
Int. J. of Web Engineering and Technology, Vol. 1, No. 1, 2003 5

Copyright © 2003 Inderscience Enterprises Ltd.

Measuring the functional size of web applications

Silvia Abrahão and Oscar Pastor
Department of Information Systems and Computation, Valencia
University of Technology, Camino de Vera s/n, 46071 Valencia, Spain
Fax: 34-96-387-7359
E-mail: sabrahao@dsic.upv.es
E-mail: opastor@dsic.upv.es
Abstract: Today, more and more Web sites and Applications (WebApps) are
becoming mission-critical systems. Measures of functional size are a
prerequisite to successful quantitative management of software projects.
However, the nature of the web has recently imposed new and challenging
characteristics, which are not supported by the existing estimation metric and
models. In order to avoid the Web crisis, urge the use of web engineering
approaches for developing and estimating web projects in a systematic way. To
achieve this goal, we present a novel size metric for accurately measuring the
functional size of web applications early in the development life cycle. The
main contribution of this work is the introduction of a measurement process
that is embedded in the conceptual modelling phase of a model-driven
approach for developing web applications. The results obtained from our
experiments with this approach are outlined in this work.

Keywords: web engineering; conceptual modelling; object-oriented; web
metrics; function points; functional size measurement.

Reference to this paper should be made as follows: Abrahão, S. and Pastor, O.
(2003) ‘Measuring the functional size of web applications’, International
Journal of Web Engineering Technology, Vol. 1, No. 1, pp. 5–16.

Biographical Notes: Silvia Abrahão is an Assistant Professor in the
Department of computation and information systems at the Valencia University
of Technology in Spain. She received a BS in computer science from FPTE in
Brazil. She is currently a PhD candidate in computer science at the Valencia
University of Technology. Her research interests include web engineering,
object-oriented conceptual modelling, and software quality.

Oscar Pastor is currently the Head of the Department of computation and
information systems, Valencia University of Technology (VUT) in Spain, and
the leader of the OO-Method Research Group in the same department. He
received his PhD degree from the VUT in 1992, after a research stay in HP
Labs, Bristol, UK. He is Professor of Software Engineering at the VUT. His
research activities have involved conceptual modelling, requirements
engineering, information systems, web-oriented software technology and
model-based code generation. He has received numerous research grants from
public institutions and private industry and has devoted considerable effort to
the issues of technology transfer from academia to industry.

6 S. Abrahão and O. Pastor

1 Introduction

The continuous advances imposed by technological innovations have caused the web
sites, which are initially designed to present information to evolve into complex web
applications. This evolution has originated an increasing in the complexity of designing,
developing, and maintaining systems of this kind. However, the absence of disciplined
processes in this context [1] has increased the interest in the successful development and
maintenance of web applications.

A great number of initiatives for the creation of web solutions to the classic design of
applications have recently been introduced [2–4]. Nevertheless, the systematic use of
these techniques for the specification and the design of web applications have not solved
the problem of software production and the applications continue to be delivered without
the required level of quality. Because of the increase in the size, the complexity, the
quality needs and the quick time-to-market cycles for WebApps, several problems have
frequently been reported [5] such as: exceeding budgets, the delivery systems which do
not have the required functionality and quality, and the general lack of documentation for
requirements, etc. It is widely recognized that an important component of process
improvement is the ability to measure the process. Therefore, one of the main problems
in web development is the lack of appropriate metrics for project estimation and quality
assurance.

To avoid a web crisis [6] we need rigorous web engineering approaches that provide
high-quality applications on time and within budget. A good web engineering approach
should help developers to address the complexities of web applications, as well as
minimize risks of development, deal with the possibility of change, and deliver
applications quickly, while providing feedback for management as the project goes along.

However, as mentioned in [7–9] web application development has significant
differences from traditional application development. In traditional software
development, the management of software cost, development effort and project planning
are key aspects. Functional size measurement has been proposed as an appropriate tool
for these management requirements. A number of size metrics are identified in the
literature; the most widely used are Lines of Code (LOC) and Function Point Analysis
(FPA) [10].

