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This paper proposed a novel centralized hardware fault detection approach for a structured Wireless
Sensor Network (WSN) based on Naïve Bayes framework. For most WSNs, power supply is the main
constraint of the network because most applications are in severe situation and the sensors are equipped
with battery only. In other words, the battery’s life is the network’s life. To maximize the network’s life,
the proposed method, Centralized Naïve Bayes Detector (CNBD) analyzes the end-to-end transmission
time collected at the sink. Thus all the computation will not be performed in individual sensor node that
poses no additional power burden to the battery of each sensor node. We have conducted thorough per-
formance evaluation. The obtained results showed better performance can be obtained under a network
size of 100-node WSN simulations at various network traffic conditions and different number of faulty
nodes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The proliferation in Micro-Electro-Mechanical Systems (MEMS)
technology, which makes deploying low-cost, large-scale, and
dense small sensor nodes to collect information from harsh envi-
ronment feasible, has resulted in the emerging of WSNs. A WSN
may consists of hundreds or thousands distributed autonomous
sensors, which equipped with sensing, computation, and wireless
communication devices to monitor or collect information from
various environments including battle fields, remote geographical
regions, industrial plants, and office buildings (Erdelj, Mitton, &
Natalizio, 2013; Geeta, Nalini, & Biradar, 2013; Taneja, Krioukov,
Dawson-Haggerty, & Culler, 2013). Nowadays, WSNs has been
widely applied in many different applications like railway security
(Daliri, Shamshirband, & Besheli, 2011), transportation system
(Ray, Goel, & Chandra, 2011), environmental monitoring (Othman
& Shazali, 2012), forest fire detection (Aslan, Korpeoglu, & Ulusoy,
2012), and healthcare (Alemdar & Ersoy, 2010).

Sink/sensor pair is a common architecture of WSNs. The sensors
are in charge of measuring the environmental status, which may
vary with time and space; collaborating with each other; and for-
warding the measured data to the sink. The sink is responsible for
integrating, analyzing data received from sensors and responding
users and applications accordingly (Hsieh, Leu, & Shih, 2010). There
are two types of sensor deployment: structured and unstructured.
In an unstructured WSN, a dense collection of sensor nodes is
deployed in an ad hoc manner into the field. Once deployed, the
network is left unattended to perform monitoring and reporting
functions. The numerous nodes and ad hoc topology make the net-
work maintenance such as managing connectivity and detecting
failures very difficult. In a structured WSN, all or some of the sen-
sor nodes are deployed in a planned manner; hence, fewer nodes
are required for the same coverage of the unstructured WSN (Yick,
Mukherjee, & Ghosal, 2008). This lowers the network maintenance
and management cost in a structure WSN.

The design and resource constraints of a wired network and
that of a WSN are quite different. Resource constraints of a WSN
include limited amount of energy, short communication range,
low bandwidth, and limited processing power and storage in each
sensor node. Design constraints are application dependent and are
based on the monitored environment (Yick et al., 2008). Due to
these constraints, the sensor nodes may fail to perform correct
operations. Moreover, the connection between sensor nodes is
prone to temporary or permanent failure under severe environ-
ments. A successful packet transmission from sensor node to sink
is relying on correct propagation among sensor nodes; hence, node
failure can severely influence the network performance. A diagno-
sis mechanism becomes necessary to ensure the operations are
correct and the data collected are meaningful to the user (You
et al., 2011).

As mentioned before, the network life time depends on the
sensors’ life. As the sensors are often deployed in an uncontrolled
or even harsh environment, they are prone to having faults (Lee
& Choi, 2008). Compared to traditional integrated semiconductor
chips, sensors and actuators boarded on a MEMS node have higher
chance to be faulty (Khan, Daachi, & Djouani, 2012). These
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properties pose significant challenges to maintaining high quality
of service of WSNs. Therefore, efficient and effective fault manage-
ment deems to be essential for maintaining a robust WSNs service.
Yu, Mokhtar, and Merabti (2007) discussed three phases of fault
management process. Fault management aims to identify the
faulty sensor nodes, and to exclude them from the network. Fault
detection is a basic fault management task in WSNs.

