
770 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 6, JUNE 2014

Constraint-Aware Approach to
Web Service Composition

PengWei Wang, ZhiJun Ding, ChangJun Jiang, and MengChu Zhou, Fellow, IEEE

Abstract—The creation of value-added services by automatic
composition of existing ones is gaining significant momentum
as the potential silver bullet in service-oriented computing. A
large number of composition methods have been proposed,
and most of them are based on the matching of input and
output parameters of services only. However, most services in the
real world are not universally applicable, and some applicable
conditions or restrictions are imposed on them by their providers.
Such constraints have a great impact on service composition, but
have been largely ignored by the existing methods. In this paper,
they are discussed and defined, and a simple formal expression
is adopted to describe them. Two novel concepts, called service
intension and service extension, are presented, which allow one
to divide the basic elements of a web service definition into two
parts. Consequently, their use allows us to propose a constraint-
aware service composition method in which service constraints
are well taken care. The proposed solution includes a graph
search-based algorithm and two novel preprocessing methods. A
publicly available test set from ICEBE05 is used to evaluate and
analyze the proposed methodology.

Index Terms—Service composition, service constraint, service
extension, service intension, web services.

I. Introduction

SERVICE-ORIENTED COMPUTING (SOC) is a new
computing paradigm that utilizes services as the basic

constructs to support the development of rapid, low-cost,
interoperable, evolvable, and easy composition of distributed
applications even in heterogeneous environments. It promotes

Manuscript received January 11, 2013; revised April 10, 2013, accepted
May 30, 2013. Date of publication October 18, 2013; date of current version
May 13, 2014. This work was supported in part by the National Basic
Research Program of China (973 Program) under Grant 2010CB328101,
in part by the National Natural Science Foundation of China under Grant
91218301 and Grant 61173042, in part by the Shanghai Science and Technol-
ogy Research Plan of China under Grant 10DJ1400300, in part by the Rising-
Star Program of the Shanghai Science and Technology Commission under
Grant 12QH1402300, and in part by the Shu Guang Project supported by
the Shanghai Municipal Education Commission and the Shanghai Education
Development Foundation. This paper was recommended by Associate Editor
N. T. Nguyen. (Corresponding author: C. J. Jiang.)

P. W. Wang, Z. J. Ding, and C. J. Jiang are with the Department of Computer
Science and Technology, Tongji University, Shanghai 201804, China, and also
with the Key Laboratory of Embedded System and Service Computing, Min-
istry of Education, Shanghai 201804, China (e-mail: pwei.wang@gmail.com;
zhijun−ding@hotmail.com; cjjiang@tongji.edu.cn).

M. C. Zhou is with the Key Laboratory of Embedded System and Service
Computing, Ministry of Education, Tongji University, Shanghai 201804,
China, and also with the Department of Electrical and Computer Engineer-
ing, New Jersey Institute of Technology, Newark, NJ 07102 USA (e-mail:
zhou@njit.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2013.2280559

the idea of assembling application components into a network
of services that can be loosely coupled to create flexible,
dynamic business processes, and agile applications that span
organizations and computing platforms [33], [34]. Service-
oriented architecture (SOA) is its fundamental architectural
model that supports it from the architecture perspective [61].
Therefore, SOC is a computing paradigm and SOA is its
conceptual-level architectural model, which means that they
need to be implemented by some specific technologies. Web
service technology is such one that is widely accepted and
very promising. Web services are well-defined, self-contained,
platform-independent, reusable modules that provide standard
business functionality. They can be published, discovered,
located, invoked, and loosely coupled across the web, and
facilitate the integration of newly built and legacy applications
both within and across organizational boundaries [2]. With
the emergence and development of SOA and web services
technology, more and more companies and organizations ex-
pose their business applications in the manner of well-defined
services. However, to improve the reusability and simplify
the application logic, atomic web services are often simple,
and can only provide limited functionality, which cannot
always satisfy the personalized and diversified needs of users
and appropriately reflect the intricate and flexible business
processes. Thus, the ability to efficiently and effectively select
and integrate interorganizational and heterogeneous services
is important toward the development of web service appli-
cations [38].

The creation of value-added services by composing existing
ones is a significant trend that has triggered considerable
research efforts on web service composition in both academia
and industry. Web service description language (WSDL) [56],
universal description, discovery, and integration [50], simple
object access protocol [42], and part of OWL-S [31] ontology
(ServiceProfile and ServiceGrounding) define standards for
service description, discovery, and messaging protocols. Note
that OWL stands for Ontology Web Language. However,
these standards do not deal with the composition of existing
services. One of industrial initiatives to address this issue
is web services business process execution language (WS-
BPEL, originally known as BPEL4WS, BPEL for short) [55],
which is an XML-based language supporting process-oriented
composition. Another one is OWL-S ServiceModel, which
comes from the semantic web community. These initiatives
mainly handle service composition where the process flow and
bindings between services are known in advance.

2168-2216 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Downloaded from http://www.elearnica.ir



WANG et al.: CONSTRAINT-AWARE APPROACH TO WEB SERVICE COMPOSITION 771

Despite all these efforts, web service composition is still
a highly complex task. Especially, web services are created
and updated on the fly nowadays, and it is thus beyond
our ability to analyze them and generate the composition
plan manually [38]. A large number of methods have been
proposed to tackle this problem [6], [10], [23], [25], [26], [29],
[30], [35]–[37], [39], [41], [48], [51], [57], [65]–[71]. Among
them, dynamic composition methods can generate a process
model automatically. In the existing methods for automatic
service composition, the requirements of users mainly include
the available inputs that they can provide, the outputs that
they expect, and the quality of service (QoS) standards that
they require. Moreover, some studies [43], [44], [51]–[53]
have considered user preferences in the requirements, which
are a key component of web service composition. These
requirements, including available inputs, required outputs, QoS
standards, and preferences, are all provided explicitly by users
at the beginning, and the composition of services is guided by
this information. In fact, some other user-related information
can also greatly affect the composition of services, but often is
not given explicitly by users at the beginning. This information
is mainly some context conditions, which are often related to
users and implicit in the service composition scenarios. For
example, in an online shopping scenario, the user’s mem-
bership level, the total amount of the order, and the user’s
credit card balance are likely to affect the composition of
services. Because of their different values or results, different
services may be selected to participate in the subsequent
composition. In such situations, a common one is that some
available services have the same or similar functions, and
may even have the same inputs and outputs, but they can
adapt to different results or values of these user-related con-
ditions or constraints implied in the context of such business
scenarios.

As a matter of fact, the fundamental reason of such situa-
tions is that many available services have applicable conditions
or use restrictions, i.e., they are not universally applicable.
Most of the available services in our real world are actually
like this, and some constraints are often imposed on them by
their providers, such as their effective time and available areas.
These constraints specify the context conditions that must be
met to ensure the correct execution of the service or the proper
interaction with it. In this situation, even if the given inputs
can match its data interface, a service may still be unable
to execute correctly. Therefore, only matching parameters
between service interfaces is not enough, and more factors
should be given full consideration when we are dealing with
service composition. However, most of the existing methods
are basically based on input and output interfaces of services.
For them, services are merely represented by their input and
output parameters, and service compositions are implemented
through their matching. Thus, they must be improved.

In this paper, we concentrate our attention on the topic
of composing services with constraints. First, through some
real world business scenarios, we describe the problem. Then,
service constraints and formal expressions are defined. We
divide the elements of a web service into two parts: service
intension and service extension. Finally, a graph search-based

algorithm and two different preprocessing methods are pre-
sented to advance the field.

The contributions of our work are as follows.

1) Service constraints are presented and defined for a web
service, which specify the conditions that must be met
to ensure the correct execution of a service.

2) The proposed solution can solve the problem of au-
tomatic service composition while considering service
constraints, which have gone beyond what the existing
techniques can handle.

3) The proposed graph search-based algorithm can be
applied to the general service composition problems.
Different from the previous methods, it can generate all
the feasible solutions according to a user’s request.

Section II discusses the related work. Section III describes
a real world business scenario in detail to show the issues.
Section IV provides basic concepts and definitions and dis-
cusses research issues. Section V describes the proposed
solutions. Experimental validation and analysis are given in
Section VI. Finally, Section VII concludes this paper.

II. Related Work

A large number of methods have been proposed for au-
tomatic service composition. According to the techniques
adopted, these methods can be divided into three categories,
i.e., graph search-based, formal methods-based, and artificial
intelligence (AI) planning techniques-based. In the following,
we review and discuss them, respectively.

A. Graph Search-Based Methods

In this category, services are represented by their inputs and
outputs. For a registry of available services, a service depen-
dency graph (SDG) can be constructed to show all possible
input–output dependencies among the services in this registry.
Then, the web service composition (WSC) problem can be
converted into a search problem in a graph, i.e., traversing the
SDG to find a feasible path either from inputs to outputs or
from outputs to inputs, which represents a composite service
that can satisfy a user’s request.

Hashemian and Mavaddat [11] use a formalism and model-
ing tool, called interface automata, to represent the behavior of
web services, and then convert a WSC problem into a general
graph problem. Oh et al. [27] present a novel solution called
BF* to solve the WSC problem, which is an A* based graph
search algorithm. Brogi et al. [7], [9] present an algorithm
called SAM to determine whether a query can be satisfied
by a (composition of) service(s). By building a tree for each
process model stored in the registry, they construct a graph
representing the dependencies among atomic processes of
the services, and then analyze such a dependency graph to
determine a service composition satisfying the query. Lang
and Su [14] present an and/or graph representation of an
SDG and its search algorithm for the discovery of composite
web services.

