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Abstract—The proposed method develops a fuzzy rule-based
classifier that was tested using features for islanding detection
in distributed generation. In the developed technique, the initial
classification boundaries are found out by using the decision tree
(DT). From the DT classification boundaries, the fuzzy member-
ship functions (MFs) are developed and the corresponding rule
base is formulated for islanding detection. But some of the fuzzy
MFs are merged based upon similarity the measure for reducing
the fuzzy MFs and simplifying the fuzzy rule base to make it more
transparent. The developed fuzzy rule-based classifier is tested
using features with noise up to a signal-to-noise ratio of 20 dB and
provides classification results without misdetection, which shows
the robustness of the proposed approach for islanding detection
for distributed generations in the distribution network.

Index Terms—Decision tree, fuzzy rule base, islanding detection,
similarity measure.

I. INTRODUCTION

NTEGRATIONS of distributed generations (DGs) in the
distribution network is expected to play an increasingly
important role in the electric power system infrastructure
and market. As more DG systems become part of the power
grid, there is an increased safety hazard for personnel and
an increased risk of damage to the power system. Despite
the favorable aspects grid-connected DGs can provide to the
distribution system, a critical demanding concern is islanding
detection and prevention. Islanding is a condition where the DG
supplies power and is not under the direct control of the utility.
Islanding detection techniques may be classified as passive or
active. Passive techniques use information available at the DG
side to determine whether the DG system is isolated from the
grid. The advantage of passive techniques is that the implemen-
tation does not have an impact on the normal operation of the
DG system. Active techniques introduce an external perturba-
tion at the output of the inverter. These tend to have a faster
response and a smaller nondetection zone compared to passive
approaches. However, the power quality (PQ) of the inverter can
be degraded by the perturbation.
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Different method for islanding detection techniques [1]-[10]
have been reported in recent years. Some of the papers pro-
vides [2], [3] detailed review of islanding detection for DGs
in distributed networks. The islanding detection based upon the
rate-of-change of power signal [1], the rate-of-change of voltage
and change in power factor [8], the vector surge technique [5],
the rate-of-change of frequency [6], the phase-shift method [7],
the harmonic impedance estimation technique [8] have attracted
wide spread attention. For ROCOF relays, the rate of change
of frequency is calculated within a measurement window and
used to detect islanding operation. The ROCOF relays, however,
may become ineffective if the power imbalance in the islanded
system is less than 15%, resulting in a high risk of false detec-
tion [6].

The proposed approach is based on the passive method of
islanding detection considering the data mining approach. The
method includes building a simplified and robust fuzzy classi-
fier initialized by the decision tree (DT) [11]-[15] for islanding
detection. As a result of the increasing complexity and dimen-
sionality of classification problems, it becomes necessary to deal
with structural issues of the identification of classifier systems.
Important aspects are the selection of the relevant features and
determination of effective initial partition of the input domain.
Moreover, when the classifier is identified as part of an expert
system, the linguistic interpretability is also an important aspect
which must be taken into account. The first two aspects are often
approached by an exhaustive search or educated guesses, while
the interpretability aspect is often neglected. Now the impor-
tance of all these aspects is recognized, which makes the auto-
matic data-based identification of classification systems that are
compact, interpretable, and accurate.

DT-based classifiers perform a rectangular partitioning
of the input space while the fuzzy models generate nonaxis
parallel decision boundaries. Hence, the main advantage of
rule-based classifiers over crisp DTs, is greater flexibility of the
decision boundaries. Therefore, fuzzy classifiers can be more
interpretable compared to DT classifiers. Generally the initial-
ization steps of the identification of the fuzzy model become
very significant. Common methods for such as grid-type [16]
partitioning and rule generation on extrema initialization [17],
result in complex and noninterpretable initial models. To avoid
such problems, a crisp decision tree, having high performance
and computational efficiency, is proposed for initial partitioning
of the input domain for the proposed fuzzy model.