There is a trade-off between prolonging the network lifetime by
conserving the energy of individual nodes and maintaining the
high quality of network services by implementing complex fault
management schemes in the network (Yu et al., 2007). In order
to minimize the resources consumption and to preserve the energy
of nodes, our proposed method is designed to detect and analyze
faulty sensor node(s) using data collected at the sink rather than
implementing a complex faulty management scheme. The pre-
sented results show the proposed method is effective and reliable.
Also, the proposed Naïve Bayes framework is the first of its kind to
be deployed for performing WSN faulty node(s) detection. Because
of the structure of Naïve Bayes classifier, the proposed method is
computational efficient. A simulation environment using Zigbee
protocol has been set up for the verification of the proposed
method.

In this paper, a novel approach, CNBD was proposed to identify
the possible faulty sensor node using Naïve Bayes framework. A
new attribute, the end-to-end transmission time of each packet ar-
rived at the sink is analyzed for determining the network status.
CNBD does not involve any additional protocol and extra resource
consumption of sensor nodes while it suggests a list of suspicious
faulty nodes to the user. The rest of the paper is organized as fol-
lows. Section 2 discusses the related work. In Section 3, the proce-
dures of CNBD is discussed. Section 4 discusses the simulation
environment, results and the possible future development. Sec-
tion 5 concludes the paper.
2. Related works

2.1. Mechanism of Wireless Sensor Network

WSN is a network consists of sensor devices, called nodes, and
controller, called sink. The nodes, measure the environmental
parameters and forward these measurements to the sink, which
Fig. 1. A simple WSN topology (Fig. 2 in IEEE standard for information technology
metropolitan area networks – specific requirements – Part 15.4: Wireless MAC and PHY
has no constraint on power, through wireless communication.
Fig. 1 shows a simple WSN topology.

There are different communication protocols for WSNs; and
each protocol has its own characteristics for different applications.
The popular communication protocols include Zigbee/802.15.4,
IEEE 1451, WirelessHART, ZigBee IP, and 6LoWPAN. In this paper,
the simulator is built using Zigbee/802.15.4 protocol because
Zigbee aims at constructing a WSN with low cost, low power
consumption, low complexity, and low data transmission rate.

There are two common congestion scenarios: node-level and
link-level. Node-level congestion is caused by a buffer overflow
in the node when link-level congestion is caused by too many
nodes requesting the same node for data transmission simulta-
neously. Under Zigbee standard, signal from node to sink will tra-
vel through the shortest path in normal situation. If any packet
losses due to hardware failures or congestions, the signal path will
be changed (Fig. 2). It results in higher energy consumption and
longer end-to-end packet transmission time.
2.2. Fault detection in Wireless Sensor Networks

Different from wired networks, fault management for WSNs
concerns a given region rather than a given link between two
nodes. Yu et al. (2007) stated the fault management schemes vary
in form of architecture, protocols, and detection algorithms. Gener-
ally, the fault management for WSNs can be divided into three
phases: fault detection, fault diagnosis, and recovery. In this paper,
only fault detection will be discussed.

The fault detection technology can be generally classified as
centralized approaches and distributed approaches. Briefly, the
sink in the centralized approach usually has uninterrupted power
supply and makes the diagnostic decisions by periodically injecting
requests or queries to other nodes and waits for replies. In distrib-
uted approaches, the updated network status and individual node
performance was assessed according to the status reporting mes-
sages from nodes or data comparison with the neighbors advanc-
ing from the concept in Sengupta and Dahbura (1992).

The recent works on network data fault detection include the
use of Takagi–Sugeno–Kang fuzzy inference system (Khan et al.,
2012), statistical based Auto-regression (Volosencu, 2012), and
Bayesian network (De Paola, Lo Re, Milazzo, & Ortolani, 2013).
– telecommunications and information exchange between systems – local and
specifications for low-rate WPANs, 2006).