Graph search-based methods entirely use inputs and outputs
to model services, and the constructed SDG for a service
community only reflects the data interface relationships among



772 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 6, JUNE 2014

services. As mentioned earlier, we cannot guarantee the proper
execution of a service even if the provided inputs can meet the
type requirements of its data interface, because of the existence
of service constraints. Thus, these methods fail to address the
issue about which we are concerned.

B. Formal Method-Based Techniques

Formal methods, such as Petri net, automaton, process
algebra, have been widely used in the studies of service
composition. Especially, Petri net, as a formal tool not only
with an intuitive graphical expression but also with a strict
mathematical foundation, has been widely used in this field.

Berardi et al. [4]–[6] develop a finite state machine (FSM)-
based framework for automatic service composition, and
provide effective techniques for computing service compo-
sition where the behavioral description of a service is ex-
pressed as FSM. Narayanan and McIlraith [25] use DAML-S
ontology to provide semantic markup for web services, and
encode service descriptions in Petri nets and provide decision-
making procedures for web service simulation, verification,
and composition. Brogi and Corfini [8] present a matchmak-
ing system based on OWL-S and Petri nets for discovering
deadlock-free compositions of web services. A global Petri
net model is generated for a service registry through the data
dependencies between services, and then the Petri net state
equation technique is used to determine whether there is a
composite service satisfying a request. Ding et al. [10] present
a method to synthesize Petri nets for modeling and verifying
composite web services based on the OWL-S specification.
The control flow and data flow of a composite service are
modeled by Petri nets separately, and then an integrated service
net can be constructed by synchronous composition. Tan
et al. [47] present a compatibility-based method to analyze
and compose web services. Services are converted into colored
Petri nets and their compatibility is analyzed. In the case
of partial compatibility, the method for mediator generation
is proposed to assist the automatic composition of partially
compatible services. Tan et al. [48] propose a novel framework
to compose web services from the perspective of data. Both
data relations and service composition rules are represented by
colored Petri nets, and then a net based approach is proposed
to compose services.

The methods in this category are often complicated and
difficult to implement, and the computational complex-
ity is also relatively high. Moreover, service constraints
about which we care are largely ignored by these meth-
ods. Because of their complete theoretical system and
rich supporting tools, such formal methods are mainly
used for composite service modeling and verification to
assure that the composite service can be executed cor-
rectly and meet the expectations of service designers and
planners.

C. AI Planning Techniques-Based Methods

In this category, the automatic WSC problem is reduced
to the well studied AI planning problem. Web services
are described by inputs, outputs, preconditions, and effects

(IOPE), and regarded as actions in the planning problem.
Given an initial state and a goal state, a sequence of ac-
tions can be acquired automatically through planning, which
represents a solution of service composition. Most of the
existing methods for automatic WSC rely on AI planning
techniques, and they can be further classified into the methods
based on situation calculus, planning domain definition lan-
guage, rules, hierarchical task network, theorem proving, and
so on.

McIlraith et al. [21], [22] adapt and extend the Golog
language for automatic construction of web services. They
address the WSC problem through the provision of high-
level generic procedures and customizing users’ constraints.
In SWORD [35], a service is represented in the form of a
Horn rule, and then a rule-based expert system is used to
automatically determine whether a desired composite service
can be realized by using existing services. Medjahed et al. [23]
define formal safeguards for meaningful composition through
the use of composability rules, which compare the syntactic
and semantic features of web services to determine whether
two services are composable. In [26], [41], and [57], the
SHOP2 planner is applied for automatic WSC. A detailed
description is given on the process of translating OWL-S to
SHOP2. Rao et al. [36], [37], [39] introduce a method for
automatic composition of semantic web services by using
linear logic theorem proving, where the process model for
a composite service can be generated directly from the proof.
Oh et al. [29], [30] present a WSC algorithm that is an AI
planning-based heuristic algorithm. It activates two-step search
for a request: forward search to compute the cost of achieving
individual parameters starting from the inputs, and regression
search to approximate the optimal sequence of services that
connects inputs to outputs.

The majority of AI planning techniques-based methods
support the use of IOPE information to describe services, but
looking through them, the precondition and effect information
is not fully utilized. They are still based only on input and
output information, which is modeled as preconditions and
effects of actions, and used for reasoning. In addition, classical
AI planning techniques can derive only linear sequences of
actions. Such a 1-D linear process model cannot be used to
solve the problems concerned in this paper.

In summary, despite a relatively large body of research in the
area of WSC, whether based on graph search, formal meth-
ods, or AI planning techniques, the constraints imposed on
available services have been largely ignored. Such constraints
are used to guarantee the correct execution of services, which
have a great impact on service composition. Especially, few
efforts have specifically focused on the situation concerned in
this paper, i.e., some available services in a business scenario
have the same inputs and outputs, and can complete the same
task, but have different constraints to meet.

In recent years, there are some studies considering the
mismatches and heterogeneities among composed web ser-
vices in composition. Through annotating WSDL descrip-
tions such that web services are described with contextual
details, Mrissa et al. [24] propose a context-based media-
tion approach to solve data heterogeneities among composed



WANG et al.: CONSTRAINT-AWARE APPROACH TO WEB SERVICE COMPOSITION 773

web services. Kongdenfha et al. [13] propose a taxonomy
of common mismatches regarding the service interfaces and
business protocols. Based on this, an adaptation methodology
to capture and formalize the recurring differences between
business interfaces and protocols is presented. Focusing on
the data-level semantic heterogeneity including inconsistent
data naming, representation, precision, scaling, and unit, which
widely exists among the real-world services and hampers the
correct interoperability and composition of services, Li et al.
[15]–[17] propose a solution to automatic determination and
reconciliation of context conflicts in web service composition.
They address various semantic differences from the context
perspective and use a lightweight ontology to describe the
related concepts. Similar to our work, these efforts also focus
on context-related information, which has a great impact
on automatic WSC. However, the constraints concerned in
this paper specify the use restrictions, which are explicitly
defined by its provider to clarify its function and guarantee
its proper invocation; while the above efforts pay attention
to the mismatches and conflicts among services engaged in
composition, which are caused by the facts that multiple web
services are developed by different providers and they may
have different specifications or implicit assumptions no matter
from interface level or protocol level.

In addition, owing to the market competition, independent
providers develop several web services that can offer the
same functionality such as currency exchange [20]. To ease
and improve the process of web service discovery in an
open environment such as the Internet, Maamar et al. [3],
[19], [20], [45] suggest gathering web services with similar
functionality into groups known as communities, which is
similar to the idea of grouping SIDE services as a set in
this paper. Different from our work, they focus on designing,
developing, and managing communities of web services, such
as how to initiate, set up, and specify a community, and how to
specify and manage web services in a community. By contrast,
we focus on the constraints imposed on available services,
as well as the resulting scenario where several services can
perform the similar functionality but with different applicable
conditions. We deal with the issue from the composition level
to avoid the execution failure of a composite service due to the
existence of such constraints. From the perspective of grouping
SIDE services as set and management of the evolution of such
sets, the above discussed prior efforts can provide us with
useful help and support.

III. Motivating Scenario

A. Shipping and Delivery Scenario

Today, there are many online e-commerce websites such
as Amazon, Newegg, Ebay, and Alibaba. Here, for clar-
ity and conciseness, we abstract and simplify some real-
world scenarios to form the following example. It includes
a series of core tasks: searching products, submitting an
order, paying for the order, and shipping/delivery. Take B2C
website Icson [54] for example. It provides three different
shipping/delivery services: one-day, two-day, and standard
shipping. These three services have the same input parameters

Fig. 1. Three composite services with (a) one-day shipping, (b) two-day
shipping, and (c) standard shipping.

as {OrderInformation, PaidNotification}, and the same output
parameters as {ShippedNotification}. They can complete the
same task, namely, the shipping/delivery of goods. According
to the existing methods for automatic service composition [30],
[35], [39], [51], we can obtain three composite solutions as
shown in Fig. 1.

However, these three services have different applicable
conditions, i.e., they are available only for some special
situations. One-day shipping service is available only for the
orders whose delivery addresses are located in Shanghai;
two-day one is available only for the orders whose delivery
addresses are located in provinces of Zhejiang and Jiangsu;
while standard shipping service is available for the orders
located in other regions of China. Obviously, all of them can
perform the shipping/delivery function, but are applicable to
different situations. Thus, if we just select one of the three
solutions in Fig. 1 randomly to use, it will easily lead to failure
when we execute the selected composite service.

Service composers are required to avoid the occurrence of
above situations by meeting their application conditions to
ensure the correct execution of their composite service by
selecting the appropriate component services. In other words,
for the above scenario, one possible expected process model
of the composite service may be similar to the one illustrated
in Fig. 2. When we execute the composite service, the appro-
priate shipping/delivery service is selected to participate in the
composition according to the context at run time.

In Fig. 2, condition C1 represents that the delivery address
of the order is in Shanghai, C2 means that it is in Zhejiang or
Jiangsu province, and C3 represents other addresses.

B. Discussions

From this scenario, we know that some available services
may only be applied to some special situations, i.e., they
are not universally applicable, but have their own conditions
of application. Especially, we often encounter such scenarios
that several available services can complete the same task



774 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 6, JUNE 2014

Fig. 2. One possible process model of composite service for the shipping
and delivery scenario.

but have different applicable conditions, such as the three
different shipping/delivery services in the above example. As
a matter of fact, such cases are very common in a real
world. Such services often accept the same inputs, produce the
same outputs, and can perform the same or similar functions.
However, their applicable conditions are different form each
other. In addition, the same service provider may provide
similar services to adapt to different groups of customers or
markets. For example, a web hosting service provider may
provide several different hosting services that offer different
storage space sizes and file transfer rates according to different
customers, such as gold, silver, and bronze members. An
online shopping website may provide several different discount
services or gift services according to the total amount of orders
or the membership level of customers.

