
IMPLEMENTATION OF DATA COMPRESSION IN THE DELPHI
EXPERIMENT

N.SMIRNOV, E.TCHERNIAEV

Institute for High Energy Physics,

Protvino, Moscow region, 142284, Russia

This article describes the technical details of implementation of general methods of data
compression in the DELPHI experiment. Results of compression for di�erent types of
DELPHI data are given.

1 Introduction

In this article we consider an application of general data compression methods to
the physics data with the aim of reducing the size of data volume. Thereat, it is
necessary to distinguish the terms data reduction and data compression. In the both
cases the data volume is reduced, but the implied methods and goals are di�erent.

In case of data reduction, the shrinkage of data is a result of special reconstruc-
tion programs which convert the signals of the sensitive parts of detectors to the
physical values like momenta, coordinates, particle identi�cations, etc. The goal of
data reduction is not only to shrink the data, but also to facilitate further physics
analysis. In case of data compression, the shrinkage of data is a result of more
optimum data coding and the implied algorithms do not depend of the data nature.
The only goal is the reduction of the sizes of the data �les to save disk space.

2 DELPHI data processing chain

At the DELPHI experiment the following kinds of data �les are used:

RAW RAW data { �les with information from the data acquisition system.

FDST Full DST { �les produced by reconstruction program used in DELPHI.

LDST Long or Leptonic DST { the same as FDST but also contain the results of
particle identi�cation (for leptonic events only).

SDST Short DST { the same as FDST but some detector speci�c information was
discarded and the results of particle identi�cation were added.

mDST mini DST { similar to SDST but contain the most essential information writ-
ten in more compact way.

It is clear that the most important for physics analysis LDST, SDST and mDST
data should be easily accessable by users, i.e. their copies should be located on
disks. At the present time this requires 250 Gbytes of disk space (data of 1991-
1994). Such amounts of information can produce de�nite di�culties even for large

1

computer centres like DELPHI o�-line analysis centre at CERN. For collaborating
laboratories, keeping all information on disks can be a real problem.

Three solutions of the problem are possible:

� installation of additional disks { the simplest solution, but needs �nancial
resources.

� "intellectual" packing, i.e. attempt to take into account the ranges and preci-
sion of values in order to pack them into the minimal number of words. This
approach could give the best result but it is very di�cult for maintenance
because the data format is a subject of frequent changes.

� application of universal data compression techniques. Such an approach is
cheap and e�cient.

3 Choosing of data compression algorithm

At present, data compression/decompression procedures have become a usual oper-
ation for users of all types of computers. There are a lot of di�erent tools for that,
but no doubt that the most famous and the most popular one is the deate/inate
method used by the GZIP program.

The choice of data compression algorithm is determined by two main charac-
teristics of the algorithm: the compression ratio and the decompression time. In
the case of GZIP, both characteristics are perfect. It is in "public domain", and
used for relatively long time and implemented on many di�erent platforms. So, the
choice of the algorithm was not di�cult.

We also considered several other algorithms, but they de�nitely were not so
good as the one from GZIP. Let us comment two of them.

The �rst method is LZW (Lempel-Ziv Weltch) algorithm. It is very fast and
relatively e�ective. It is used, for example, in the compress/decompress programs
on Unix. The main advantages of this method are that the algorithm description is
short, program codes are compact and readable, its implementation requires small
amount of working memory. However, the compression ratio of the LZW method
is worse than one of the GZIP method. Moreover it is patented and license politics
of the patent owner, UNISYS corporation, is strict and aggressive.

The second method is higher-order arithmetic coding. At the beginning of 1995
the sources of the HA compressor implementing this method had been opened for
public access. Usually, the algorithm gives better compression ratio than the de-
ate/inate method but it is much slower both for compression and decompression.

4 Implementation of data compression in the PHDST I/O package

For Input/Output in the DELPHI experiment the PHDST package 1 was developed.
It provides user-friendly access to data with machine-independent speci�cation of
external media. The PHDST package uses the ZEBRA-MZ memory management
system to manipulate internal data structures and the ZEBRA-FZ package for
computer-independent input/output 2. The base data structure in ZEBRA is a

2

bank { array with information which can be accessed by its pointer. Such banks
can be joined into more complex data structures { lists, trees, nets. In PHDST such
structures are used to represent physics events.

Each complex data structure (event) is accompanied by a small array of infor-
mation, the so called pilot record. The pilot record contains some general information
about the event and allows user to decide whether to read for analysis or to skip
this event.

Events are usually collected in �les on tapes. The typical size of one �le is
about 200 Mbytes that corresponds to the size of one tape (3480 type cartridge).