Fig. 2. Different cases of path change.
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The Takagi–Sugeno–Kang fuzzy framework was used to model
individual sensor node through training with input of neighboring
sensor’s measurements and an output of its actual measurement.
Thus, a node can be identified as faulty when the system output ex-
ceeds a predetermined threshold. But the setting of the threshold
may not be straightforward as the threshold value may vary with
different network structures and applications. A statistical based
Auto-regression was used to estimate the forthcoming sensor data
based on the previous readings and compare with the real value. If
the deviation exceeds the acceptable tolerance, the sensor is re-
ported as failure. Probabilistic approach was also employed to
solve the problem. They first separated the network into clusters
and used Bayesian network to model all the collected sensor nodes
readings. Thus, the trained Bayesian network is able to identify
whether the newly acquired reading was generated from a faulty
node or not. But it is noticed that sensor nodes are often placed
in harsh environment or outdoors. The environmental conditions
may fluctuate which caused false alarms. Moreover, hardware
faults like physical damages and battery depletion were over-
looked. Geeta et al. (2013) tackled the battery failure and other
environmental damages by battery power model and interference
model. When a node is in low battery power, all services of the
node will transfer to neighboring nodes with the highest battery
power. However, the interchange of battery capacity information
between nodes consumes extra energy from the usual node oper-
ations. It is also noted that most algorithms were designed in a dis-
tributed approach which results in draining more battery power
for performing assessment computations.

The contribution of our proposed probabilistic CNBD is three-
folded. First, all detection computations are handled by the sink
node which uses no battery power of each sensor node. This
approach will have solved many intrinsic sensor node battery
problems. Second, the end-to-end transmission time of data pack-
ets is always provided by the protocol, which means no additional
power is needed for reporting the of each sensor node. Third, Naïve
Bayes classifier, a computational efficient and robust probabilistic
mechanism, is newly introduced to WSN fault detection. Our
obtained results indicate that the proposed framework is capable
of handling reliable fault detection task even under a large sensor
network of 100 nodes.
2.3. Naïve Bayes modeling

Naïve Bayes is a simple, fast and accurate classifier based on
Bayes’ theorem with independent assumption. Naïve Bayes was
used in many classification applications such as text data-mining
(Youn & Jeong, 2009), medical data-mining (Soria, Garibaldi,
Ambrogi, Biganzoli, & Ellis, 2011), network intrusion detection
(Koc, Mazzuchi, & Sarkani, 2012), and Cheminformatics (Mussa,
Mitchell, & Glen, 2013). When we have m classes denoted as
C1, C2, ..., Cm and n-dimensional vector for a class t is DCt = {dCt1, -
dCt2, � � �, dCtn}, where

P
idCti = 1 and dCti is the probability that data

i occurs in class t. S = {s1, s2, ..., sk} is the total k senses of network
operation. The likelihood of scene s1 is a product of the data that
appear in the scene,

Pðs1jDCtÞ ¼
P

iNi
� �

!Q
iNi!

Y
i

dCtið ÞNi ð1Þ

where Ni is the number of data i in scene s1.
The largest posterior probability L provides the most suitable

decision of the classification task with prior distributions of all
classes P(DCt). It is presented as the following,

L ¼ arg maxc log PðDCtÞ þ
X

i
Ni log dCti

h i
ð2Þ

The prior distributions are found during training phase by Maxi-
mum Likelihood Estimation (MLE). When the testing attribute val-
ues were collected, the classification can be done by equation (2).
2.4. Maximum Likelihood Estimation

There are many sensor nodes involved even in a typical WSN. In
other words, there are so many fault conditions and it is not feasi-
ble to have enough training sample to determine the conditional
probabilities for all cases. Thus, MLE is used to ease the training
sample requirement for estimating the conditional Probability
Density Function (PDF). Assume the training attribute values
S = {s1, s2, ..., sn} have a joint density denoted,

fhðs1; s2; . . . ; snÞ ¼ f ðs1; s2; . . . ; snjhÞ ð3Þ

The MLE of h is to maximize the likelihood function but that
would be quite tedious. The log likelihood is usually maximized
instead:

lðhÞ ¼
Xn

i¼1
lnðf ðsijhÞÞ ð4Þ

where S is independent and identically distributed. The maximum
likelihood estimator ĥ can be estimated by finding the derivative.

