The communication cycle of FlexRay is divided into

the static segment for periodic messages and the dynamic
segment for event-triggered messages. The messages of
remote system calls and DSM are transmitted in the dy-
namic segment because system calls and DSM accesses are
eventually performed.
The configuration data consists of the original OSEK

configuration data, task location data for remote system
calls, and DSM configuration data.

B. Distributed Shared Memory Mechanism

This section describes the details of the DSM mechanism
of the DRTOS. The copies of shared variables are allocated
in the data section of application program on each node. The
DRTOS on each node has shared data buffers and received
data buffers.
We add DSM functionalities to GetResource() and Re-

leaseResource() as described in Section II-C. We call the
former DSM access preprocessing and the latter DSM access
postprocessing.
Figure 13 shows a time chart of the DSM processing

on the writer node. When the application task calls GetRe-
source() before accessing to a shared variable, the DRTOS
executes the processing of the original GetResource() of
OSEK. Then, the DRTOS determines if the resource is a
DSM resource or not. If the resource is a DSM resource,
the DRTOS executes the DSM access preprocessing, which
copies the value of the shared data buffer to the shared
variable.
When the application task calls ReleaseResource() after

accessing to the shared variable, the DRTOS determines
if the resource is a DSM resource or not. If the resource
is a DSM resource, the DRTOS executes the DSM access
postprocessing. The DSM access postprocessing compares
the value of the shared variable and the value of the shared
data buffer, and calls the FlexRay driver to send the former
value if the values are different. Then the DRTOS executes
the processing of the original ReleaseResource() of OSEK
OS.

Time

GetResource()

DRTOS

Application
Task

FlexRay
Communication

send

Shared
Variable

Shared Data
Buffer

0

10

10 20

write
ReleaseResource()

copy

20

copy

interrupt

20

read

DSM access
preprocessing

DSM access
postprocessing

DSM buffer
update

n+1 th cyclen th cycle

Figure 13. Time Chart of Writer Node Processing

Time

DRTOS

Application
Task

FlexRay
Communication

send

Shared
Variable

Shared Data
Buffer

20

write
ReleaseResource()

20

copy

interrupt

20

GetResource()

20

copy

n+1 th cyclen th cycle

cycle start
processing

access inhibit interval

DSM buffer update

read

DSM access
postprocessing

DSM access
preprocessing

waiting

Figure 14. Access Inhibit for Partially-Sequential Consistency

Time

GetResource()

DRTOS

Application
Task

FlexRay
Communication

Shared
Variable

Shared Data
Buffer

10

20

20

read ReleaseResource()

copy

Received
Data Buffer

10

10

20

20

receive

n+1 th cyclen th cycle

cycle start
processing

received data update

20
copy

DSM access
postprocessing

DSM access
preprocessing

Figure 15. Time Chart of Reader Node Processing in Case 1

When the FlexRay controller completes the data transfer,
an interrupt occurs. The interrupt executes DSM buffer
update, which copies the value of the shared variable to the
shared data buffer.
Figure 14 shows a time chart with an access inhibit

interval. When the application task (reader-writer task) calls
GetResource() until the FlexRay controller completes the
data transfer, the DRTOS shifts the state of the task waiting.
When the FlexRay controller completes the data transfer, the
interrupt checks if there is a task with state waiting or not.
If such a task exists, the interrupt shifts the state of the task
ready. This is implemented using the event mechanism of
OSEK OS.
Figure 15 shows a time chart of the DSM processing on

the reader node. The cycle start processing of the DRTOS
checks the data received during the previous communication
cycle. If DSM data have been received, the DRTOS executes

253253253

10

Time

GetResource()

DRTOS

Application
Task

FlexRay
Communication

Shared
Variable

Shared Data
Buffer

0

20

read ReleaseResource()

copy

Received
Data Buffer 10

10

20

receive

20

copy

n+1 th cyclen th cycle

cycle start
processing

received data
update

DSM access
postprocessing

DSM access
preprocessing

Figure 16. Time Chart of Reader Node Processing in Case 2

received data update, which interprets the received data and
checks if there is a task that holds the DSM resource.
Figure 15 shows the case that no task holds the DSM

resource. In this case, the received data update processing
writes the received value into both the received data buffer
and the shared data buffer. When the application task calls
GetResource() before accessing to a shared variable, the
DRTOS determines if the resource is a DSM resource or
not. If the resource is a DSM resource, the DRTOS executes
DSM access preprocessing, which copies the value of the
shared data buffer to the shared variable as described before.
Then the application task reads the value from the shared
variable.
Figure 16 shows a time chart in the case that there is a

task that holds the DSM resource. In this case, the received
data update processing writes the received value into just
the received data buffer. When the application task calls
ReleaseResource(), the DRTOS executes the DSM access
postprocessing, which copies the value of the received data
buffer to the shared data buffer.