In the proposed approach, two major steps are involved. In the
first step, features are extracted and in the second step, classi-
fication task is performed for islanding detection. Thus, feature
selection is one of the important tasks involved in the proposed
approach. Different techniques have been proposed [1], [5]-[10]
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which work on one of the estimated parameter. Thus, we have
derived all possible features such as change in power, change in
voltage, rate of change of power, rate of change of voltage, total
harmonic distortion (THD) (current), THD (voltage), change in
power factor, etc., could be affected by islanding and can be
measured locally at the target location.

The derived features [18] are used as inputs to the DT for
deciding the most significant features which take part in the de-
cision-making process and the initial classification boundaries.
From the DT classification boundaries of the most significant
features, trapezoidal fuzzy membership functions are developed
and corresponding rule base is formed for classification. But
some of the fuzzy MFs are merged depending upon the sim-
ilarity measure and thus reducing the number of fuzzy MFs.
From the reduced fuzzy MFs, a simplified fuzzy rule base is
developed for islanding detection.

Sections II-V deal with the system studied, DT transforma-
tion to fuzzy rule base, computational results, discussion and
conclusions.

II. STUDIED SYSTEM AND FEATURE EXTRACTION

The system studied for the proposed method is shown in Fig.
1. The details of the studied system are given as follows. The
base power has been chosen as 20 MVA.

* Generators data:

Equivalent System S: rated short-circuit MVA = 1000,
f = 60 Hz, rated kV = 69, V25 = 69 kV.

Generators DG and DG2: rated MVA = 10, f = 60 Hz,
54 poles, Yn, rated kV = 13.8, Vpase = 13.8 kV, In-
ertia constant H = 3.0 Sec., Ry = 0.0025 pu, Xy =
0.113 pu, Ry = 0.001 pu, X7 = 0.15 pu, X4 = 1.028 pu,
X, = 0.654 pu, X} = 0.34 pu, X(’I = 0.654 pu, X/ =
0.253 pu, X(']’ = 0.298 pu, T, = 7.5, T(;O = 0s,
Ty, = 0.07s, Tyg = 0.09 5.

* Power Transformers data:

Transformer T1:rated MVA = 25, f = 60 Hz, rated kV =
69/13.8, Dynl, Viae = 13.8 kV, Ry = 0.00375 pu,
X1 =0.1pu, R,, = 500 pu, X,, = 500 pu.

e Transformer T2 and T3: rated MVA = 10, f = 60 Hz,
rated kV = 13.8/13.8, Yndl, Viase = 13.8 kV, Ry =
0.00375 pu, X7 = 0.1 pu, R,, = 500 pu, X,, = 500 pu.

» Transmission lines data:

Rated kV = 13.8, rated MVA = 20, Viase =
13.8 kV, Ry = 0.0414 ohms/km), R;;, =
0.0138 ohms/km, Xop, = 0.0534 ohms/km,
X1z = 0.0178 ohms/kmXycr, = 5.1 nF/km,
Xicr = 17 nF /km, Line 1 = 20 km, Line 2 = 10 ki,
Line 3 = 10 km.

e Normal Loading data:

(RatedkV =13.8) L—1=10MW,3.5MVAR. L -2 =
5.0 MW, 2.0 MVAR. L — 3 = 5.0 MW, 2.0 MVAR.
L —4=50MW, 2.0 MVAR.

The various features are collected at the DR, with different
operating conditions of the network. Normally, the indices are
chosen to include all possible sensitive system parameters that
could be affected by islanding and that can be measured locally.
In the proposed technique, the following 11 features are chosen
and defined for any target distributed resource DR,
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Fig. 1. Power distribution system with multiple DG (distributed generations)
interface. The target islanding location is shown at DR..

x1 = Af is the frequency deviation (Hz)

x9 = AV is the voltage deviation (pu).

x3 = (Af/At) is the rate-of-change of frequency (Hz/s).

x4 = (AV /At) is the rate-of-change of voltage (pu/s).

x5 = (AP/At) is the rate-of-change of the DR, power
(MW/s).

z¢ = (Af/AP) is the rate-of-change of frequency over

power (Hz/MW).

x7 = CTHD is the total harmonic distortion of the current
(pw.

xg = VIT'HD is the total harmonic distortion of the voltage
(pw.

x9 = Apf is the power factor deviation under.