In general, the MLE estimates the PDFs in both normal scenes
and faulty scenes according to the training data from ideal and
congested networks. There are two advantages to use MLE. First,
manageable amount of training data is used to build the PDFs for
Naïve Bayes estimation. Second, the estimated PDFs can still pro-
vide probabilities for extreme attribute value inputs.
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3. Centralized Naïve Bayes detector

Based on operation characteristics of a WSN, the packet trans-
mission time was assumed that behaving like Exponential PDF.
MLE is used to estimate conditional probability during training
phase.

Fig. 3 showed the general process flow of CNBD and the process
details were described as follows:

(1) For both training and testing phase, only the information of
the packets such as end-to-end packet transmission time,
and source node IDs received by sink were analyzed. The
(1) Load p
and extract 

(2b) Estimate marginal 
probability

(2a) Estimate conditional 
probability by MLE

(3) Build Naïve Bayes 
Classifier 

T
raining Phase

Fig. 3. Implementati
network status could be normal or faulty. If the class label
is normal, the network consists of no faulty sensor. If the
class label is faulty, the network consists of at least one
faulty sensor.

In the training phase,

(2a) The training process was started from the data obtained
from the normal class first. When the normal class data were
processed, the minimum time value of each node was
extracted as an anomaly detection threshold. In typical
WSN topology, packets are sent from a node, which picks
ackets 
feature

(4) Preprocess transmission 
time corresponding to source 

nodes

(6) Compare normal and 
faulty conditional probability
of the mostly observed delay

Yes

No

(8) Fault detection by Naïve 
Bayes Classifier 

(5) Do the batch 
consist any value 

below the anomaly 
threshold?

Yes

Yes

No

No

(7) Does fault be 
detected?

(9) Does fault be 
detected?

(11) Result

(10) Do all 
available data be 

assessed?

Yes

No

T
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on of the CNBD.
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up the parameter value, to the sink in a many-to-one mech-
anism. In other words, the effect of faulty nodes to the trans-
mission is depending on the position of faulty node within
the topology. If the faulty node is a leave node, the signal
cannot be picked up anymore. If the faulty node is at the
only path to the sink, signals of the whole branch cannot
reach the sink. Only the transmission time deviated from
the anomaly detection threshold will be investigated. Both
normal and faulty conditional PDF parameter(s) were esti-
mated by MLE for each node.

(2b) The marginal probability of both classes (i.e. normal and
faulty) was estimated according to the class labels of the
training dataset.

(3) The conditional probability and marginal probability
obtained from step (2a) and step (2b), respectively, were
used to build the Naïve Bayes classifier, which will be used
in step (8) to determine the network status during testing
phase.

In the testing phase,

(3) Packets received at sink will be analyzed in a batch (every
1000 received packets as a batch in this study). The end-
to-end transmission time of all packets in a batch were
grouped according to their source node. Each group was
passed to step (5) to check whether the transmission path
consists of any faulty node.

(4) As congestion is a common phenomenon during packet
transmissions, the end-to-end transmission time may be
longer than that of the congestion-free network even
there is no faulty node within the path. To ease the con-
fusion between the congestion and real faulty node, every
packet group was compared with its corresponding
anomaly threshold. If all end-to-end transmission time
of a group is lower than the anomaly threshold, the path
having at least one faulty node is assumed. In other
words, if there is one transmission time value lower than
the anomaly threshold, we assume that the longer trans-
mission time is caused by the congestion instead of faulty
node.

(5) There may have different end-to-end transmission time
value within the packet group due to different traffic sit-
uations. The mode value of the transmission time will
be used for further analysis. The normal and faulty condi-
tional probability of the mode value within each packet
group were estimated and compared with the trained
PDFs.

(6) If the faulty conditional probability of the mode value is
higher than the normal conditional probability of the mode
value, this transmission time will be suspected from a faulty
network. Otherwise, it will be assumed from a normal
network.

(7) As the mode value may due to the congestion not the faulty
node, further investigation is needed. To confirm the net-
work status, the last five transmission times are analyzed
by a Naïve Bayes classifier. If there were less than five con-
secutive values, all the data were used for the estimation.
The result obtained from the classifier may override the
result obtained from step (7).

(8) If the packet group was defined as from a faulty network, the
source node will be defined as a suspicious faulty node. The
suspicious faulty node list was updated.