However, most of the existing methods for automated ser-
vice composition do not consider this problem. Obviously, in
the above example, the solutions generated from the existing
composition methods cannot reflect the facts that some avail-
able services may have their specific applicable conditions.
Especially, these methods do not differentiate such services
that can accomplish the same task, but applicable to fully
different conditions. Thus, it will easily result in failure when
we execute a randomly selected one of the generated solutions.
In a word, most of the existing methods for WSC fail to
address the issue in which we are interested.

IV. Preliminaries

The motivating scenario shows the problem of real services
having constraints, which hampers the automatic service com-
position. Before the solution is proposed, in this section, we
first explain the basic concepts and definitions to be used later.
Furthermore, for the motivating example, we articulate the key
concepts and problem description.

A. Basic Concepts

From the above examples, we know that considering input
and output parameters only is not enough when we are dealing
with service composition. In reality, it is not always the
case that a service can be executed to obtain the correct
result even if the given input is in accordance with the
interface type of the service [49], owning to the presence of
service constraints, such as the range of input parameters,
available time, and coverage area of the service. Take zip
code inquiry services that are common on the Internet for

example. They accept a city name and an address as inputs,
and return the corresponding zip code as output. However,
some of these services may provide zip code information
only for the cities and addresses in China, while some others
only for the cities in the U.S. Thus, for a specific zip code
inquiry service, even if the service requestor enters a city
name and an address as inputs, the service cannot get the
correct result if the inputs do not satisfy the constraints of
the service. The example in Section III shows such scenarios.
In the following, we first introduce the definition of service
constraints, which is originated and extended from [49].

Definition 1 (Service Constraints): Service constraints
specify a set of context conditions that must be met to ensure
the correct execution of a service. These restrictions are often
imposed by service providers through the way of limiting the
range of some attributes of a service.

Each web service is associated with one or more semantic
concepts in an ontology, and every concept may have multiple
attributes. Thus, service providers can impose constraints on
some attributes by restricting their ranges so as to make service
functions clear and ensure their correct execution [49]. The
range of attribute values can be represented by numerical
values or a set of semantic concepts. Formal expression of
service constraints is as follows.

Definition 2 (Constraint Expression): Formal expression of
service constraints is given in the form of Attribute opr
InstanceData, where:

1) Attribute represents a service attribute;
2) opr represents operators such as =, �=, <, ≤, >, ≥, ∈,

⊆, ⊇, is, not, in, and not in;
3) InstanceData represents data instances, including tradi-

tional numeric data, set of semantic concepts, data set,
etc.

Based on these concepts and definitions, we give the defi-
nition of the following web service.

Definition 3 (Web Service): An atomic service can be rep-
resented by a tuple WS = (op, I, O; SC, QoS), where:

1) op is a semantic concept, and provides semantic descrip-
tion of this service operation;

2) I is the set of semantic concepts that are referenced by
the input parameters of the service;

3) O is the set of semantic concepts that are referenced by
the output parameters of the service;

4) SC represents the constraints of a service, which specify
the context conditions that must be met to ensure the
correct execution of the service; and

5) QoS is the set of quality parameters of the service, such
as execution time, price, availability, and reputation.

In SAWSDL [40], the op and I/O of a web service can
reference the concepts of external semantic models (e.g.,
service ontology) through extension attribute modelReference.
A service ontology consists of a common language agreed by
a community, e.g., insurance industry. It defines a terminology
that is used by all participants in the community. Within
a community, service providers describe their services by
using the terms of the community’s ontology, while ser-
vice requesters use the terms of the ontology to formulate



WANG et al.: CONSTRAINT-AWARE APPROACH TO WEB SERVICE COMPOSITION 775

Fig. 3. Intuitive description of two-day shipping service.

Fig. 4. SAWSDL description of two-day shipping service.

queries over the service registry [60]. All the constraints of
a service can be represented by a rule, having the form of
SC1 ∧ SC2 ∧ . . . ∧ SCn → WS, SCi ∈ SC, 1 ≤ i ≤ n.
This rule can be represented by semantic web rule language
(SWRL) [46] or other languages, which can be referenced
into SAWSDL through modelReference. Note that SAWSDL
does not provide support for QoS description of a web service.
Service providers and users can utilize other protocols, e.g.,
service level agreement, to do so.

Take the aforementioned Two-dayShipping for example. Its
intuitive description is shown in Fig. 3, and the SAWSDL
description in Fig. 4. In Fig. 3, Order, PaidInformation and
Confirmation are all semantic concepts defined in some ontol-
ogy.

SWRL extends OWL axioms through Horn-like rules,
thereby combining Horn rules and OWL knowledge base.
Therefore, with respect to the constraint of Two-dayShipping,
it can be represented in the form of Order.DeliveryAddress
∈ {Zhejiang, Jiangsu} → Two-dayShipping, in which Deliv-
eryAddress is an attribute of the semantic concept Order. Then,
this rule can be referenced into the SAWSDL description of
the service as shown in Fig. 4.

Inputs and outputs of a service specify the data/information
transformation produced by the service. They contain the
underlying functional knowledge of a service [32]. As the core
of a service they reveal things of the service itself. In addition,

in Definition 3, op is the semantic description of this service
operation, and describes the functions that the service can
provide. Based on this consideration, we call INT = (op, I, O)
service intension. By contrast, we call EXT = (SC, QoS)
service extension. Because these properties reflect more on
the nonfunctional aspects of a service. Service constraints
are restrictions imposed on a service to ensure its correct
execution and obtain the functions it claims. They always
specify the conditions or environments to which the service
can be applied, and they have nothing to do with what a service
can do or provide, i.e., the functions of a service. In essence,
these constraints are imposed not on the service function
but the environments supporting it. For QoS properties with
which we are familiar, although they are the properties of a
service itself, they also have nothing to do with its function.
They encompass a number of nonfunctional properties such
as price, availability, and reliability, and they do not affect
the functionality of a service. Therefore, the constraints and
QoS information are viewed as the extensions of a service. To
sum up, service intension represents what a service can do,
i.e., the core of the service, while service extension reflects
the noncore aspects, such as the environment under which the
service can be applied, and QoS information. This division and
notation will contribute to the classification, identification, and
resolution of some service composition related issues.

Next, we give the definition of a service request from users.
Definition 4: A user’s request can be represented by a tuple

Req = (IA, OE; P, Q), where:
1) IA represents the set of semantic concepts that are

referenced by the available inputs that a service requester
provides;

2) OE represents the set of semantic concepts that are ref-
erenced by the outputs that a service requester expects;

3) P represents the set of personalized preferences and
constraints defined by a service requester;

4) Q represents the set of standards of services’ quality
parameters defined by a service requester.

Here, the third component of the tuple is user preferences,
which include personalized preferences and service constraints
designated by service requesters except for QoS-related
standards. We have discussed the personalized preference in
[51]. An example is that Lucy prefers to go by air over
car if the driving time is greater than 4 h. Via service
constraints, requesters can limit the range of some attributes
to help themselves find the most desired and really needed
services. Usually, requesters impose restrictions on the range
of attributes associated with their defined inputs and outputs
[49].

B. Problem Description and Definition

From the motivating scenario and basic concepts defined
above, it can be known that there exist some services with
identical intensions but different extensions. How can one deal
with such circumstances in WSC? In this section, we articulate
the key concepts and definitions to answer it.

For a certain task in a specific business scenario, all the
available Same-Intension Different-Extension (SIDE) services
that can accomplish the same task constitute a set.



776 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 6, JUNE 2014

Definition 5: A SIDE service set is SS =
{WS1, WS2, . . . , WSk}, WSi = (opi, Ii, Oi; SCi, QoSi),
1 ≤ i ≤ k, where:

1) opi ≡ opj, Ii ≡ Ij , and Oi ≡ Oj, ∀i, j ∈ {1, 2, . . . , k};
2) ∀i, j ∈ {1, 2, . . . , k}, i �= j : SCi.InstanceData �=

SCj.InstanceData.
≡ represents the semantic equivalence between two semantic
concepts. The first item ensures that the functionalities, inputs,
and outputs of these services are equivalent or the same.
SCi.InstanceData represents the attribute values of service
WSi specified by its constraint SCi.

Definition 6: Suppose that a web service community C =
{WS1, WS2, . . . , WSn} where WSi = (opi, Ii, Oi; SCi, QoSi),
1 ≤ i ≤ n, and a user request Req = (IA, OE; P, Q). A WSC
problem is to find a finite set of services from C such that:

1) these selected services can be organized in a certain
mode of construction to form a new value-added service
WSc;

2) WSc can accept inputs IA and produce outputs OE;
3) WSc should meet a user’s constraint requirements and

personalized preferences (i.e., P);
4) the quality of selected component services and their

composite service WSc should meet the standards de-
fined by the user (i.e., Q); and

5) the constraints of all participating component services
should be fully enforced, thereby ensuring their correct
execution, and guaranteeing the valid interaction and
collaboration among them.

From the motivating scenario and problem descriptions,
what we are concerned about is that there exist SIDE services,
while we are dealing with service compositions. When we
are composing existing services to form value-added services,
this circumstance needs to be dealt with properly to assure the
correct execution of each component service, thereby ensuring
the correct execution of the composite service.

In addition, according to the definition of service extension,
we know that it includes two parts: service constraints and
QoS. Thus, different extensions consist of some different cases
under the condition that the intensions are identical. In this
paper, this notion refers specifically to those services with
different service constraints, regardless of whether the QoS
information is the same or not. QoS is a broad concept that
encompasses a number of nonfunctional properties of services,
such as price, reputation, availability, and reliability. Usually,
the QoS information is used to select some specific services
for the purpose of their composition in a predefined way
that maximizes the performance of the composite service and
user satisfaction. This selection is based on the condition that
some available services have the same intensions and service
constraints. It is based on the predefined process model of
a composite service, and cannot change the structure of the
process. QoS related work has been widely discussed [1], [18],
[58]–[60], [63]–[64].

