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Improving Dynamic Memory Allocation on
Many-Core Embedded Systems With

Distributed Shared Memory
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Abstract—Memory management on many-core architectures
is a major challenge for improving the overall system perfor-
mance. Memory resources are distributed over nodes for faster
local accesses. Dynamic workloads heavily depend on memory
requests and inefficient memory management leads to severe bot-
tlenecks and performance degradation. In this paper, we focus
on optimizing dynamic memory allocation on such platforms and
present a scalable, microcode-accelerated distributed dynamic
memory manager. The proposed manager exploits the presence of
a hardware accelerator while offering a C application program-
ming interface to application developers. Experimental results
show performance gains on average 10% compared to allocators
written purely in C and sufficient scalability as platform size
increases.

Index Terms—Dynamic memory management,
microcode-accelerated, multiprocessor system-on-chip,
network-on-chip (NoC).

I. INTRODUCTION

MOORE’S law implies computer systems to keep becom-
ing more complex by adding extra functionality on the

same chip. This trend correlates strongly in the embedded
domain, where consumer needs for portable devices of high-
resolution cameras and displays drive the market. Hardware
engineers put a considerable amount of effort in designing the
architecture of such systems in order to maintain scalability.
Interconnection networks have become quite complex, evolv-
ing from conventional buses to sophisticated network-on-chip
(NoC). Although the implementation of the distributed shared
memory (DSM) model comes with memory bottleneck issues,
designers still select it for its easy-to-use programming model.

Dynamic memory managers (DMMs) help programs deter-
mine during run-time how and where dynamic data should
be stored. Memory is allocated from a large pool of unused
memory area called the heap. Existing approaches that han-
dle dynamic data requests rely mostly on software solutions
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that tradeoff flexibility for processor cycles, resulting in per-
formance degradation. Fast hardware solutions are already
available, but programmers tend to follow a more centralized
approach and do not exploit platform’s characteristics. This
centralized approach creates a central point of failure render-
ing the whole system unusable in case the central core fails.
Moreover, a central core hinders scalability, because it is a
bottleneck for processing and communication.

Many DMMs and related methodologies have been pro-
posed targeting the embedded scope. Atienza et al. [1] pro-
vided a flow for designing memory managers which avoid
wasting memory space and thus being optimized for embed-
ded systems with scarce memory resources. The same concept
is presented in [2], where power efficiency is also taken into
account during the design of the DMM. As discussed in [3],
since embedding devices are nowadays composed of multiple
processing cores, it is worth expanding the design space of
DMMs to multiheap organizations. Finally, Kim et al. [4] pro-
posed a full-stack (in terms of hardware and software) memory
management scheme targeting high-end Android devices with
special memory management hardware unit. All these tech-
niques apply on conventional single-processor systems and
potentially on some multiprocessor ones, but do not take into
account neither the NoC interface of novel hardware platforms,
nor the complexity of dynamic applications.

Hardware-accelerated DMMs are also a hot topic, since
they can achieve high performance. Marchal et al. [5] showed
that using scratchpad memories along with direct memory
access controllers has a positive impact on energy consumption
for dynamic interactive applications. In the general-purpose
domain, Intel has presented support for hardware transactional
memory and a proposed memory allocator using it [6] shows
more than double performance in memory-intensive bench-
marks without compromising memory footprint. A hardware
memory management unit responsible for dynamic memory
allocation and de-allocation is presented in [7]. However, it
is a centralized unit, able to allocate only complete global
memory pages; the management of the data (de)allocation is
left to the processors. A distributed, application-specific DMM
using hardware-accelerated memory functions has been pro-
posed in [8]. Although the latter solution seems tailored to
embedded platforms, it lacks of a high-level interface and
relies on priority tables making the DMM difficult to get con-
figured and scaled for systems with more than four processing
nodes.

In this paper, we propose a novel dynamic memory allocator
for DSM embedded systems which is accelerated by hardware
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Fig. 1. DSM platform with programmable memory controllers as seen in [9].

and yet maintains scalability. The main contributions of the
introduced allocator are: 1) It exposes a unified heap space
accessible by every node; 2) It exploits the presence of pro-
grammable hardware memory controllers by using customized
microcoded functions to accelerate dynamic data management
functions; 3) It requires minimal initial configuration; and
4) It offers an application programming interface (API) to
manage the heap, similar to the C standard library one [as
in malloc()/free()].