Currently, there has been an economic change from the trends in software
development.

The fact is that in web development, the most important business variable is time to
market. The development life-cycle time is shorter than 6 months, within average life-
cycle time of 3 months. Therefore, the current estimation models must be adapted to
address the new estimation challenges in order to control projects which are involved in
web application production.

We present OOmFPWeb as a novel size metric for accurately measuring the functional
size of web applications early in the development process. Measuring functional size
helps us in the estimation and evaluation of the software process (e.g., controlling
application quality, cost and schedules) [11]. The main contribution of this work is the
introduction of a measurement process that is embedded in the conceptual modeling
phase of a software production method for the Web called OOWS – an Object-Oriented
Web Solutions modeling approach [12].

In our approach, the functional size measurement of a web application is
accomplished by mapping the Function Point Analysis (FPA) concepts proposed by the

Measuring the functional size of web applications 7

IFPUG [13] to the OOWS conceptual model primitives. The main contribution of this
work is that the measuring process is done on the conceptual schema: in consequence, the
functional size of the web application is calculated in the problem space, improving the
conventional approaches to the problem [8,14,15], that historically focus on the final
software product.

2 Related work

Cleary has proposed the Web-Points metric [14] to estimate the size and effort provided
by static web sites. The size of the web points is obtained taking into account the
complexity of HTML pages of a web site. The complexity is classified into low, medium
and high levels. The number of web-points for each page is obtained based on the size of
the page in words, the number of existing links and the number of non-textual elements
of the web page. This metric can be used with productivity data to determine the effort
required for the development or improvement of a static web site.

The internet points [15] metric has been proposed as a solution to the problems found
by the estimators in order to measure web applications in terms of function points. Seven
functions are proposed which are based on the following: files, RDB tables, APIs,
messages sent by the system, number of static HTML pages, number of dynamic HTML
pages and the number of interactive pages. The interactive pages are those that collect
data and include significant business logic and user interaction or error checking.

The GUI Metrics [15] was introduced in the 1990s. It is similar to the FPA and uses
the graphical characteristics of the user interface to measure the project volume. This
approach was designed specifically to consider the client side of the client–server
development projects. GUI Metric measures the interaction with the environment and the
users of the system. This metric is expressed in terms of dialogue boxes, menu options,
tables, and reports.

Cowderoy [16] has proposed measures of size and complexity to improve quantitative
methods and to control the costs of web projects. Following the GQM approach [17], this
proposal identifies questions which are related to business objectives. The authors
consider that the primary aspects that affect the web projects are: the identification of
high-risk components, the costing of project changes and the identification of poor
usability.

The measures proposed by Cowderoy not only take into account structural aspects of
the application to be developed but also the possibility of changes that can be made in the
establishment of the contracts. The measures of complexity and size are defined
according to the type of resource used by the Web application (e.g., web-site structure,
hypertext, database contents, images, audio, 3D objects, movies, etc).

Reifer [8] proposes the web objects size metric and an adaptation of the COCOMO II
estimation model called WebMo for estimating the effort and duration of web
applications. The Web Objects metric computes the size and take into account each one
of the elements that make up a web application. These elements are the number of
operands (the objects) and operators (actions that can done to the object). Examples of
operands include: ActiveX components, commercial packages, 3D objects, text, video,
clients and server tables, applets, images, etc. As in FPA, to make a repeatable prediction
a set of counting rules are defined. A table of complexity measures with weights (low,
medium and high) is also defined. The main advantages of this proposal are the use of a

8 S. Abrahão and O. Pastor

mathematical base (equations of Halstead) for prediction and the facility of extension
through the addition of new operands and operators.

In their empirical study Mendes et al. [18] argue that complex web application
structures can increase maintenance costs considerably. Even worse, for continually
changing web applications (considering their evolving nature), the cost can be even
higher. In order to diminish risks, the maintenance cost can be predicted through a
functional size measurement.

This explanation on web metrics highlights certain deficiencies: the lack of desirable
measurement properties, the majority is centred in static Web sites without taking into
account behaviour and navigational properties presenting in a complex WebApp. Also,
they have a high-level dependence on implementation technology. To overcome these
deficiencies we present next the OOmFPWeb approach that constitutes the contribution of
this paper.