V. Constraints-Aware Service Composition

In this section, we present a solution for service composition
considering service extensions to address the discussed issues.

First, a graph search-based algorithm is proposed as a main
algorithm, which can also be used for general WSC problems.
Then, two different preprocessing techniques to handle SIDE
services are presented, namely, a prepackaging method and
abstraction and refinement one.

A. Graph Search-Based Algorithm

A large number of methods have been proposed for au-
tomated WSC problems, such as graph search-based, formal
methods-based, and AI planning techniques-based ones. The
proposed main algorithm is graph search-based. Several stud-
ies have successfully applied graph search to WSC problems
[7], [9], [11], [14], [27]. They represent services as their inputs
and outputs. An SDG can be constructed to show all possible
input–output data relationships among the available services
in a given registry. Then, the WSC problem can be converted
into a search problem in the constructed SDG. However, these
methods either generate only one composite solution each time
[7], [9], [11], [14], or every step of the solution includes a set
of executable services, some of which may not belong to this
solution, even do not appear in any feasible solution [27], [62],
and such a result cannot be considered a real solution. Here,
we give an algorithm to find out all the feasible composite
solutions that can satisfy a user’s request. and/or graph is
used to represent SDG, and this is similar to the work [14],
where only one composite service template can be generated
by their algorithm, which is computationally easier.

and/or graphs can be seen as a generalization of directed
graphs, and it is commonly used in automatic problem solving
and problem decomposition. It contains two kinds of nodes:
and and or, and they are connected by generalized edges,
which are called connectors. Each connector in an and/or

graph connects a set of nodes {vi|i = 1, ..., n} to a single
node vo. If there is a logical and relationship among {vi}, this
connector represents an and operation and it is said to be an
and connector. Similarly, if there is a logical or relationship
among them, the connector represents an or operation and is
called to be an or connector [14]. Here, we adopt and/or

graphs to represent SDG for service composition. In this
representation, since a service can be executed only when all
of its input parameters are available, there is a logical and

relationship among those data nodes that are connected to
this service node directly, and all the services nodes in this
representation are and nodes. In contrast, there is a logical
or relationship among those service nodes that can produce a
certain data parameter because any one of them can generate
this output and make the parameter available. Thus, all the
data nodes in this representation are or nodes. With this
representation for SDG, we present a search algorithm based
on it to find all the feasible composite service solutions.

The algorithm first constructs an SDG according to the
given service community C (line 1), which is in the form
of and/or graph. Then, SDG is initialized based on the
information provided by the service requestor (i.e., user re-
quest Req) to facilitate the search (line 2). In this step, two
dummy nodes are added to the original SDG. One is connected
to all the input data nodes that are provided by the service
requestor with direct edges. This node is considered to be



WANG et al.: CONSTRAINT-AWARE APPROACH TO WEB SERVICE COMPOSITION 777

Algorithm 1 Graph Search-based Algorithm for WSC Problem

Input: A set of available services (service community)
C = (WS1, WS2, . . . , WSn), and a user request Req =
(IA, OE; P, Q).

Output: A set of feasible composite services.
1: SDG = ConstructServiceDependencyGraph(C);
2: G = InitializeSDG(SDG, Req);
3: for each OR node n ∈ G do
4: Label n as “Unknown”;
5: end for
6: SearchAllPaths(G, path, ns, nt, 1);

Procedure SearchAllPaths(G, path, v, nt, length)
1: path[length] = v;
2: if v is an AND node then
3: Label all v’s child nodes as “Known”;
4: end if
5: if v == nt AND all v’s parents are labeled as “Known”

then
6: ConstructSolutionSubgraph(G, path);
7: else
8: for each child node ni of v do
9: if ni is an OR node then

10: SearchAllPaths(G, path, ni, nt, length + 1);
11: else
12: if all ni’s parents are labeled as “Known” then
13: SearchAllPaths(G, path, ni, nt, length + 1);
14: end if
15: end if
16: end for
17: end if
18: vtem = path[length];
19: if vtem is an AND node then
20: Label all vtem’s child nodes as “Unknown”;
21: end if
22: length=length-1;

solved, and used as the starting node for the search process in
our algorithm. The other dummy node is connected with all the
output data nodes that are expected by the service requestor
through an and connector. It is marked as an and node and
represents the WSC problem to be solved; and it is used as the
termination node (or goal node) for the search process. Based
on the modified and/or graph G, all the data nodes (i.e.,
or nodes) are initialized as unknown to represent that these
data parameters have not been acquired (lines 3–5). Finally,
we call procedure SearchAllPaths to find all the paths from
the starting node ns to the termination node nt (line 6), which
is depth-first search-based.

In SearchAllPaths, we first record the node currently being
visited (line 1). If it is an and node, we label all its child nodes
as known (lines 2–4), which represents that once a service
node (and node) is identified, all its output data nodes can
be known. Then, we judge whether nt has been accessed or
not. If yes, and all of its parent nodes have been identified,
this means that we have found a path from the starting node
to the termination node in G, which represents a feasible

solution. Thus, we can easily construct the process model
of this solution according to the information (i.e., nodes and
their orders) recorded in path (lines 5, 6). If not, we call
SearchAllPaths itself for all the child nodes of the current
node, and then complete the search for the entire graph G

in a recursive manner (lines 7–17). In the search process by
recursive calls, when some conditions are not satisfied, or a
path has been found, or a recursive process has been completed
(i.e., the completion of a for-loop in the procedure), we need
to backtrack to complete the entire graph traversal and find out
all the paths from ns to nt (lines 18–22). It is worth noting
that when we backtrack a service node, all of its child nodes
need to be relabeled as unknown, because these parameters
become no longer available after the backtracking.

The characteristics of an and/or graph make it suitable
to describe and solve WSC problems. A service can be
invoked only when all its inputs are available, while a data
parameter can be made available by any service who takes
it as output, as well expressed by an and/or graph. With
this well structured SDG in hand, we can perform solution
search for WSC problems. Even so, finding all the possible
solutions is still quite difficult and complex, to be discussed
in detail later. In Algorithm 1, we adopt a recursive strategy
to try to find all the possible solutions. The algorithm is just a
high-level description, in which there are many details needed
to handle. For example, when backtracking a service node,
we cannot directly make all its child data nodes unavailable,
because the data might have been generated several times by
different services earlier. Thus, it requires special handling for
the known mark of a data node. As a result, we build a list
for every data node to record what services have previously
generated the data and their order so as to discriminate
the data nodes when backtracking. There are several other
difficulties to be overcome in this recursive searching process.
Therefore, although Lang and Su [14] use and/or graphs
as the representation for SDG, they do not take a recursive
strategy, thus avoiding a number of difficulties in this recursive
process. Note that their algorithm only finds one solution each
time, which is much easier to handle.

B. Service Composition Through Prepackaging

In an available service community, all the SIDE services
corresponding to the same task can constitute a set called a
SIDE service set. These services can accomplish the same
task, but have different applicable conditions. Thus, in order
to ensure the correct execution of these services and the
resulting composite service, this situation needs to be dealt
with properly and carefully. In this section, we first propose a
method called prepackaging to address this problem.

In this method, before the main algorithm for service
composition is applied to the available service community C,
all the SIDE service sets in C are packaged, respectively. In
other words, they are composed together in advance. For each
SIDE service set, all of its services are composed together to
form a new composite service first, which is a real service and
can be invoked and executed directly. Then, these composite
services are put in the service community C to replace their
corresponding SIDE set of services, and they are regarded as



778 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 6, JUNE 2014

Fig. 5. Process model of composite shipping service by three ship-
ping/delivery services.

component services to participate in the subsequent service
compositions.

According to the definition of a SIDE service set, we can
easily know that the process model of each composite service
generated by a SIDE set contains a branch structure, and each
available service from the SIDE set is located at one branch of
this structure. This composite service can complete the same
task with its component services, but has a wider range of
application. When this composite service is actually invoked
and executed, an appropriate component service on some
branch will be selected automatically to execute according to
the truth values of branch conditions, i.e., select the service
whose constraints can be satisfied in the execution context.

In the shipping/delivery example, we have three different
shipping/delivery services: one-day, two-day, and standard
shipping. They have the same intensions, and can complete the
same task, but have different constraints, i.e., their application
conditions are different from each other. Thus, in this business
scenario, they can together constitute a SIDE set. By the
prepackaging method, they are composed together in advance
to form a new composite shipping service, whose process
model is shown in Fig. 5.

From Fig. 5, the process model of this composite ser-
vice contains a conditional branch structure. Three available
services are located at different branches, and the branch
conditions are just the constraints of the corresponding ser-
vices, which represent the scope of their application, re-
spectively. Specific to this scenario, condition C1 represents
the delivery address of the order is located in Shanghai,
i.e., DeliveryAddress ∈ {Shanghai}; C2 represents the de-
livery address is located in Zhejiang or Jiangsu province,
i.e., DeliveryAddress ∈ {Zhejiang, Jiangsu}; C3 represents
the delivery address is located in other regions of China,
i.e., DeliveryAddress ∈ {China} and DeliveryAddress /∈
{Shanghai, Zhejiang, Jiangsu}. This new composite service
can complete the same task as its three component services,
i.e., the shipping/delivery function. However, it has a wider
range of applications because it can handle the orders whose
delivery addresses are located in any region of China.

C. Service Composition Through Abstraction and Refinement

In the prepackaging method, the available services in the
same SIDE set are composed together in advance to form a
new composite service, and then it is used to participate in
service compositions in replacement of their corresponding set
of SIDE services. Different from this one, in this section, we

propose another method by using abstraction and refinement
techniques to deal with this problem. In this method, we first
abstract all its elements for each SIDE service set.