C. Response Time of Distributed Shared Memory

FlexRay communication parameters are statically de-
signed. Design and analysis methods for FlexRay commu-
nication have been presented [14][15]. FlexRay communi-
cation parameters must be designed considering frames for
both the DRTOS and the application program. The frames
for the DRTOS is determined by considering the maximum
rate of DSM write operations and remote system calls
performed in a communication cycle period. The maximum
communication delay time is predictable if FlexRay com-
munication is well configured, and so the response time of
a DSM service is predictable.
In the example time chart shown by Figure 13, the data

transfer after the write operation is performed in the same
communication cycle as the DSM access postprocessing is
executed. However, the data transfer may be postponed to the
next communication cycle. Figure 17 shows a time chart of
the case that the data transfer is postponed. This is the worst
case because the data transfer is not postponed to the next to

DRTOS

Application
Task

FlexRay
Communication

send

Shared
Variable

write ReleaseResource()

n th cycle

Writer
Node

Reader
Node

DRTOS

n+1 th cycle n+2 th cycle

cycle start processing

Shared
Data Buffer

Application
Task

Response Time of Distributed Shared Memory

GetResource()

Shared
Variable

read

Time

received data update

DSM buffer update

receive

interrupt

DSM acess
preprocessing

DSM access postprocessing

FlexRay communication delay time

Figure 17. Response Time of Distributed Share Memory

the next communication cycle if the FlexRay communication
is well configured.
The response time of the DSM service consists of the

DSM access postprocessing execution time, the FlexRay
communication delay time, the cycle start processing ex-
ecution time and the received data update execution time.
In the worst case, the maximum total time of the DSM
access postprocessing execution time and the FlexRay com-
munication delay time is twice the communication cycle
period. So the worst case response time is the total of twice
the communication cycle period, the cycle start processing
execution time and the received data update execution time.
It is about twice the communication cycle period because
the cycle start processing execution time and the received
data update execution time are sufficiently less than the
communication cycle period.

IV. IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

We have developed a prototype of the DRTOS with the
DSM mechanism described in Section III-B. The prototype
supports just the 32-bit data type for DSM. We manually de-
fine the DSM configuration data because the current version
of SG does not support DSM. We are now extending OIL
and SG to automatically generate the DSM configuration
data.
We have done experiments to evaluate the performance of

the prototype DRTOS. We use the evaluation boards called
GT200N10, the CPU of which is V850E/PH03 with an on-
chip E-Ray FlexRay controller. The clock rate of the CPU
is 128MHz. The data transfer rate of FlexRay is 10MHz and
the communication cycle period is 1msec.
We have run an evaluation program and measured the

CPU execution times of DSM functions: the DSM access
preprocessing execution time, the DSM access postprocess-
ing execution time, the cycle start processing execution time,
the received data update execution time, and the DSM buffer

254254254

Table II
EXECUTION TIME OF DSM MECHANISM

Processing Execution Time [μsec]
Average Worst

DSM Access Preprocessing 0.79 0.81
DSM Access with Data Transfer 7.73 7.75
Postprocessing without Data Transfer 0.90 0.90

Cycle Start Processing 32.07 32.09
Received Data Update 0.84 0.84
DSM Buffer Update 1.13 1.15

Table III
EXECUTION TIME OF RESOURCE ACCESS SYSTEM CALLS

Execution Time [μsec]
System Call DRTOS TOPPERS/OSEK Kernel

Average Worst Average Worst
GetResource() 2.51 2.53 2.38 2.40

ReleaseResource() 2.79 2.81 2.66 2.68

update execution time. We have measured each execution
time fifty times using a hardware counter, the clock rate of
which is 32MHz. Table II shows their average values and
the worst values. The values are in the case that the shared
variable is a single 32-bit integer data.
We think each execution time is practically small for auto-

motive control systems. The typical period of the automotive
control application periodic tasks is 10msec or more. The
typical event-triggered task of the automotive powertrain
control system is a task synchronized with the crankshaft
rotation, the period of which is 10msec when the speed of the
crankshaft rotation is 6000rpm. The typical FlexRay com-
munication cycle period is 1 msec. The dominant factor of
the response time of the DSM is the FlexRay communication
delay time and the worst case response time is about twice
the communication cycle. The worst case response time is
about one fifth of the application task period in the typical
case, so we think the response time is practically small.
We have also measured the execution time of GetRe-