3 The OOmFPWeb proposal

Because the web applications are built using a variety of web objects (html or xml files,
scripts, multimedia files, etc.) no agreement on how to measure the size has yet been
reached within the estimation community. In order to face this problem, we have
developed a novel metric that measures the functional size of the web application
independently of the technology used for the implementation. It is an extension of a
measure for object-oriented systems from conceptual models called OO-method Function
Point (OOmFP) [19].

Figure 1 A model-driven approach for developing web applications with an underlying
measurement process.

Measuring the functional size of web applications 9

In the context of the OO-method project [20], efforts have been oriented towards the
development of a new model to enrich OO-method with the required expressiveness to
specify navigation features. This model provides navigational support for object-oriented
web-solution modelling (OOWS) [12]. In the OOmFPWeb proposal, the functional size
measurement of a web application is accomplished by mapping Function Point concepts
defined by the IFPUG [13] to the OOWS conceptual model primitives. As showed in
Figure 1, this mapping is conducted in four steps:

the conceptual models are analysed to determine the application boundary and the
measuring scope

the conceptual models are analysed to identify the data and transactional candidate
function types

the complexity of each identified function is determined. The logical functions are
mapped for low, average and high complexity levels in accordance with IFPUG
tables

the complexity levels are mapped into values. The total value results in unadjusted
OOmFP for the web (OOmFPWeb)

Currently, we are using OOmFPWeb as an unadjusted measure value. As demonstrated in
several empirical studies [21,22], the factors proposed for system adjustment do not
improve the size model or amount of effort, suggesting that a simplified sizing metric
may be appropriate. Now, we introduce the main steps of the OOmFPWeb proposal.

3.1 Applying conceptual models to web application design

When facing the conceptual modelling of a given web application, we have to determine
the components of the object society without being worried about any implementation
considerations. Moreover, it is important to separate the information design from the
behavioural aspects of the application and from the navigational and interface concerns.
Clear separation of concerns is widely regarded as a key factor for obtaining design
quality, as well as ease of maintenance.

According to the OOWS approach (highlighted in Figure 1), we can distinguish two
components: the conceptual model (problem space) and the execution model (solution
space). At the problem space level, a precise system definition is obtained through the
specification of conceptual models that capture the relevant information of a web
application. The following conceptual models are specified: the object model for
structural properties, the dynamic and functional models for behavioural and functional
aspects, the presentation model for user interaction characteristics, and finally, the
navigation model for navigation properties. They describe the object society from five
complementary points of view within a well-defined OO framework.

Object model is a graphic model where system classes are declared, including their
attributes and methods. Aggregation and inheritance hierarchies are also graphically
depicted representing class relationships. Agent relationships are introduced to
specify who can activate each class method. Additionally, legacy views are defined
as a filter placed on a class by a pre-existing software system.

10 S. Abrahão and O. Pastor

Dynamic model specifies valid object lives and interobjectual interaction. To
describe valid object lives, we describe one State Transition Diagram (STD) for each
class. To deal with object interaction, we use an Object Interaction Diagram (OID)
for the entire System.

Functional model captures the semantics associated to the changes of state of the
objects, which are motivated by the method occurrences. This model specifies the
effect of an event on its relevant attributes through an interactive dialogue. The value
of every attribute is modified depending on the action activated, the event arguments
involved, and the current object state.

Presentation model captures the semantics of the user interaction using the following
conceptual interface patterns: introduction, selection (defined or population),
dependency, action selection and information presentation. The three first patterns
are related to the data input in the system by the end-user, whereas the other ones are
related to the manipulation of the environment and to the way the information is
presented. Due to current space limitations, detailed information about these patterns
can be found in [23].

Navigation model is a navigational view over the object model. The navigational
semantics of a web application is captured based on the point of view of each agent
(audience), which is identified in the object model. This model is essentially
composed of a navigational map that represents the global view of the application
for an audience. It is represented by a directed graph where nodes are navigational
contexts and arcs are navigational links. A navigational context represents the
perspective a user has on a subset of the object model, while a navigational link
allows for the navigation from one context to another.