Given a set SS of SIDE services, we define an abstract
service for it, which is actually the intensional abstraction of
a group of services that can provide the same functionality
and have the same input/output interfaces. It is a conceptual
service defined next.

Definition 7 (Abstract Service): Given a SIDE service set
SS = {WS1, WS2, . . . , WSk}, WSi = (opi, Ii, Oi; SCi, QoSi),
1 ≤ i ≤ k, the abstraction of SS is WSabs = (opabs, Iabs, Oabs),
where:

1) opabs ≡ {opi | 1 ≤ i ≤ k}, which is semantic description
of this abstract service;

2) Iabs ≡ {Ii | 1 ≤ i ≤ k}, which is the set of semantic
concepts of inputs; and

3) Oabs ≡ {Oi | 1 ≤ i ≤ k}, which is the set of semantic
concepts of outputs.

According to the definition of a SIDE service set, the ser-
vices in the same set have the same intensions but different ex-
tensions. Thus, the abstract service as defined above is just the
abstraction of their common intensions, which preserves their
input and output information, and also the functional descrip-
tion. So, in fact, such an abstract service represents a group of
available services that can provide the same functionality, with
the same interfaces, but have different applicable conditions.

With this definition, we can easily process the existing
SIDE services in a given service community C automatically.
After all the SIDE services sets are substituted by their cor-
responding abstract services, we can apply the graph search-
based algorithm to WSC problems on the modified service
community Cabs, and obtain all the feasible solutions. Since
each abstract service WSabs preserves the intensions of the
replaced real services, this substitution in the available service
community would not affect the solution of the WSC problem,
and it satisfies soundness and completeness. In other words,
the solutions generated from the modified services community
Cabs must have solutions to corresponding the original WSC
problem. Furthermore, all the solutions of the original problem
can be generated from Cabs directly or indirectly.

In addition, WSabs is just a virtual service. Therefore,
when it is part of a certain composite service solution that
will be actually executed, we need to dynamically select
and bind the appropriate real service from the corresponding
SIDE service set according to the actual execution context of
this composite service, i.e., select the specific service whose
constraints can be satisfied in the current context, and bind
it to the corresponding abstract service WSabs. Algorithm 2
simply shows this process.

In summary, the basic idea of this method is to perform
abstraction on the services whose intentions are identical but
with different extensions. Then, the resulting abstract services
are used for service composition instead of their corresponding
real services. Last, the abstract services in a composite service
solution are specified by the appropriate real services when
the composite service is practically executed. Abstraction and
refinement techniques are successively adopted in this method.



WANG et al.: CONSTRAINT-AWARE APPROACH TO WEB SERVICE COMPOSITION 779

Algorithm 2 Run-time selection and binding of component web
service for WSabs

Input: A composite service solution WSca with an abstract
service WSabs, service community C, and the SIDE ser-
vices set SS = {WS1, WS2, . . . , WSk} corresponding to
WSabs.

Output: An execution plan of this composite service.
1: for All the tasks except WSabs in the process model of

WSca do
2: Select and bind appropriate speific web services to these

tasks according to existing methods for service selection
and binding.

3: end for
4: while SS �= ∅ do
5: ∀WSi ∈ SS;
6: if Its constraint SCi can be satisfied in the current

execution context of this composite service then
7: Bind WSi to the abstract service WSabs;
8: Exit the while loop;
9: end if

10: SS = SS − {WSi};
11: end while
12: if SS == ∅ then
13: return failure
14: end if

Generally speaking, abstraction and refinement are a pair of
complementary steps, and the idea of abstracting first and
refining afterwards is a commonly used and effective way to
cope with complex problems.

VI. Experiments and Analysis

A. Validation of Graph Search-Based Algorithm

With regard to the general WSC problem, a large number
of methods have been proposed to tackle it. Some generate
only one composite service [4]–[7], [9], [14], [29], [30], [36],
[39]. Some produce a solution that cannot be considered a
real composite service template, because every step of such
a solution is a set of services, which contains not only those
necessary services but also a large number of useless ones; and
all the different feasible composite services are mixed together
in such solutions [27], [62]. Finding all the possible composite
solutions for the general WSC problem is a complicated and
difficult task, because this can be reduced to the satisfiability
problem, which is a well-known NP-complete problem [28].
Such difficulties as the huge search space, the identification
and removal of redundant services, and the low efficiency of
finding solutions restrict the methods that can generate all
the feasible composite solutions for a general problem, and
thus previous approaches [6], [9], [14], [29], [30], [39] mainly
focused on finding one (optimal) composite service template.
Different from the past work, we propose an algorithm that
can generate all the feasible composite services for the general
WSC problem in this paper as a main method.

Despite the fact of complexity and difficulties, the pro-
posed graph search-based algorithm is admissible. In order

to evaluate it, extensive experiments have been performed via
a publicly available test set: ICEBE05 [12], which has been
used as the benchmark test data for web services challenge at
ICEBE 2005. There are two groups of test data for the com-
position challenge, namely, Composition1 and Composition2.
Both of them have nine test sets respectively, each of which is a
repository of web service specifications that contains different
numbers of WSDL files. Each test set has 11 queries which
is represented by the provided input messages and required
output messages.

Here, we used Composition1 for our evaluation. The nine
test data sets in it are varied from different aspects, which are
described as follows. First, the number of web services in a
test set is set to three levels, namely, 2156, 2656, and 4156.
Second, the number of input and output parameters of services
is also set to three levels, which are differentiated in the range
of 4–8, 16–20, and 32–36. Third, from the perspective of
composition results with regard to the provided queries, there
are four levels of this number, which is 1, 25, 125, and 625.
All the nine test sets have the same number of results for the
request of the same number, which will be learned from the
experimental results. All of the experiments were performed
on a PC platform with Intel Core i3 CPU 550 (at 3.2 GHz),
Windows 7, and 4-GB RAM. The algorithms are implemented
by Visual C# in Microsoft Visual Studio 2010, and all the
reported results are based on five runs.

Considering the different size of the nine test sets in
Composition1, the comparison of time performance is shown
in Fig. 6. The three test sets whose names are started by
Composition1–20 all contain 2156 web services, and thus they
are grouped together for comparison as shown in Fig. 6(a).
Similarly, Fig. 6(b) shows the comparison over the three test
sets containing 2656 services and Fig. 6(c) shows the same
case of three test sets with 4156 services. From Fig. 6, we
know that the time performance is very closely related to the
size of test sets. For example, the time spent by the three test
sets with 2156 services over each request is between 0.78 ms
to 220 ms, while the longest case reaches 630 ms for the test
sets with 2656 services and 1730 ms for the test sets with
4156 services.

Meanwhile, in addition to the size of test sets, the number
of service parameters is another very important factor that
can affect the time performance, which can also be seen
from Fig. 6 and more explicitly from Fig. 7. In Fig. 7, at
the x-axis, three parameter count ranges are specified, and
the average time taken by each test set over its related 11
queries as the y-axis. With the increase of the parameter count,
the time taken to solve the problem presents a process of
accelerated growth, rather than proportional to the growth of
service parameters. This can be derived from the change in
slope of the two sections of each line. From this point of view,
the impact on problem solving from the factor of service count
is similar to that of parameter count, and this can be seen from
the comparison on slope of the three lines in Fig. 7, which
represent three different levels of test set size. This coincides
with the direct analysis of the algorithm, which is based
on and/or graphs. Two types of nodes are included in this
structure: and nodes and or nodes, which represent services



780 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 6, JUNE 2014

Fig. 6. Comparison of test sets grouped by their different sizes. (a) Compari-
son of time in Composition1-20. (b) Comparison of time in Composition1-50.
(c) Comparison of time in Composition1-100.

Fig. 7. Comparison of test sets considering the different levels of service
parameters.

and parameters, respectively. With the growth of service nodes
and data nodes (i.e., parameters), the search space increases
dramatically.

In addition, it can also be seen from Fig. 6, the time spent on
different requests varies greatly even for the same test set (i.e.,
both test size and parameter range are identical). For all nine
test sets, the 11th request is the simplest, while requests from
seventh to tenth are the hardest, followed by requests from
fourth to sixth and then requests from first to third. Through
the experiments, we have learned that the 11th request has
only one solution, while there are 625, 125, and 25 solutions
for requests from seventh to tenth, fourth to sixth, and first to
third, respectively. In order to more clearly demonstrate the
impact of the factor on the number of resulting solutions, we
give Fig. 8 from the experimental results. In it, we take the nine
test sets as the x-axis. The time values generated by the request
of the same number over different test sets are connected by
line, and those requests having the same number of resulting

Fig. 8. Comparison of 11 queries considering different numbers of result
solutions. (a) Comparison of requests from first to third over nine test sets.
(b) Comparison of requests from fourth to sixth over nine test sets.
(c) Comparison of requests from seventh to tenth over nine test sets.
(d) Comparison of time for request 11 over nine test sets.

solutions are grouped together to form a subgraph of Fig. 8.
In addition to some of the above conclusions, we can see
that the lines in one subgraph are basically overlapped, which
means that over the same test set, the difficulty of those WSC
problems with the equal number of solutions is basically the
same. With respect to Fig. 8(d), the 11th request for every test
set has one solution only which consists of only one service,
and thus the case degenerates into a simple service discovery
problem. Compared to the service composition problem, the
service discovery problem is not so sensitive to the factors
such as service count in the registry and parameter range.

B. Comparison Between Two Preprocessing Methods

From the process of problem solving, the prepackaging
method and abstraction/refinement one are similar as two
preprocessing methods. That is, all the SIDE service sets are
processed in advance; then, the resulting services (composite
services or abstract services) are used to participate in the
subsequent service compositions. Next, the graph search-based
algorithm is applied to the modified services community for
the WSC problems. These two preprocessing methods both
belong to the abstract category in essence, but work at different
levels. They are different in the specific implementation pro-
cess, thereby leading to the difference between the resulting
composite solutions, which will be reflected clearly in the
actual execution of these composite services. Both methods
have their advantages and disadvantages as discussed next.