source() and ReleaseResource() for a resource supported by
original OSEK OS, not a distributed shared resource for
DSM, to evaluate the overhead of the system calls. Table III
shows their execution time in the case of the DRTOS and in
the case of original TOPPERS/OSEK Kernel. The difference
between them means the overhead caused by the DSM
mechanism. We think the overheads are practically small
because their values are less than 10% of the execution times
of the system calls.

V. CONCLUSIONS

We have presented a DRTOS that provides a DSM service
for distributed embedded control systems. The consistency
of the DSM is maintained according to the order of data
transfer through FlexRay, not using inter-node synchroniza-
tion. The worst case response time of the DSM is predictable
if the FlexRay communication is well configured. We have

developed a prototype of the DRTOS and evaluated the per-
formance of the DSM. According to the evaluation results,
we think the performance is practically small for automotive
control applications.
We are now developing the next version of the DRTOS

with DSM that supports various data types of shared vari-
ables. We are also extending OIL and SG to automatically
generate the DSM configuration data.

ACKNOWLEDGMENT
We would like to thank the developers of TOP-

PERS/OSEK Kernel. This work was supported in part by
JSPS KAKENHI Grant Number 24500046.

REFERENCES
[1] OSEK/VDX, Operating System, Version 2.2.3, 2005.
[2] The MathWorks Inc., http://www.mathworks.com/.
[3] A. Sangiovanni-Vincentelli and M. Di Natale, “Embedded

system design for automotive applications,” IEEE Computer,
Vol.40, No.10, pp.42–51, 2007, doi:10.1109/MC.2007.344.

[4] OSEK/VDX, Communication, Version 3.0.3, 2004.
[5] A. S. Tanenbaum, Dstributed Operating Systems, Prentice

Hall, New Jersey, 1995.
[6] J. Protic, M. Tomasevic and V. Milutinovic, “Distributed

shared memory: concepts and systems,” IEEE Parallel & Dis-
tributed Technology: Systems & Applications, Vol.4, No.4,
1996, pp.63–71, doi:10.1109/88.494605.

[7] T. Chiba, Y. Itami, M. Yoo and T. Yokoyama, “A Distributed
Real-Time Operating System with Location-Transparent Sys-
tem Calls for Task Management and Inter-task Synchroniza-
tion,” Proc. IEEE 10th International Conference on Trust, Se-
curity and Privacy in Computing and Communications (Trust-
Com), 2011, pp.1133–1138, doi:10.1109/TrustCom.2011.154.

[8] R. Makowitz and C. Temple, “FlexRay - a communication
network for automotive control systems,” Proc. 2006 IEEE
International Workshop on Factory Communication Systems,
pp.207–212, 2006, doi:10.1109/WFCS.2006.1704153.

[9] MathWorks Automotive Advisory Board (MAAB), Control
Algorithm Modeling Guidelines Using MATLAB, Simulink,
and Stateflow, Version 3.0, 2012.

[10] S. V. Adve and K. Gharachorloo, “Shared memory consis-
tency models: a tutorial,” IEEE Computer, Vol.29, No.12,
1996, pp.66–76, doi:10.1109/2.546611.

[11] L. Lamport, “How to make a multiprocessor computer that
correctly executes multiprocess programs,” IEEE Transac-
tions on Computers, Vol.C-28, No.9, 1979, pp.690–691,
doi:10.1109/TC.1979.1675439.

[12] OSEK VDX, OSEK/VDX System Generation OIL: OSEK
Implementation Language Version 2.5, 2004.

[13] TOPPERS Project, http://www.toppers.jp/en/
[14] T. Pop, P. Pop, P. Eles, Z. Peng and A. Andrei, “Timing

analysis of the FlexRay communication protocol,” Proc. 18th
Euromicro Conference on Real-Time Systems, pp.203–216,
2006, doi:10.1109/ECRTS.2006.31.

[15] J. Ben, B. Yongming and L. Anhu, “A method for re-
sponse time computation in FlexRay communication sys-
tem,” Proc. IEEE International Conference on Intelligent
Computing and Intelligent Systems, Vol.3, pp.47–51, 2009,
doi:10.1109/ICICISYS.2009.5358231.

255255255