210 = (U -cos(phi)) is the absolute value of the phase-
voltage times power factor (pu).

211 = (A (U - cos(phi))/At) is the gradient of the of the
voltage times power factor (pu/s).

The aforementioned features are extracted under different is-
landing and nonislanding conditions of the network as follows.

1) Condition-1: Tripping of the circuit breaker CB-1 to
simulate the condition of islanding of the DG with the
PCC bus loads.

2) Condition-2: Tripping of the circuit breaker CB-2 (iso-
lating the PCC bus loads) to simulate disturbances on
the DG.

3) Condition-3: Tripping of the circuit breaker CB-3 to
simulate the islanding of the DG without the PCC- bus
loads.

4) Condition-4: Three-phase fault on the GEN_BUS with
instantaneous (1 cycle) fault-clearing time by the CB-1
which, in turn, causes islanding of the DG.

5) Condition-5: Sudden decrease of the loading on the
target distributed resource DR, by 40%.

6) Condition-6: Tripping of the largest distributed resource
within the DG other than the target one.

Each condition of these events is simulated under different
operating conditions of the DG and power system network. The
operating conditions are given as follows.

Normal loading (Zs = j0.02 pu) with normal PCC-bus
loading (P = 0.5 pu, @ = 0.175 pu).

Normal loading (Zs = j0.02 pu) with minimum PCC-bus
loading (P = 0.3 pu, @ = 0.105 pu).

Normal loading (Zs = j0.02 pu) with maximum PCC-bus
loading (P = 0.625 pu, @ = 0.22 pu).
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Minimum loading (Zs = j0.05 pu) with normal PCC-bus

loading (P = 0.5 pu, @ = 0.175 pu).

Minimum loading (Zs = 3j0.05 pu) with minimum

PCC-bus loading (P = 0.3 pu, @ = 0.105 pu).

Minimum loading (Zs = 30.05 pu) with maximum

PCC-bus loading (P = 0.625 pu, @ = 0.22 pu).

Maximum loading (Zs = j0.01 pu) with normal PCC-bus

loading (P = 0.5 pu, @ = 0.175 pu).

Maximum loading (Zs = 30.01 pu) with minimum

PCC-bus loading (P = 0.3 pu, @ = 0.105 pu).

Maximum loading (Zs = 30.01 pu) with maximum

PCC-bus loading (P = 0.625 pu, Q@ = 0.22 pu).

From the aforementioned conditions, various features are de-

rived and used to train the DT for generating initial classification
boundaries to develop the fuzzy rule base for islanding detection.

III. DECISION TREE FOR INITIAL CLASSIFICATION

DT [11]-[15] is a classifier in high dimensions. Each internal
node in the tree tests the value of a predictor while each branch
of the tree represents the outcome of a test. The terminating
nodes, also referred to as leaf nodes, represent a classification.
The number of predictors, used in the classification problem,
indicates the dimension of the problem. Associated with each
decision (leaf) of the tree is the confidence of the decision. This
is simply a measure of the ratio of the particular class to all the
classes present in the dataset for that node.

The proposed approach uses the “Insightful Miner” [19]
software package for generating DT for classification. In-
sightful Miner is a powerful, scalable, data mining and
analysis workbench that enables organizations to deliver cus-
tomized predictive intelligence where and how it is needed. Its
easy-to-use interface is specifically designed for statisticians
and business analysts without specialized programming skills.
With Insightful Miner, one can quickly find the answers you
need to solve specific business issues and easily communicate
your results to colleagues across the organization. As data sets
increase in size, traditional data mining tools become less and
less efficient for analysis, and in these situations Insightful
Miner performs better providing a rich statistical analysis and
graphics capability. Thus, this has been chosen for developing
DT structure for the proposed study.