II. EXPLOITING HARDWARE TO IMPROVE

DYNAMIC MEMORY MANAGEMENT

Suppose that we have a DSM system on the one in
Fig. 1: multiple nodes of processor-memory are interconnected
via a packet-switched mesh network of routers. Each node
contains additionally a dual microcoded controller (DMC),
a programmable hardware accelerator to handle memory
requests [9]. The utilized platform has been proved to accel-
erate memory operations in a DSM environment [8]–[10]
by programming the DMC and providing services such as:
virtual-to-physical (V2P) address translation, synchronization,
cache coherency, memory consistency, and shared memory
access [9].

The V2P service enables the DSM model: local memo-
ries are organized with private and shared parts and by using
the V2P service, the processors are able to access via the
local DMC controller any shared memory by using a higher
address scheme than the local one (e.g., 0x40200000 versus
0x00000).

Thanks to the V2P service, porting a DMM of a more
generic platform is a straightforward procedure. We have
ported for the platform of Fig. 1 the most power-efficient allo-
cator of [2] with minimal changes in code. The developed
allocator considers the heap as a single one and thus, writing
applications accessing multiple memories from multiple nodes
is easier. Unfortunately, we prove in a later section the perfor-
mance to be weak, since there is no awareness of the memory
locality: the allocator chooses memory regions to allocate
regardless of which processor makes the allocation request.

The locality problem is solved by the allocator presented
in [8], where heap space is fragmented into smaller heaps,
one per node, so that specific DMC instructions (microcode
from this point forward) can speed up the memory allocation
processes. Albeit more performant, this approach comes with
excessive development costs: application developers should
know a priori which processors need to access which heaps
and define accordingly a priority table per node.

Fig. 2. HSM on top of V2P translation service.

Fig. 3. Complete allocation scheme of the proposed allocator.

Ultimately, we identify this as a tradeoff between a truly
single, easy-to-program heap, and hardware acceleration. In
order to maintain a single distributed heap, while still offering
microcode-accelerated dynamic memory management, we pro-
pose two new features for the target platform: 1) heap space
map (HSM) and 2) lazy heap selection.

The HSM involves the creation of a second virtual address
layer as seen in Fig. 2. The new addressing scheme should
start higher than V2P (e.g., starting from 0x60000000) and
it unites the smaller heaps that are found in each node, so that
a continuous memory space becomes available as a heap to the
application. The heap-to-node translation is performed at two
levels: first by the HSM service (in C level) and second by the
corresponding memory controller (microcode V2P service).

Additionally to the HSM, we propose a lazily heap selection
scheme to avoid priority tables. In [8], each node stores in its
local memory the possible heaps to trigger in order to serve
a request. If one heap is occupied while the allocator wants
to just check it, the latter has to wait indefinitely for it. What
we propose instead is to evaluate all the remote heaps with no
exception, after verifying that the local heap is out of space.
Moreover, if the allocator tries to acquire the lock of a remote
heap and fails, it should move to the next remote heap.

Based on the virtual memory address space mentioned
above and the heap selection algorithm, we propose an
allocation scheme as seen in Fig. 3. Deallocation happens
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accordingly: after an HSM translation, a message is sent to the
relevant DMC to free the memory block. The proposed alloca-
tor implements at microcode level all the fine-grained actions
for performing dynamic memory allocation and deallocation.
The application interfaces and the introductory mechanism of
the lock mechanisms in the HSM are impletemented in C.

The main differentiators of this letter are hence the
following.

1) The proposed allocator considers a global, continu-
ous address space for memory requests like the C
allocator [2] and unlike the microcoded one [8].

2) The proposed allocator leverages the use of DMC
microcode like the microcoded one, while the C one
does not.

3) The proposed allocator does not use priority tables as
the microcoded one does.

4) The proposed allocator evaluates lazily the memory
availability in remote heaps, while the microcoded allo-
cator has to exhaustively evaluate a possible memory
allocation in one remote heap before locking and eval-
uating another one.

5) The proposed allocator does not need any modification
when using it for a different application.

III. EVALUATION

We have evaluated our approach and compared it with other
allocators on the platform architecture presented in [9]. No
hardware change has been made. Each node is composed
of a LEON3 processor, a DMC and memory which can be
shared among the nodes. All the DMCs are interconnected in
Nostrum [11], a packet-switched mesh network.