The results of preprocessing by the prepackaging method
are composite services, which can be invoked and executed
directly. By contrast, the results of preprocessing by the
abstraction/refinement method are abstract services, which are
virtual and cannot be invoked directly.

In addition, the results of service composition are composite
service solutions, which are flow structures of service models,
and each structure defines a process model. According to the
process model of a composite service, an execution plan can



WANG et al.: CONSTRAINT-AWARE APPROACH TO WEB SERVICE COMPOSITION 781

be generated by selecting good-quality service providers so
as to instantiate the model, i.e., an assignment of component
services to the tasks in the process model of this composite
service is obtained. Then, the execution engine can orchestrate
these component services to execute the instance of this
composite service [60].

Here, different results of preprocessing lead to the differ-
ence among the final composite solutions. The prepackaging
method results in ordinary composite service solutions, be-
cause each SIDE service set is assembled into a real composite
service in the preprocessing stage, which is then registered as
a component web service in the service registry. The resulting
composite solutions by this method can be directly instantiated
as execution plans through existing methods for QoS-based
service selection and service binding [18], [58], [60]. However,
the composite solutions by the abstraction/refinement method
cannot be directly instantiated as execution plans by the above
methods when some previously defined abstract services are
involved, because such services can only be instantiated in
the practical execution stage of the composite service. Unlike
traditional QoS-based methods, the selection and binding of
specific services here should be dynamical and at run-time,
since it depends on the run-time context of the composite
service, and only the component service whose constraints can
be satisfied in the current run-time context will be selected
from the SIDE services set and bound to the corresponding
abstract service.

Undoubtedly, the run-time selection and binding of compo-
nent web services in the actual execution process of a compos-
ite service is bound to increase the algorithm complexity and
computational cost. Because the composite solutions generated
by the prepackaging method can be directly instantiated and
then executed by an execution engine, while the solutions
by the abstraction/refinement method cannot be instantiated
and executed directly. The selection and instantiation of such
abstract service takes extra cost and time.

In this process, for an abstract service WSabs in a solution,
we need to scan the SIDE services set corresponding to
WSabs, and parse these WSDL documents to determine whose
constraints can be satisfied in the run-time context. Therefore,
compared to the prepackaging method, it costs additional time
at least on search and parsing WSDL documents in the given
SIDE services set without considering other factors. Suppose
that the number of services in the SIDE set SS is n, and the
average time to parse a WSDL document and check whether
the conditions can be met is tp. Since the average search time
in set SS is n/2, the average time spent by this selection
process is n

2 tp.
In addition, we perform experiments to evaluate this pro-

cess. Given a number n, a set of simulative SIDE services can
be generated through the way of writing n different constraints
into a certain WSDL document, respectively. Then, each time
we randomly generate a condition and use it to search for the
suitable service. In this way, we run the experiment 10 000
times for each test set so as to obtain the average search
time. The result is shown in Fig. 9 in which we compare the
two proposed methods. The prepackaging method does not
need such a process for run-time selection, since its resulting

Fig. 9. Comparison of two methods for the dynamic selection process.

solutions can be directly instantiated and executed, and when
the composite service assembled by a set of SIDE services is
executed actually, the time spent on selecting an appropriate
branch to execute is negligible.

Despite the higher complexity and extra cost, the abstrac-
tion/refinement method has higher flexibility and scalability.
In a specific business scenario, the SIDE service set corre-
sponding to a certain task is not static; on the contrary, it
may be dynamically changing. There are many reasons to this
changeability; for example, a service provider may add new
similar services to expand its business, or cancel some existing
services to meet the market needs. Take the shipping/delivery
scenario in Section III for example, the B2C cooperation just
provides one-day shipping service for the Shanghai area at the
beginning. With the expansion of business, two-day shipping
service for Jiangsu and Zhejiang provinces is added later, and
now its business has been expanded to the whole country.
Thus, they increase a new service, standard shipping service,
for these newly added areas to meet the demands. In this
business scenario, the SIDE service set corresponding to the
shipping task is dynamically changing with the expansion of
the company’s business. The abstraction/refinement method is
easier to deal with this changeability than the prepackaging
method. In the former method, the process of abstraction in
the preprocessing stage is very simple and easy to implement.
Thus, as the SIDE service set changes, a new abstract service
that captures this change can be generated easily and auto-
matically. By contrast, in the prepackaging method, the results
of preprocessing are real composite services. For each SIDE
service set in the given service community, a composite service
is generated to replace these component services. This includes
a series of subprocesses, such as the transformation from high-
level process models to executable code of a programming
language for service composition, deployment, and publishing
it to the service registry as a new service. This prepackaging
process is much more cumbersome and labor-intensive than
the abstraction process of the abstraction/refinement method.
Moreover, once this process is completed, the composite
service is fixed, and when some changes occur on a SIDE



782 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 6, JUNE 2014

service set, we have to compose them again through such a
cumbersome process. Obviously, in dealing with changes, the
abstraction/refinement method is more extensible and flexible
than the prepackaging method.

In the previous section, extensive experiments and their
results show that the proposed graph search-based algorithm is
admissible. Nevertheless, generating all the possible solutions
for the general WSC problem is still a complicated and
difficult task, owing to the nature of this problem as mentioned
earlier. From the above experiments and results, we know that
there are three important factors that can significantly affect the
algorithm performance: service count in the registry, parameter
range of every service, and the number of resulting solutions.
With respect to our concerns in this paper, the proposed
SIDE concepts and two preprocessing methods can improve
the performance of the graph search-based algorithm through
influencing two of the three above factors. First, they can
reduce the size of service registry. In a certain service registry,
supposing that there are two other SIDE services on average
for each service of the registry, via the proposed techniques
one can reduce the registry size to 1/3 of the original by using
a resulting service (whether it is composite or abstract one)
instead of the corresponding SIDE services to participate in the
subsequent composition. Second, their use can greatly reduce
the number of resulting solutions. When a solution contains
a service that has three other SIDE services, there must be
three other similar solutions generated along with this one,
and their only difference lies in these four SIDE services.
If two different such services are contained simultaneously,
4×4 = 16 similar solutions will be generated. In contrast, only
one solution can be generated by the proposed techniques for
the two cases, respectively. The more such SIDE services in
solutions, the more performance improvements gained from
the use of the proposed concepts and methods.

VII. Conclusion

Service constraints are used to ensure the correct execu-
tion of the service or proper interaction with other services,
thus having a significant impact on service composition.
However, they were not put into account in the previous
work. This work deals with automated service composition
while considering them. Through some real-world business
scenarios, we show that some available services in a specific
business scenario have the same inputs and outputs, and
can perform the same task, but have different constraints.
This is common, but has been largely ignored by previous
efforts for service composition. A novel solution to tackle
this problem is proposed in this paper, which includes a
graph search-based algorithm and two different preprocessing
methods. The graph search-based algorithm can be applied
to the general WSC problem, and generates all the possible
solutions. For the two preprocessing methods, despite their
differences, they both introduce conditional branch structures
(explicitly or implicitly) into the process model of a solution in
order to solve the problems brought by service constraints, and
ensure the correct execution of the resulting composite service.
Extensive experiments are conducted via a publicly available

test set, and experimental results show the effectiveness and
admissibility of our approach.

In addition, conditional branch structures are introduced into
the process models of composite services to reflect SIDE ser-
vices and their respective constraints so as to ensure the proper
execution of composite services in different circumstances. In
[51], we consider user preferences in service composition as
given explicitly by users in their requests. Similarly, branch
structures are introduced into the process models of composite
services to satisfy such diverse and personalized preferences.
The issue is often related to users too, and it is exactly the
user-related information that determines the different choice
of SIDE services. However, such information is often implicit
in the composition scenarios, and not explicitly stated in the
user request at the beginning. From this perspective, these
efforts are made to achieve the same goal, i.e., automatic
WSC supporting complex control constructs, in order to meet
the complex needs under changing environments. This can
overcome the deficiencies of the existing methods that rely
on sequential structures, because the linear composite model
can be applicable to only simple cases with a deterministic
environment.

At present, whether web services existing in reality, or
public test sets for service composition, most of them are based
on WSDL descriptions, which do not support the definition
and description of service constraints discussed in this paper.
With the acceptance and application of semantic web service
description languages such as SAWSDL and OWL-S, we are
working to establish a test set that fully considers service
constraints and other factors. This can help us perform more
extensive experiments for the proposed methods, and also
provide support for other future work that considers such
factors and integrate with other research outcomes [72]–[87].
In addition, QoS information is planned to be used in order to
directly get rid of the services and paths that do not meet
the QoS standards, thereby reducing the search space and
improving the efficiency of the proposed algorithm.

References

[1] D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Trans. Softw. Eng., vol. 33, no. 6, pp. 369–384,
Jun. 2007.

[2] M. Beek, A. Bucchiarone, and S. Gnesi, “A survey on service composi-
tion approaches: From industrial standards to formal methods,” IEEE
Comput. Soc. Press, New York, NY, USA, Tech. Rep. 2006TR-15,
Istituto, 2006, pp. 15–20.

[3] D. Benslimane, Z. Maamar, Y. Taher, M. Lahkim, M. C. Fauvet, and M.
Mrissa, “A multilayer and multiperspective approach to compose web
services,” in Proc. AINA, May 2007, pp. 31–37.

[4] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Me-
cella, “Automatic composition of e-services that export their behavior,”
in Proc. ICSOC, Dec. 2003, pp. 43–58.