One possible solution of including data compression in analysis process is to
compress whole �les once and decompress them only during the usage in analysis
program. Such approach has two signi�cant drawbacks:

� usually tens of programs work with the �les simultaneously. As a result many
�les would be in decompressed state at the same time. This would signi�cantly
decrease the e�ect of �le compression.

� very often analysis programs use only few events from a �le, not all of them and
the decompression of the whole �le would decrease essentially the performance
of the program.

Di�erent scheme of data compression was implemented in DELPHI. The data
compression has been applied to each event separately. It has been used the possi-
bility of FZ to write not only on external media (disks, tapes) but also into internal
memory of the program. This allowed to implement the following scheme (Fig. 1):

1. Instead of writing out the event into external �le, it is saved in the special
array;

2. Information in this array is encoded by some compression procedure, for ex-
ample GZIP deate;

3. The result is placed into ZEBRA bank;

4. This bank is put into the external �le.

The procedure of reading is inverse to the procedure of writing.
Let us consider each step in more details.

1. The output stream must be initiated with

CALL FZFILE (LUN, LREC, 'MXUO')

where 'MXO' { specify memory mode and exchange format for output,
'U' { suppresses the byte inversion, this has a sense only for ma-

chines with the right to the left byte numbering.

2. Two subroutinesmmzip andmmuzip for in-memory compression/decompression
were implemented. They are based on the code of the GZIP program and can com-
press and decompress data from one array to another. They are written in C, but
intended to be called from FORTRAN and have the following user interface:

3

FZINMMUZIPFZIN

STRUCTURE

DATA
FZOUT MEMORY MMZIP BANK FZOUT

FILE

FILE
BANK

DATA

STRUCTURE
MEMORY

Figure 1: Data compression/decompression principal schemes

memory to memory compression

CALL MMZIP (srcsize, src, tgtsize, tgt, irep)

memory to memory decompression

CALL MMUZIP (srcsize, src, tgtsize, tgt, irep)

where src { input array with the size srcsize
tgt { output array with the max size tgtsize
irep { reply

3. The pilot record and the data structure itself are compressed separately and
ZEBRA bank with pilot record is created. First few words of the pilot record contain
information about the compression algorithm used, lengths in bytes of coded pilot
record and data structure, and other service information.

4. The usual output procedure: compressed bank is written to the disk by the
FZOUT routine which outputs data in computer independent format, so the data
can be transferred to and then be read on any computer platform by FZIN routine.

The advantages of this approach are summarised below:

� Compression/decompression procedures are completely independent from data
format (Full/Long/Short-DST . . .).

� Data are still stored in machine independent format, for this reason there is
no problem for home laboratories.

� Flexibility and transparency: one compression algorithm can be easily re-
placed by another, all modi�cations are located in the I/O package, thus
there is no changes in user codes.

� Event by event structure of the data �le remains unchanged; it allows to use
direct access to events.

� Pilot record and d/s itself are compressed separately, so user can decide
whether to read the event or to skip it.

4

5 Results of data compression in the DELPHI experiment

The results of applying of data compression to di�erent data �les used at DELPHI
are shown in Table 1. Compression ratio is de�ned as

Compression ratio =
Original size � Compressed size

Original size
� 100%

Table 1: Compression ratios for di�erent types of data

Data type RAW FDST LDST SDST SDST (MC) mDST
Compression
ratio

47% 46% 49% 40% 44% 27%

Timing of event input/output gave the following results:

� Creating and writing of compressed data is approximately 4-5 times slower
than writing the same data without compression. But this procedure is made
only once for all data during the production.

� Reading of compressed data is 30% slower than reading of ordinary data. So,
the delay is negligible with respect to the time used by physics analysis part
of a user program.

One remark should be made. We compared the size of �le produced by the pro-
cedure described above, i.e event-by-event compression and the size of �le produced
by the program GZIP, i.e. compression of the whole �le. The later is usually 10%
less. This decrease results from the small size of some (mainly leptonic) events. We
found that the compression factor grows with event size up to 64 Kbytes. Above
64 Kbytes the compression factor does not depend on event size. Typical event
size is 25 Kbytes for hadronic event (SDST). It creates a possibility for further
improvement by clustering of few events in one hyperevent with the size slightly
more than 64 Kbytes and compression of such hyperevents.

Acknowledgements

We are grateful to all our colleagues at the DELPHI experiment for numerous
suggestions for the package development. There were many fruitful discussions
with V.Perevozchikov and Yu.Belokopytov. Our special thanks go to the DELPHI
Analysis Software Group coordinator M.Mazzucatto for his permanent attention to
the package. This work was partially supported by INTAS (contract INTAS-93-
3602).

References

1. V.Perevozchikov and N.Smirnov, PHDST Package Description. User's Man-
ual. DELPHI 92-118 PROG 189 Rev.3

2. J.Zoll at al., The ZEBRA system. CERN Program Library Q100/Q101

5