A navigational context is composed by a set of classes stereotyped with the reserved
word «view», connected by navigational relationships. These classes are called
navigational classes and they represent views over specific classes in the object model.
These views make a restriction to a given subset of attributes and services of the involved
classes. For each navigational context there is a main class that is called manager class
from where navigation starts. The others classes are called complementary classes and
they contribute to giving additional information to instances of the manager class. These
classes are connected using navigational relationships, providing related information
between them. There exist two types of navigational relationships: context relationship
and contextual dependency relationship.

A context relationship is a navigational relationship that also defines a directed
navigation from this navigational context towards the target one, where the target class of
the context relationship acts as the manager class. Four kinds of attributes can be
specified to this type of relationship: (a) context attributes, which specifies the target
navigational context of a navigational link, (b) link attributes, which specifies which
attribute of the target class is involved in the connection, (c) role attributes, which
indicates the referenced relationship-role when two classes have more than one
relationship, and (d) filter attributes, which introduces selection criteria on the population
of the target class, based on the value of the involved attribute. In this way, the search for
specific objects is made easier.

In a contextual dependency relationship, the navigational semantic towards the target
class is not defined: this kind of relationship is used to provide the required additional

Measuring the functional size of web applications 11

information in the current context without denoting any further navigation. Thus, it is not
necessary to specify any kind of related information.

Finally, the following information can be specified during the design phase:
population filters and order. A population filter establishes a selection of objects over the
manager class. It is represented by a logical expression evaluated on the state of these
classes. The order primitive indicates a traversal order of the context elements. Detailed
information about the primitives of the navigation model can be found in [12].

From these analysis models, a corresponding formal and OO OASIS specification (the
OO-method design tool) can be obtained in an automated way. This is done through an
automatic translation process. The resultant OASIS specification acts as a complete
system repository, where all the relevant properties of the component classes are
included.

Once we have an appropriate system description, a well-defined execution model (in
the Solution Space level) will fix the characteristics of the final software product, in terms
of user interface, access control, method activation, etc. According to the execution
model a prototype that is functionally equivalent to the specification is built in an
automated way.

3.2 Determining the application boundary and the measuring scope

The application boundary indicates the border between the project being measured, and
the external applications or user domain. It defines what is external and what is internal
to the application according to the user’s point of view. The measuring scope limits
which functionality will be measured in a particular measurement (a subset). A web
application can be understood as a group of logically related functions that fulfill specific
business requirements. Its scopes varies widely: from small web services to large
enterprise applications which are distributed across the internet.

We determine the application boundary from the user view. In OOWS approach, we
build a navigational map for each audience. A navigational map represents the global
view of the application for a specific audience. The proposed mapping rule is to accept
each agent as a user of the WebApp. A measuring scope can include a complete WebApp
(taking into account all navigational maps and agents), a navigational map for a specific
agent (to specify what is perceived by an audience of the WebApp.), or a navigational
context. The first one is applied in a new development whereas the latter in the
restructuring phase of a WebApp (e.g. adaptive or corrective maintenance).

3.3 Determining data and transactional function types

As in FPA, we take into consideration data (OOmFPD) and transactional (OOmFPT)
functions. The meaning and concept of each function type is analogous to FPA. Thus,
given a conceptual model produced at the OOWS conceptual modelling step, OOmFPWeb
is calculated as follows:

Web D TOOmFP OOmFP OOmFP (1)

In adapting function points to OOmFPWeb, we need to map function point concepts to OO
concepts. In the OO paradigm, an object is a collection of data (attributes and properties)

12 S. Abrahão and O. Pastor

and functional logic (methods). The data defines the state of the object and the functional
logic defines the behaviour of the object. In accordance with FPA concepts, data
functions represent the functionality provided by users to satisfy their internal and
external data needs (ILFs and EIFs). The data is a logical group, which is maintained or
modified through transactional functions (EIs, EOs and EQs). Based on these
considerations, we have identified the following functions:

Internal Logical File (ILF): Select every class of an object model as an ILF. In
function point terms, the parts of an object correspond to the logical structure of the
file concept. Optional and mandatory subgroups of files are called Record Element
Types (RETs). An object that is aggregated into (part of) another object constitutes
a subgroup.