The DT analysisis carried out with most splitting setting taking
all the extracted features and provides the most significant fea-
tures which take part in the decision-making process. It is found
that though there are 11 features fed to the DT, but finally only
three features (A f /At, AP/ At, A f)areused todevelop the clas-
sification tree as shown in Fig. 2. Thus, DT provides information
on the mostsignificant features (3 features) which take partinreal
decision-making process, leaving rest 8 features redundant. From
the classification boundaries of the most significant features re-
sulted from DT, fuzzy membership functions are developed and
used in fuzzy rule base for islanding detection.

IV. DT TRANSFORMATION INTO THE FUZZY RULE BASE

The DT is transformed to a fuzzy rule base by developing the
fuzzy membership functions [20] from the partition boundaries
of the DT. From the DT boundaries, rectangular MFs are devel-
oped for each independent variable. For illustration, consider
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Af 1At <2.18

Y?/ No

AP/ At <0.64 Class-1

Class-1

Class-0

Class-1

Fig. 2. DT-based islanding detection. Class-1 means islanding and class-0
means nonislanding.

the DT classification boundaries shown in Fig. 3(a). The asso-
ciated trapezoidal fuzzy MFs [Fig. 3(b) and (c)] are developed
for variables X; and X> as follows:

Ay :H{X17[0707a7a]}
As =p{Xy,]a,a,c ]}
By =1 {X2,[0,0,b,0]}
By :M{X27[b7b7d7 d]}

T —a d—=x
b—a71’d—c>)' M

From the fuzzy MFs, a simple rule base can be generated for
classes 1 and 2 as follows:

where

wi (Xj;a,b,c,d) = max <0,min (

If X1 is Ay and X5 is By, then Class—1(C' — 1)
If X; is As and X5 is Bs, then Class—2 (C — 2).

From the aforementioned DT-fuzzy transformation tech-
nique, the resulting DT output (Fig. 2) is converted to the
corresponding fuzzy rule base. The most significant features
Af/At, AP/At, Af are considered as X;, Xo and X3,
respectively. Depending upon the values of the above three
variables, the classification boundaries are decided for islanding
detection. Thus, when X is greater than 2.18, then the class
is “1”. If Xy is less than 2.18 and X5 less than 0.64, then the
class “1”. If X5 is greater than 0.64 and X3 less than 0.1664,
then class “0”, otherwise class “1”. From the DT boundaries,
trapezoidal MFs are developed for each variable (X3, X5 and
X3). The fuzzy MFs developed for variable X are A1 and Ao,
for Xy are B1, B>, and B3 for X3 are C1, C5.

Per the above formulations, the rectangular MFs are derived

as
Ay =p{X1,[2.18,2.18,34.0,34.0]}
Ay =p{X1,[-9.5,-9.5,2.18,2.18]}
By = p{X,,[0.64,0.64,19.0,19.0]}
By = p{X,,[-0.5,-0.5,19.0,19.0]}
Bs = 1 {X>,[—0.5,—0.5,0.64,0.64]}
Cy =1 {Xs,[0.16,0.16,0.6,0.6]}
Cy = {X3,[~0.05,-0.05,0.16,0.16]} .
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The fuzzy MFs generated from the DT classification bound-
aries are rectangular in nature. But to further add fuzziness to the
membership functions, the rectangular boundaries are skewed
to a certain extent by heuristic tuning. The coordinates of the
trapezoidal fuzzy MFs are decided after testing on several values
around the initial values resulting from DT. Thus, the final fuzzy
MFs are

Ay =p{Xy,[2.18,2.3,30.0,34.0]}

Ay =p{X1,[~9.5,—-8.5,1.95,2.18]}
By = p{X>,[0.64,0.60,18.0,19.0]}

By = {X5,[~0.5,-0.4,18.0,19.0]}
Bs = {X5,[~0.5,-0.4,0.55,0.64]}
Cy = p{X;3,[0.16,0.2,0.5,0.6]}

Cy = p{X3,[-0.05,-0.03,0.12,0.16]} .