For the evaluation of our proposed allocator we have
used the traces from four benchmarks presented in [12].
Those benchmarks have been proven there indicative of
the performance of a memory allocator for embedded sys-
tems. More specifically: 1) features from an accelerated seg-
ment test (FAST), a computer-vision corner detection kernel;
2) a Gaussian kernel for blur effect; 3) integral, a kernel which
calculates the integral of matrix elements; and 4) a matrix
multiplication kernel. All benchmarks follow the master-slave
code design. One node acts as the controller of the platform
responsible for handling task management, while the rest of
them are available for task execution. Dynamic memory man-
agement is important in such platforms. If only the master
node handles the memory management, simulations show that
the cycles spent regarding DMM for the used benchmarks
compose on average the 18.8% (minimum 10.83% for the
FAST application and maximum 23.12% for the Gaussian one)
of the overall application cycles.

We first compared the performance of the proposed alloca-
tor against a hardware-based solution and a software-based
one on a 2×2 system: 1) the memory distribution-aware
microcoded DMM in [8] and 2) a pure private heap mem-
ory allocator selected from [2] and implemented in C. The
C allocator was selected because it was on average 29%
faster against other general-purpose solutions, exhibiting also
reduced fragmentation, and thus is suitable for embedded sys-
tems. The performance of the compared allocators normalized
to the performance of the microcoded one can be seen in
Fig. 4. The microcoded allocator is the fastest of all since all

Fig. 4. Total execution time comparison of the proposed allocator
with [2] and [8] under a pure private heap for a 2×2 platform. The proposed
allocator makes a compromise between performance and ease of use.

operations and decisions are performed at low-level. However,
this implementation lacks of a high-level API making the
integration with C applications difficult. The proposed allo-
cator is on average 25% slower than the microcoded allocator
and 10% faster than the high-level one, since most of the
(de)allocation operations are performed at microcode level and
only the high-level heap address manipulation is performed
in C. The presented allocator was designed for offering DMM
without using a pure private heap structure. The goal is to
let all nodes be aware of the heap status with a small per-
formance penalty which in the case of pure private heaps
does not exist. Thus, the proposed allocator is faster than a
performance-aware allocator which is unaware of the broader
platform.

We have then proceeded to validate the distributed behavior
and scalability of the presented allocator by comparing: 1) the
average cycles per (de)allocation event and 2) the number of
microcode instructions needed for node intercommunication to
the distributed microcoded allocator [8] for various platform
sizes. The number of nodes ranged from 4 (2×2) to 64 (8×8)
and they are all interconnected in a 2-D mesh network. To the
best of our knowledge, this is one of the most popular network
topologies and one can hardly expect more than 64 nodes on
an embedded platform.

As shown in Fig. 5, the microcoded DMM [8] needs on
average less cycles than the proposed allocator in order to
server an event when the platform is smaller than 5 × 5.
However, when the platform size increases beyond 25 nodes
the presented manager needs less cycles. This happens because
the distributed microcoded allocator [8] is based on priority
tables. By using the technique of priority tables, each node
stores in its local memory, as a single linked list [8], the
possible nodes to trigger in order to serve a DMM request.
For a 2 × 2 NoC the table contains four records while for
an 8 × 8 NoC the records grow up to 64 per node and a
lot of nodes have the same nodes as targets while perform-
ing a (de)allocation request. As shown in other experimental
results [8], nearly 80% of the time for dynamic memory
management was “wasted” for lock acquiring. So, as the plat-
form size increases the handling of these tables requires more
cycles while the proposed allocator uses a lighter and more
generic communication scheme between nodes, supporting
arbitrary sizes of platforms and scaling well as the platform
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Fig. 5. Average cycles per DMM event and number of microcode instructions needed for intercommunication for various platform sizes and applications.

size increases. Fig. 5 shows that the purely microcoded alloca-
tor needs on average 29% more cycles to serve an event each
time the platform increases, whereas, the proposed one has a
smaller increase (approximately 20% more cycles). Although
the purely microcoded one executes 1.9× on average less
microcode instructions for node intercommunication, as shown
with bars and the right axes of Fig. 5, the proposed solution
proves to be much faster since it requests memory from more
suitable nodes.

IV. CONCLUSION

This paper presented an efficient, hardware-accelerated,
scalable dynamic memory allocator for NoC-based, many-core
embedded systems in which the low-level DMM operations
are implemented in microcode. The allocator provides con-
sistent address space for the application dynamic data and
the search of free space on remote memories is not halting.
The allocator is generic to the platform and does not need
recompilation for different applications. It requires, though, to
be initialized with the memory size per platform and node.
Experimental results proved that the proposed allocator 1) is
scalable enough to surpass even low-level allocators on bigger
platform sizes; 2) provides distributed functionality offering
different parts of shared memory as a continuous heap space;
and 3) serves requests 10% faster on average compared to
high-level allocators without compromising ease of use.
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