[5] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M.
Mecella, “Synthesis of underspecified composite e-services based on
automated reasoning,” in Proc. ICSOC, Nov. 2004, pp. 105–114.

[6] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Me-
cella, “Automatic service composition based on behavioral descriptions,”
Int. J. Coop. Inf. Syst., vol. 14, no. 4, pp. 333–376, Dec. 2005.

[7] A. Brogi, S. Corfini, and R. Popescu, “Composition-oriented service
discovery,” in Proc. SC, Apr. 2005, pp. 15–30.

[8] A. Brogi and S. Corfini, “Behaviour-aware discovery of web service
compositions,” Int. J. Web Serv. Res., vol. 4, no. 3, pp. 1–25, Jul.–Sep.
2007.



WANG et al.: CONSTRAINT-AWARE APPROACH TO WEB SERVICE COMPOSITION 783

[9] A. Brogi, S. Corfini, and R. Popescu, “Semantics-based composition-
oriented discovery of web services,” ACM Trans. Internet Technol., vol.
8, no. 4, article 19, Sep. 2008.

[10] Z. J. Ding, J. L. Wang, and C. J. Jiang, “An approach for synthesis Petri
nets for modeling and verifying composite web services,” J. Inf. Sci.
Eng., vol. 24, no. 5, pp. 1309–1328, Sep. 2008.

[11] S. V. Hashemian and F. Mavaddat, “A graph-based approach to web
services composition,” in Proc. SAINT, Feb. 2005, pp. 183–189.

[12] ICEBE 2005 organization committee (Oct. 2005). Test Data for Web Ser-
vices Challenge at ICEBE 2005 [Online]. Available: http://www.comp.
hkbu.edu.hk/∼ctr/wschallenge/

[13] W. Kongdenfha, H. R. Motahari-Nezhad, B. Benatallah, F. Casati, and R.
Saint-Paul, “Mismatch patterns and adaptation aspects: A foundation for
rapid development of web service adapters,” IEEE Trans. Serv. Comput.,
vol. 2, no. 2, pp. 94–107, Apr.–Jun. 2007.

[14] Q. A. Lang and S. Y. W. Su, “AND/OR graph and search algorithm for
discovering composite web services,” Int. J. Web Serv. Res., vol. 2, no.
4, pp. 46–64, Oct.–Dec. 2005.

[15] X. Li, S. Madnick, H. Zhu, and Y. Fan, “An approach to composing
web services with context heterogeneity,” in Proc. ICWS, Jul. 2009,
pp. 695–702.

[16] X. Li, S. Madnick, H. Zhu, and Y. Fan, “Reconciling semantic hetero-
geneity in web services composition,” in Proc. ICIS, paper 20, Dec.
2009.

[17] X. Li, S. Madnick, and H. Zhu, “A context-based approach to reconciling
data interpretation conflicts in web services composition,” ACM Trans.
Internet Technol., to be published.

[18] Y. Liu, A. H. H. Ngu, and L. Zeng, “QoS computation and polic-
ing in dynamic web service selection,” in Proc. WWW, May 2004,
pp. 66–73.

[19] Z. Maamar, M. Lahkim, D. Benslimane, P. Thiran, and S. Subrama-
nian, “Web services communities: Concepts and operations,” in Proc.
WEBIST, Mar. 2007, pp. 323–327.

[20] Z. Maamar, S. Subramanian, P. Thiran, D. Benslimane, and J. Bentahar,
“An approach to engineer communities of web services: Concepts,
architecture, operation, and deployment,” Int. J. E-Bus. Res., vol. 5,
no. 4, pp. 1–21, Oct.–Dec. 2009.

[21] S. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE
Intell. Syst., vol. 16, no. 2, pp. 46–53, Mar.–Apr. 2001.

[22] S. McIlraith and T. C. Son, “Adapting Golog for composition of semantic
web services,” in Proc. KR, Apr. 2002, pp. 482–493.

[23] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing
web services on the semantic web,” VLDB J., vol. 12, no. 4, pp.
333–351, Nov. 2003.

[24] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F. Rosenberg, and S.
Dustdar, “A context-based mediation approach to compose semantic web
services,” ACM Trans. Int. Tech., vol. 8, no. 1, article 4, p. 23, Nov. 2007.

[25] S. Narayanan and S. McIlraith, “Simulation, verification and
automated compostion of web service,” in Proc. WWW, May 2002,
pp. 77–88.

[26] D. Nau, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman,
“SHOP2: An HTN planning system,” J. Artif. Intell. Res., vol. 20, pp.
379–404, Dec. 2003.

[27] S. C. Oh, B. W. On, E. J. Larson, and D. Lee, “BF*: Web services
discovery and composition as graph search problem,” in Proc. EEE,
Mar. 2005, pp. 784–786.

[28] S. C. Oh, D. Lee, and S. R. T. Kumara, “A comparative illustration of
AI planning-based web services composition,” ACM SIGecom Exch.,
vol. 5, no. 5, pp. 1–10, Dec. 2005.

[29] S. C. Oh, D. Lee, and S. R. T. Kumara, “Web service planner (WSPR):
An effective and scalable web service compostion algorithm,” Int. J.
Web Serv. Res., vol. 4, no. 1, pp. 1–23, Jan.–Mar. 2007.

[30] S. C. Oh, D. Lee, and S. R. T. Kumara, “Effective web service
composition in diverse and large-scale service networks,” IEEE Trans.
Serv. Comput., vol. 1, no. 1, pp. 15–32, Jan.–Mar. 2008.

[31] W3C Member Submission. (2004, Nov. 22). OWL-S: Semantic
Markup for Web Services [Online]. Available: http://www.w3.org/
Submission/OWL-S/

[32] A. V. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N. Adam, “Semantics
based automated service discovery,” IEEE Trans. Serv. Comput., vol. 5,
no. 2, pp. 260–275, Apr.–Jun. 2012.

[33] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” Computer,
vol. 40, no. 11, pp. 38–45, Oct. 2007.

[34] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: A research roadmap,” Int. J. Coop. Inf. Syst., vol.
17, no. 2, pp. 223–255, Jun. 2008.

[35] S. R. Ponnekanti and A. Fox, “SWORD: A developer toolkit for web
service composition,” in Proc. WWW, May 2002, pp. 1–19.

[36] J. Rao, P. Küngas, and M. Matskin, “Application of linear logic to web
service composition,” in Proc. ICWS, Jun. 2003, pp. 3–9.

[37] J. Rao, P. Küngas, and M. Matskin, “Logic-based web service
composition: From service description to process model,” in Proc.
ICWS, Jul. 2004, pp. 446–453.

[38] J. Rao and X. Su, “A survey of automated web service composition
methods,” in Proc. SWSWPC, Jul. 2004, pp. 43–54.

[39] J. Rao, P. Küngas, and M. Matskin, “Composition of semantic web
services using linear logic theorem proving,” Inf. Syst., vol. 31, nos.
4–5, pp. 340–360, Jun.–Jul. 2006.

[40] W3C Recommendation. (2007, Aug. 28). Semantic Annotations
for WSDL and XML Schema (SAWSDL) [Online]. Available:
http://www.w3.org/TR/sawsdl/

[41] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN planning for
web service composition using SHOP2,” J. Web Semant., vol. 1, no. 4,
pp. 377–396, Oct. 2004.

[42] W3C Recommendation. (2007, Apr. 27). Simple Object Access
Protocol (SOAP), Version 1.2 [Online]. Available: http://www.w3.org/
TR/2007/REC-soap12-part1-20070427/

[43] S. Sohrabi, N. Prokoshyna, and S. McIlraith, “Web service composition
via generic procedures and customizing user preferences,” in Proc.
ISWC, Nov. 2006, pp. 597–611.

[44] S. Sohrabi, N. Prokoshyna, and S. McIlraith, “Web service composition
via the customization of Golog programs with user preferences,” in
Conceptual Modeling: Foundations and Applications (LNCS, vol.
5600), A. T. Borgida, V. K. Chaudhri, P. Giorgini, and E. S. Yu, Eds.
New York, NY, USA: Springer-Verlag, 2009, pp. 319–334.

[45] S. Subramanian, P. Thiran, Z. Maamar, and D. Benslimane, “Engineering
communities of web services,” in Proc. iiWAS, Dec. 2007, pp. 57–66.

[46] W3C Member Submission. (2004, May 21). SWRL: A Semantic Web
Rule Language Combining OWL and RuleML [Online]. Available:
http://www.w3.org/Submission/SWRL/

[47] W. Tan, Y. S. Fan, and M. C. Zhou, “A Petri net-based method for
compatibility analysis and composition of web services in business
process execution language,” IEEE Trans. Autom. Sci. Eng., vol. 6,
no. 1, pp. 94–106, Jan. 2009.

[48] W. Tan, Y. S. Fan, M. C. Zhou, and Z. Tian, “Data-driven service
composition in enterprise SOA solutions: A Petri net approach,” IEEE
Trans. Autom. Sci. Eng., vol. 7, no. 3, pp. 686–694, Jul. 2010.

[49] X. Tang, C. Jiang, and M. Zhou, “Automatic Web service composition
based on Horn clauses and Petri nets,” Expert Syst. Appl., vol. 38, no.
10, pp. 13024–13031, Sep. 2011.

[50] OASIS Standard. (2004, Oct. 19). Universal Description, Discovery
and Integration Specification (UDDI), Version 3.0.2 [Online]. Available:
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

[51] P. W. Wang, Z. J. Ding, C. J. Jiang, and M. C. Zhou. “Automated web
service composition supporting conditional branch structures,” Enterp.
Inf. Syst. DOI:10.1080/17517575.2011.584132, pp. 1–26, Jun. 2011,
(published online).