External Interface File (EIF): Select every legacy view of an object model as an EIF.
A legacy view is defined as a filter placed on a class by a pre-existing software
system. In general, the base class from which this legacy view is derived is outside
the problem being sized.

External Input (EI): Select each method of a class as a candidate for an EI. A method
is a unit of functional logic contained within an object. The primary intent of an EI
is to maintain one or more ILFs and/or to alter the behaviour of the application.

External Inquiry (EQ): Select each population pattern of a presentation model and
each navigational context of a navigational model as a candidate for an EQ. A
population pattern is used for visualizing the object society of a class. This pattern
models unit of interaction focused on showing sets of instances of a class (an object
collection). A navigational context also can be defined as a user interaction unit. It is
composed by a set of navigational classes connected by relationships. These classes
are views over existing classes in the object model (ILFs).

3.4 Sizing data and transactional function types

As in FPA, the key to developing repeatable predictor counts is a well-defined set of
counting rules. Thus, a functional complexity is assigned to each class and legacy view
according to the number of Data Elements Types (DETs) and the number of record
element types (RETs). The formula for sizing data functions is the following:

D ILF class class EIF lView lView
=1 =1

OOmFP OOmFP DETs ,RETs OOmFP DETs ,RETs
n m

i j
i j

 (2)

In traditional function point, one RET is associated to each ILF or EIF because it
represents a ‘user recognizable group of logically related data’. A DET represents a
‘unique user recognizable, non-recursive field of the ILF or EIF’. Thus, we have
proposed the following counting rules for DET and RET of a class:

DET: for each simple attribute (such as integer and strings) of a class, for each
attribute in the Identification Function (IF) of an association relationship, and for
each attribute in the IF of the superclasses it descends from.

Measuring the functional size of web applications 13

RET: for each class of the object model, and for each multivalued association
relationship.

In the same way, the proposed counting rules for DET and RET identification of a legacy
view are:

DET: for each simple attribute of a legacy view, and for each attribute in the IF of a
univalued association with a class.

RET: for each legacy view of the object model, and for each multivalued association
relationship with a class.

Then, a functional complexity is assigned for each transactional function (EIs and EQs)
based on the number of data element types (DETs) and the number of File Types
Referenced (FTRs). The formula for sizing transactional functions is the following:

T EI method method
1

EQ pPattern pPattern
1

EQ nContext nContext
1 1

OOmFP OOmFP DETs ,FTRs

OOmFP DETs ,FTRs (3a)

OOmFP DETs ,FTRs (3b)

n

i
i

m

j
j
w z

xy
x y

A transactional function represents a user’s interaction with the software system. In
function point terms, a FTR is a file type (ILF or EIF) referenced by a transaction. In
OOmFPWeb, each method of a class is considered an external input (EI). Nevertheless, a
method is counted once (in the class which they are declared), even it is a shared event or
inherited by several subclasses. Shared events affect the state of one or more objects.
They are specified in all the classes that share them, but are sized only once. We have
proposed the following counting rules for DET and FTR identification of a method:

DET: for each simple argument of a method, and for each attribute in the IF of an
object-valued argument (is a complex argument like an object).

FTR: for the class in which is declared, for each object-valued argument of the
method. We have also proposed a set of optional counting rules that take into
account the dynamics for a method specified in the dynamic and functional models.
More information about these rules can be obtained in [19].

In this previous work, we also have proposed counting rules for counting the DETs and
FTRs for each pattern of a presentation model. In fact, the functions described at the
moment provide the functional size of an OO system. We consider navigation as a critical
feature in the conceptual modelling of WebApps.