(9) Step (5–9) will be repeated until all packet group are
analyzed.

(10) The network status and the suspicious fault node list are
reported according to the testing scenes.
4. Results and discussions

4.1. Simulation and implementation

A simulator modeling typical WSNs using Zigbee with hardware
fault is developed. A 100-node topology was random generated by
adjacency matrix with transmission cost ranging from 1–200.
There is always one sink in the network and it operates with
unlimited power supply. Data were randomly picked up by nodes
and were forwarded to the path heading the sink. Then, the nodes
will pack the data to be packets and transmit towards the sink
node. Different situations are simulated. Two parameters, traffic
congestion condition and number of faulty nodes within the net-
work, are set. Three level of traffic congestion condition are consid-
ered. They are congestion-free, light congested, and heavy
congested. Under each traffic congestion condition, no fault net-
work and different numbers of faulty nodes within the network
are generated. The number of faulty nodes is varied from 1 to 5.
For a 100-node topology, there are 100, 4950, 161,700, 3,921,225,
and 75,287,520 combinations of faulty nodes for the number of
faulty nodes varying from 1 to 5, respectively. It is tedious to go
through all combinations; we cap the number of combinations at
5000. Hence, the total scenarios for each traffic congestion level
are 20,050. In other words, total 60,150 faulty scenes are gener-
ated. Under each scenario, 2000 data packets are generated by sen-
sor nodes randomly.

In this study, CNBD was compared with two performance eval-
uation methods, Marginal Fault Detector (MFD) and Historical
Fault Detector (HFD). MFD made use of the normal data to train
the decision making thresholds for testing data from each node.
When the transmission time varied due to congestion, the mini-
mum value was selected to be the threshold. If there were any
new data larger than the threshold, the end-to-end packet
transmission path will be classified as an alternative path from a
faulty network and the source node will be marked as a suspicious
node.

When MFD uses all normal data to train its threshold, HFD, and
CNBD used 60% of faulty data and the similar amount of normal
data for training. The rest 40% of faulty data were used for method
verification. HFD recorded the transmission time of both normal
and faulty scenes for each source node at the same traffic condi-
tion. If the same transmission time was found in both normal
and faulty scenes record, the value in the faulty scenes record
was erased. The network and the source node were classified as
faulty and suspicious faulty node respectively if there were testing
data equaled to the trained faulty scenes record. CNBD was imple-
mented according to Section 2.3. Fig. 4 shows the Probability Den-
sity Functions (PDFs) obtained by MLE of exponential distribution
for both normal and faulty end-to-end transmission time. In
Fig. 4(a), the faulty and normal PDF from one node are compared.
In the Fig. 4(b), it shows the overall comparison between faulty and
normal PDFs from the whole network. It can be seen that faulty
transmissions would have caused longer transmission time com-
pared with normal transmission. To evaluate the performance of
these methods, Scenes Hit Rate, Hit Ratio, and False Alarm Rate
are also compared.

4.2. Scenes Hit Rate comparison

Totally 60,153 scenarios for three different traffic conditions
were generated in this study. Scenes Hit Rate is the ratio of suspi-
cious nodes matched the theoretical faulty nodes to the total
scenes. Fig. 5 shows the Scenes Hit Rate of MFD, HFD, and CNBD
for different traffic conditions. CNBD achieved the best result of
Scenes Hit Rate in the cases with congestions. The two fault detec-
tor did not work well in light traffic congestion and heavy traffic



0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fig. 4. Exponential distribution of transmission time in normal and faulty scenes.

(a)

(b)

(c)

Fig. 5. Scenes Hit Rate of MFD, HFD, and CNBD at (a) congestion-free network, (b) light traffic network, and (c) heavy traffic network.
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congestion cases because there are too many possible values in
both normal and faulty scenes. Their database or thresholds cannot
provide enough information to judge the cause of the longer trans-
mission time was from congestions or from a faulty network. CNBD
could achieve 60% or higher rate except the ‘‘one-fault with light
traffic’’ case. It was because the faulty scenes were limited in
one-fault cases and the training data were not enough for Naïve
Bayes classifier to train the conditional probabilities. More faulty
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data were used to establish the conditional probability, higher the
Naïve Bayes classification accuracy.