The corresponding fuzzy rule base is developed for each clas-
sification category and given as follows:

R1: If X;is Ay and X5 is By, then Class—1
R2: 1If X;is Ay and X5 is Bs, then Class—1
R3: If X;is Ay and X5 is B; and

X3 is C1, then Class—1
R4 : 1If X, is Ay and X5 is By and

X3 is C9, then Class—0.

In fuzzy rule-based models acquired from numerical data,
redundancy may be present in the form of similar fuzzy sets
that represent compatible concepts. This results in an unnec-
essarily complex and less transparent linguistic description of
the system. By using a measure of similarity [21], a rule base
simplification method is proposed that reduces the number of
fuzzy sets in the model. Similar fuzzy sets are merged to create
a common fuzzy set to replace them in the rule base. If the re-
dundancy in the model is high, merging similar fuzzy sets might
result in equal rules that also can be merged, thereby reducing
the number of rules as well.

The similarity measure based on the set-theoretic operations
of intersection and union, can be expressed as follows:

ANB

SAB) =305

2
where |-| denotes the cardinality of a set, and the “N” and “U”
operators represent the intersection and union, respectively.
Rewriting this expression in terms of the membership functions
gives

NgE

[a(z;) A pp(z))]

Il
=

2

»~

=
I

3)

NE

[a(z;) vV pp(z;)]

J

Il
=

in a discrete universe X = {z;,j = 1,2,...,m}, and “A” and
“V” are the minimum and maximum operators, respectively.
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Fig. 3. (a) Decision boundaries of the DT between X'y and X». (b) Fuzzy MF
of X;. (c) Fuzzy MF of X.

H(X2)
1.0

-0.5 0.64 19.0

X:
Fig. 4. Fuzzy MFs of X after merging.

Based on the aforementioned criteria, the fuzzy membership
function of set “B;” and “Bs” are merged with a similarity mea-
sure of 0.9152 to provide another common fuzzy nembership
function W = p {X5,[—0.5,0.1,18,19]}, shown in Fig. 4.

After merging, there are 6 fuzzy MFs instead of the originally
developed 7 MFs. Depending upon the new fuzzy MFs, the rule
base is simplified to

R1: If Xyis Ay and X5 is W, then Class—1
R2: 1If Xy is As and X5 is B3, then Class—1
R3: If Xjis Ay and X> is W and

X3 is C1, then Class—1
R4: If X;is Ay and X5 is By and

X3 is C5, then Class—0.
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(mamdani)
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FIS Name: FIS Type: mamdani

And method m Current Variabile

Or method [ﬁ Name |x10)
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Range [1035]

Angregation max v

Defuzzification limw 3 Help | Close
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3. G is a2) and (<200 is w) and (x3(0) is 1) then (m(i) ism1) (1)
4.1 (x1(0) is a2) and (x200) is w) and (x3(0) is c2) then (m(i) is m2) (1)

Fig. 5. Fuzzy inference system for islanding detection.

V. RESULTS AND DISCUSSION

The details of the fuzzy inference system developed for is-
landing detection are shown in Fig. 5. The mamdani model with
centroid defuzzification is used for implementing the rule base.

Table I provides the test results for different conditions of
inputs X1, X5, and X3 for islanding detection. The FIS pro-
vides 0.5 for islanding detection and O for nonislanding detec-
tion. Table II depicts the classification accuracy for data with
and without noise. The classification accuracy is 100% on 36
test cases of different conditions for features without noise and
with SNR 30 dB. The misdetection and false alarm using only
DT is given in bracket (Table III). The misdetection and false
alarm conditions for the testing data sets with and without noise
have been given in Table III. It is found that there is no mis-
detection and false alarm in the case of data sets without noise
and with SNR 20 dB (Gaussian noise). Only two false alarms
are generated in the case of data sets with SNR 20 dB. Thus,
the proposed DT initialized fuzzy rule base is found to be ac-
curate and robust for islanding detection. The flowchart for the
proposed scheme for islanding detection is given in Fig. 6.