Then, in order to measure the functional size of a web application we have
incorporated the counting rules related with the navigational model (see the part (b) of the
formula (3)), where, x corresponds to each navigational context of a navigational map,
and y corresponds to each navigational map of a navigational model. The proposed
counting rules for DET and FTR of a navigational context are:

14 S. Abrahão and O. Pastor

DET: for each attribute of all navigational classes that appears in the context; for
each attribute of a context relationship; for each context relationship or contextual
dependency relationship that has the source the class that is being sized; for each
method that can be performed; and finally, for the traversal ordering of the elements
of the context.

FTR: for each navigational class that appears in the context; for each navigational
class referenced in the definition of a filter attribute (in a context relationship); for
each class referenced in the population filter formula.

Concluding, the OOmFPWeb are arrived at by considering four basic functions (ILFs,
EIFs, EIs, and EQs), each at one of three levels: low, average or high. We may express
this as follows:

4 3

Web
1 1

OOmFP ij ij
i j

w c (4)

where cij is the count for component i at level j (e.g., inputs at low complexity) and wij is
the fixed weight assigned by IFPUG tables [13]. Using the counting rules described
above, we are able to predict the functional size of a WebApp. One advantage of our
approach is that the measurement process takes into account all the characteristics (static
and dynamic) of complex web applications captured by the different primitives of the
conceptual models.

4 Conclusions and future work

We have introduced a measure for estimating the functional size of web applications
from a model-based software production environment. We have presented the counting
rules that support this measuring process. The contribution of our work is to provide a
measuring process that can be done on the conceptual schema: in consequence, the size
of the WebApp is calculated in the problem space, improving the conventional
approaches, that historically focus on the final software product.

Despite their use by researchers and their growing acceptance in practice, the
traditional FPA measures are not without drawbacks [21,22,24]. However, the use of
OOmFPWeb in a model-based code generation environment can solve some limitations of
the traditional measuring process, such as:

Changing requirements. As reported by Kemerer [24], if we compare a function-
point count generated from an initial specification with the count obtained from the
resulting system, we can find an increase of 400–2000%.

Difficulty to automation. The original approach does not easily automate data
collection.

In our approach, a specification described in the problem space has a concrete
correspondence in the final software product. Thus, a size measurement made in the
conceptual level is equivalent to a measurement made in the final web application. This
characteristic corresponds to a technological support that bridges the gap between high-
level design and low-level implementation. This is possible due to the model-based code

Measuring the functional size of web applications 15

generation features of the OOWS approach, which generates a final web application from
an object-oriented conceptual schema in a semi-automated way.

Currently, we are applying this measure to several real-world applications. The
experience gained has allowed us to put this measure into practice and to refine the
proposed counting rules. A prototype that automates the counting process has been
implemented and applied in an industrial environment [19]. Moreover, we are using this
metric to predict the size of changes of evolving WebApps in the context of a
methodology for quality evaluation called WebFP_QEM [25]. It can be a useful approach
for assessing the functional size of the functions that are added or deleted after a
restructuring of a WebApp. Consequently, the maintenance cost of the web application
can be estimated.

There are many issues we need to address in the future: to design experiments in
order to empirically validate the presented metric taking into account the observations
pointed out in [21,22]; to calibrate the complexity tables proposed by IFPUG; and to
define a cost estimation model [26] that integrates the OOmFPWeb metric in a disciplined
and repeatable manner.

References

1 Ginige, A. and Murugesan, S. (2001) ‘Web engineering: an introduction’, IEEE Multimedia,
Vol. 8, No. 1, pp. 14–18.

2 Ceri, S., Fraternali, P. and Bongio, A. (2000) ‘Web modeling language (WebML): a modeling
language for designing Web sites’, Proc. 9th International WWW Conference, Amsterdam,
Holland, pp. 137–157.

3 De Troyer, O. and Leune, C. (1997) ‘WSDM: A user-centered design method for web sites’,
Proc. of the 7th International World Wide Web Conference, Brisbane, Australia.

4 Schwabe, D. and Rossi, G. (1995) ‘The object-oriented hypermedia design model’,
Communications of the ACM, Vol. 38, No. 8, pp. 45–46.

5 Cutter Consortium (2000) ‘Poor project management – problem of e-projects’, October,
http://www.cutter.com/consortium/press/001019.html.