4.3. Hit Ratio comparison

Hit Ratio is the ratio of correctly detected faulty transmission
time against the total faulty transmission time. CNBD and HFD per-
formed the best and the worst in the comparison respectively. The
Hit Ratio decreased when the faulty nodes increased in the con-
gested scenes. It was because the longer transmission time was
mainly caused by the network congestion and the prolonged trans-
mission time of alternative path became a small fraction of the rea-
son of the longer transmission time. The conditional probability of
faulty transmission time was similar to the conditional probability
of normal transmission time. There was a higher probability that
the data from faulty network was classified to be data from normal
network. Thus, the Hit Ratio decreased when the faulty nodes in-
creased (see Fig. 6).

4.4. False Alarm Rate comparison

False Alarm Rate is the rate of misclassified suspicious nodes
against the total suspicious nodes. The congested scenes suffered
in high False Alarm Rate in all methods because both faulty nodes
and congestions caused the similar longer transmission time. It
was not easy to have an accurate classification. False Alarm Rate
(a)

(b)

(c)

Fig. 6. Hit Ratio of MFD, HFD, and CNBD at (a) congestion-free ne
decreased when the faulty node number increased in congested
scenes. It was because more the faulty nodes, higher the possibility
to be detected.

Refer to the results, end-to-end packet transmission time is pos-
sible to be used for fault detection of the WSN. CNBD provided a
higher Hit Ratio for congestion-free traffic condition. It means
more nodes using alterative transmission path were detected. That
helps the rangers to identify the specific location/region of the
faulty node(s). Although the False Alarm Rate of CNBD is slightly
higher than that of other methods, it is an acceptable range, say
within 5%. Moreover, the disadvantage of slightly higher False
Alarm Rate was overcome by the advantage of the far higher Hit
Ratio that a more comprehensive suspicious node list helps the
rangers to identify the faulty nodes more easily in a large network.
All methods suffered in a high False Alarm Rate and around 60% of
alterative transmission paths were detected if traffic congestion
exists. In other words, only analyzing end-to-end packet transmis-
sion time may not be adequate for fault detection for congestion
situation because the end-to-end packet transmission time cannot
show the reason behind the long transmission time i.e. caused by
the faulty node or by congestion (see Fig. 7).

In summary, CNBD newly introduced Naïve Bayes Classifier to
large WSN fault detection. The detection attribute, end-to-end
transmission time is never mentioned in the literature and it
minimized the extra battery power used for health assessment of
sensor nodes. CNBD is highly recommended for large WSNs with
twork, (b) light traffic network, and (c) heavy traffic network.
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Fig. 7. False Alarm Rate of MFD, HFD, and CNBD at (a) congestion-free network, (b) light traffic network, and (c) heavy traffic network.
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low frequency of data acquisition such as the monitoring of indoor
environment, agricultural environment, and transportation.

In future, further improvement is needed in three aspects. First,
more attributes are needed to improve the performance in
congested network. Second, the end-to-end transmission time de-
pends on the deployment of sensor nodes. Mobility of sensor nodes
changes the topology of the network and end-to-end transmission
time may have large variations. An online updating learning mech-
anism for the Naïve Bayes framework will be useful for a high
mobility WSN. Last, failure of edge nodes does not affect the trans-
mission time of other nodes. More efficient method is needed to
detect the failure of those nodes.
5. Conclusions

A novel centralized fault detection method for WSN based on
Naïve Bayes framework was introduced. The recent researches
mostly focused on the detecting data faults but the battery deple-
tion problem of sensor nodes was overlooked. To raise the energy
efficiency of sensor nodes, a new attribute, the end-to-end packet
transmission time from source node to the sink was extracted from
the communication protocol for determining the network status. If
it is a faulty network, a suspicious faulty node list is provided for
further investigation. Simulations with three network traffic condi-
tions and faulty node numbers ranging from one to five were used
to evaluate the performance of different methods. The fault detec-
tors were only effective in congestion-free scenes while CNBD
provided a better Scene Hit Rate and Hit Ratio with slightly worse
False Alarm Rate. Further improvement was suggested in detection
attributes, mobility and method efficiency aspects.
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