The proposed fuzzy rule base is found to be accurate and
robust for islanding detection for wide variations in oper-
ating parameters of the distribution network. Although the
DT-fuzzy-based approach provides similar results compared to
DT only (for our studied database), the fuzzy transformation
helps to improve the interpretability of knowledge-based clas-
sifiers through its semantics that provide insight in the classifier
structure and decision-making process over crisp classifiers.
In case of DT only used for the islanding detection task, the
scheme is based on an offline decision-making process (a data
mining approach) where final implementation is based on the
threshold values of the corresponding features of DT output.
But in the proposed approach, DT is used for selecting most
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Voltage and Current
signals retrieved at
target DG position

Af 1 At AP At Af

oy

Fuzzy Rule base
initialized by DT
for islanding detection

0.5
Islanding Non-Islanding
condition condition

Fig. 6. Flowchart for the proposed fuzzy rule-based scheme for islanding de-
tection.

TABLE I
FIS OUTPUT FOR DIFFERENT TEST CONDITIONS
Sl. X4 X2 X3 Actual FIS
No condition output
1 11.5 -0.15 0.44 Islanding 0.5
2 -7.5 -0.48 0.09 Islanding 0.5
3 1.9e-5 2.1 1.0e4 Non-Islanding 0
4 1.8e-5 6.0 1.7e-4 Non-Islanding 0
5 3.3 -0.145 | -0.014 Islanding 0.5
6 4.6 -0.19 -0.022 Islanding 0.5
7 31 11 -0.048 Islanding 0.5
8 -0.39 4.3 0.0015 | Non-Islanding 0
9 -0.35 4.05 0.0017 | Non-Islanding 0
10 1.2 6.8 0.03 Non-Islanding 0

significant feature and classification boundaries, which are
done offline from various derived features. From the DT classi-
fication boundaries of the most significant features, fuzzy MFs
and the corresponding rule base are formulated for islanding
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TABLE II
CLASSIFICATION RESULTS ON TESTING DATA SETS

Features without noise
No of Actual Islanding Non- Classification
cases Class islanding Accuracy(%)
18 Islanding 18 0 100
18 Non- 0 18 100
islanding
Features with SNR 30 dB
18 Islanding 18 0 100
18 Non- 0 18 100
islanding
Features with SNR 20 dB
18 Islanding 18 0 100
18 Non- 2 16 88.89
islanding
TABLE III
MISDETECTION VERSUS FALSE ALARM
Test data sets Mis-Detection False Alarm
36 0(0) 0(0)
36 (SNR 30 dB) 0 (0) 0(0)
36 (SNR 20 dB) 0 (0) 2 (0)

detection. Thus, for final implementation, only three features
are derived at the target DG location and directly fed to the
fuzzy inference system for islanding detection as shown in
Fig. 6.

The proposed fuzzy rule-based classifier is easier to imple-
ment for online islanding detection compared to DT only, since
DT is an offline data mining algorithm. Also the fuzzy rule base
can handle more uncertainties (like noise), which falls on the
slope of the fuzzy trapezoidal MFs, compared to the crisp clas-
sifiers such as DT having sharp boundaries, with a larger data
base. Thus, the superior approximation capabilities of the fuzzy
systems over crisp classifiers help to develop the relay to meet
the real time application with wide range of uncertainties. The
fuzzy MFs can be further tuned to remove redundancy in the
model using the real coded genetic algorithm and are being con-
sidered for real-time implementation.

VI. CONCLUSION

A DT-initialized fuzzy rule base classifier is proposed for is-
landing detection. The initial classification model is developed
using DT which is a crisp decision tree algorithm. The DT is
transformed into a fuzzy rule base by developing fuzzy MFs
from the DT classification boundaries. The fuzzy MFs reduction
and rule base simplification are performed using similarity mea-
sure. The proposed method is tested on data with and without
noise and found to provide 100% islanding detection. As the on-
line implementation is easier with a fuzzy rule-based approach,
it is thus suitable for developing real time relay for islanding de-
tection in a large power network.
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