[52] P. W. Wang, Z. J. Ding, C. J. Jiang, and M. C. Zhou, “Web service
compositio techniques in a health care service platform,” in Proc.
ICWS, Jul. 2011, pp. 355–362.

[53] P. W. Wang, Z. J. Ding, C. J. Jiang, and M. C. Zhou. “Design and
implementation of a web-service-based public-oriented personalized
health care platform,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 43,
no. 4, pp. 941–957, Jul. 2013.

[54] The Icson Website [Online]. Available: http://www.icson.com/
[55] OASIS Standard. (2007, Apr. 11). Web Services Business Process Execu-

tion Language (WS-BPEL), Version 2.0 [Online]. Available: http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[56] W3C Recommendation. (2007, Jun. 26). Web Service Description
Language (WSDL), Version 2.0 [Online]. Available: http://www.w3.
org/TR/2007/REC-wsdl20-20070626

[57] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau, “Automating
DAML-S web services composition using SHOP2,” in Proc. ISWC,
Oct. 2003, pp. 195–210.

[58] P. C. Xiong, Y. S. Fan, and M. C. Zhou, “QoS-aware web service
configuration,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 38, no. 4, pp. 888–895, Jul. 2008.

[59] P. C. Xiong, Y. S. Fan, and M. C. Zhou, “Web service configuration
under multiple quality-of-service attributes,” IEEE Trans. Autom. Sci.
Eng., vol. 6, no. 2, pp. 311–321, Apr. 2009.

[60] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-aware middlware for web service composition,” IEEE
Trans. Softw. Eng., vol. 30, no. 5, pp. 311–327, May 2004.



784 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 6, JUNE 2014

[61] L. J. Zhang, J. Zhang, and H. Cai, Services Computing. Beijing, China:
Tsinghua Univ. Press, 2007.

[62] X. Zheng and Y. Yan, “An efficient web service composition algorithm
based on planning graph,” in Proc. ICWS, Sep. 2008, pp. 691–699.

[63] Y. Wu, C. G. Yan, Z. J. Ding, G. J. Liu, P. W. Wang, C. J. Jiang, and
M. C. Zhou, “A novel method for calculating service reputation,” IEEE
Trans. Autom. Sci. Eng., vol. 10, no. 3, pp. 634–642, Jul. 2013.

[64] J. Wu, L. Chen, Y. Feng, Z. Zheng, M. C. Zhou, and Z. Wu, “Predicting
quality of service for selection by neighborhood-based collaborative
filtering,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 43, no. 2,
pp. 428–439, Mar. 2013.

[65] P. Sun, C. J. Jiang, and M. C. Zhou, “Interactive web service
composition based on petri net," Trans. Inst. Meas. Contr., vol. 33,
no. 1, pp. 116–132, Feb. 2011.

[66] P. Xiong, C. Pu, and M. C. Zhou, “Protocol-level service composition
mismatches: A Petri net siphon based solution," Int. J. Web Serv. Res.,
vol. 7, no. 4, pp. 1–20, Oct.–Dec. 2010.

[67] P. Xiong, Y. Fan, and M. C. Zhou, “A Petri net approach to analysis
and composition of web services," IEEE Trans. Syst., Man Cybern. A,
Syst. Human, vol. 40, no. 2, pp. 376–387, Mar. 2010.

[68] W. Tan and M. C. Zhou, Business and Scientific Workflows: A
Service-Oriented Approach. Hoboken, NJ, USA: Wiley, 2013.

[69] M. B. Blake, W. Tan, and F. Rosenberg. “Composition as a service,”
IEEE Internet Comput., vol. 14, no. 1, pp. 78–82, 2010.

[70] X. Li, Y. Fan, Q. Z. Sheng, Z. Maamar, and H. Zhu, “A Petri net
approach to analyzing behavioral compatibility and similarity of web
services,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 41,
no. 3, pp. 510-521, May 2011.

[71] X. Li, Y. Fan, S. Madnick, Q. Z. Sheng, “A pattern-based approach
to protocol mediation for web service composition,” Inform. Softw.
Technol., vol. 52, no. 3, pp. 304–323, 2010.

[72] J. Cao, W. Zhang, and W. Tan. “Dynamic control of data streaming
and processing in a virtualized environment,” IEEE Trans. Autom. Sci.
Eng., vol. 9, no 2, 365–376, Apr. 2012.

[73] M. Dotoli, M. P. Fanti, C. Meloni, and M. C. Zhou, “A multi-level
approach for network design of integrated supply chains,” Int. J. Prod.
Res., vol. 43, no. 20, pp. 4267–4287, Oct 15, 2005.

[74] M. Dotoli, M. P. Fanti, C. Meloni, and M. C. Zhou, “Design and
optimization of integrated e-supply chain for agile and environmentally
conscious manufacturing,” IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol. 36, no. 1, pp. 62–75, Jan. 2006.

[75] Y. Du, C. Jiang and M. C. Zhou, “Modeling and analysis of real-time
cooperative systems using Petri nets,” IEEE Trans. Syst., Man, Cybern.
A, Syst, Humans, vol. 37, no. 5, pp. 643–654, Sep. 2007.

[76] K. Huang, Y. Fan, W. Tan, and M. Qian. “BSNet: A network-based
framework for service-oriented business ecosystem management,”
Concurrency Comput.: Practice Exper., vol. 25, no. 13, pp. 1861–1878,
2013.

[77] Z. W. Li and M. C. Zhou, Deadlock Resolution in Automated
Manufacturing Systems: A Novel Petri Net Approach, New York, NY,
USA: Springer, 2009.

[78] W. Tan, P. Missier, I. Foster, R. Madduri, D. De Roure, and C. Goble,
“A comparison of using taverna and BPEL in building scientific
workflows: the case of cagrid,” Concurrency Comput.: Practice Exper.,
vol. 22, no. 9, pp. 1098–1117, 2010.

[79] W. Tan, I. Foster, R. Madduri, “Combining the power of taverna and
cagrid: scientific workflows that enable web-scale collaboration,” IEEE
Internet Comput., vol. 12, no. 6, pp. 61–68, Nov.–Dec. 2008.

[80] W. Tan, M B. Blake, I. Saleh, and S. Dustdar, “Social-network-sourced
big data analytics,” IEEE Internet Comput., vol. 17, no. 5, pp. 62–69,
Sep.–Oct. 2013.

[81] W. Tan, J. Zhang, and I. Foster, “Network analysis of scientific
workflows: A gateway to reuse,” IEEE Computer, vol. 43, no. 9, pp.
54–61, Sep. 2010.

[82] N. Q. Wu and M. C. Zhou, System Modeling and Control With
Resource-Oriented Petri Nets, New York, NY, USA: CRC Press, 2010.

[83] Y. Zheng, Y. Fan, and W. Tan, “Towards workflow simulation in
service-oriented architecture: An event-based approach,” Concurrency
Comput.: Practice Exper., vol. 20, no. 4, pp. 315–330, 2008.

[84] M. C. Zhou and F. DiCesare, “Petri net synthesis for discrete event con-
trol of manufacturing systems.” London, I.K.: Kluwer Academic, 1993.

[85] M. C. Zhou and K. Venkatesh, Modeling, Simulation and Control of
Flexible Manufacturing Systems: A Petri Net Approach. Singapore:
World Scientific, 1998.

[86] H. Zhu and M. C. Zhou, “Roles in information systems: A survey,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 3, pp.
377–396, May 2008.

[87] Zhu, H., M. C. Zhou and P. Seguin, “Supporting software development
with role,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 36,
no. 6, pp. 1110–1123, Nov.

PengWei Wang received the B.S. and M.S. degrees
in computer science from the Shandong University
of Science and Technology, Qingdao, China, in 2005
and 2008, respectively. He is currently pursuing the
Ph.D. degree at the Department of Computer Sci-
ence and Technology, Tongji University, Shanghai,
China.

His current research interests include services
computing, web services, and Petri nets.

ZhiJun Ding received the M.S. degree from the
Shandong University of Science and Technology,
Taian, China, in 2001, and the Ph.D. degree in
computer science from Tongji University, Shanghai,
China, in 2007.

He is currently an Associate Professor with the
Department of Computer Science and Technology,
Tongji University. He has authored more than 50
papers in domestic and international academic publi-
cations. His current research interests include service
computing, semantic web, formal engineering, Petri

nets, and workflows.

ChangJun Jiang received the Ph.D. degree from
the Institute of Automation, Chinese Academy of
Sciences, Beijing, China, in 1995.

He finished his post-doctoral work at the Institute
of Computing, Chinese Academy of Sciences, in
1997, and continued his research at the City Univer-
sity of Hong Kong, New Kowloon, Hong Kong, as a
Visiting Professor in 1998. Currently, he is a Profes-
sor with the Department of Computer Science and
Technology, Tongji University, Shanghai, China. He
is currently the Leading Scientist with the National

Basic Research Program of China (973 Program) on the project “Model and
theory in Internet information service.” His current research interests include
concurrency theory, Petri nets, formal verification, services computing, and
application research on massive information services and wireless networks.

MengChu Zhou (S’88–M’90–SM’93–F’03) re-
ceived the B.S. degree in control engineering from
Nanjing University of Science and Technology, Nan-
jing, China, in 1983, the M.S. degree in auto-
matic control from Beijing Institute of Technology,
Beijing, China, in 1986, and the Ph.D. degree in
computer and systems engineering from Rensselaer
Polytechnic Institute, Troy, NY, USA, in 1990.

He joined the New Jersey Institute of Technology,
Newark, NJ, USA, in 1990, and is a Distinguished
Professor of electrical and computer engineering. He

is currently a Professor with Tongji University, Shanghai, China. His interests
include intelligent automation, Petri nets, sensor networks, semiconductor
manufacturing, web services, and workflows. He is a fellow of the American
Association for the Advancement of Science and IFAC.