6 Zelnick, N. (1998) ‘Nifty technology and nonconformance: the web in crisis’, Computer,
October, pp. 115, 116 and 119.

7 Offutt, J. (2002) ‘Quality attributes of web software applications’, IEEE Software, Vol. 19,
No. 2, pp. 25–32.

8 Reifer, D. (2000) ‘Web development: estimating quick-to-market software’, IEEE Software,
Vol. 17, No. 6, pp. 57–64.

9 Symons, C. (2000) ‘E-commerce changes the economics of software production’, Newsletter
of Software Measurement Services, No. 6, Spring.

10 Albrecht, A.J. (1979) ‘Measuring application development productivity’, IBM Application
Development Symposium, pp. 83–92.

11 Low, G.C. and Jeffery, D.R. (1990) ‘Function points in the estimation and evaluation of the
software process’, IEEE Transaction on Software Engineering, Vol. 16, No. 1, pp. 64–71.

12 Pastor, O., Abrahão, S.M. and Fons, J.J. (2001) ‘Object-oriented approach to automate web
applications development’, Proc. 2nd Int. Conference on Electronic Commerce and Web
Technologies (EC-Web’01), Springer Verlag, Germany, pp. 16–28.

16 S. Abrahão and O. Pastor

13 IFPUG (1999) Function Point Counting Practices Manual, Release 4.1, International Function
Points Users Group (IFPUG), Mequon, Wisconsin, USA.

14 Cleary, D. (2000) ‘Web-based development and functional size measurement’, Proc. IFPUG
Annual Conference, San Diego, USA.

15 Cost Xpert Group, Inc., (2002) ‘Estimating Internet development’, http://www.costxpert.com/
Reviews_Articles/SoftDev/.

16 Cowderoy, A. (2000) ‘Measures of size and complexity for web-site content’, Proc. of
European Software Control and Metrics (ESCOM’2000), Munich, Germany.

17 Basili, V.R. and Rombach, H.D. (1988) ‘The TAME project: towards improvement-oriented
software environments’, IEEE Transactions on Software Engineering, Vol. 14, No. 6,
pp. 758–773.

18 Mendes, E., Mosley, N. and Counsell, S. (2001) ‘Web metrics – estimating design and
authoring effort’, IEEE Multimedia, Vol. 8, No. 1, pp. 50–57.

19 Pastor, O., Abrahão, S.M. et al. (2001) ‘A FPA-like measure for object-oriented systems from
conceptual models’, Proc. 11th International Workshop on Software Measurement
(IWSM’01), Montréal, Canada, Shaker Verlag, pp. 51–69.

20 Pastor, O., Gómez, J., Insfrán, E. and Pelechano, V. (2001) ‘The OO-method approach for
information systems modelling: from object-oriented conceptual modeling to automated
programming’, Information Systems, Vol. 26, No. 7, pp. 507–534.

21 Abran, A. and Robillard, P.N. (1996) ‘Function points analysis: an empirical study of its
measurement processes’, IEEE Transactions on Software Engineering, Vol. 22, No. 12,
pp. 895–910.

22 Jeffery, R. and Stathis, J. (1996) ‘Function point sizing: structure, validity, and applicability’,
Empirical Software Engineering, Vol. 1, No. 1, pp. 11–29.

23 Molina, P., Melia, S. and Pastor, O. (2002) ‘Just-UI: a user interface specification model’,
Proc. of 4th International Conference on Computer-Aided Design of User Interfaces, France.

24 Kemerer, C.F. (1993) ‘Reliability of function point measurement: a field experiment’,
Communications of the ACM, Vol. 36, No. 2, pp. 85–97.

25 Abrahão, S., Olsina, L. and Pastor, O. (2002) ‘A methodology for evaluating quality and
functional size of operative WebApps’, Proc. of 2nd International Workshop on Web Oriented
Software Technology, ECOOP Workshops, Malaga, Spain, pp. 1–20.

26 Kitchenham, B. (1993) ‘Using function points for software cost estimation – some empirical
results’, Proc. of the 10th Annual Conference of Software Metrics and Quality Assurance in
Industry.

