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a b s t r a c t

In most seismic building codes, the design base acceleration is computed using the natural period of
vibration of the structure. Design specifications provide empirical formula to estimate the fundamental
natural period of a system. In this study a class of steel plate shear walls, that have uniform properties
through their height, was considered. The fundamental natural periods of this class of structures were
determined using three dimensional geometrically linear finite element analyses and were compared
against the estimates provided by seismic design specifications. Comparisons reveal that estimations
using approximate formula can lead to unsatisfactory results. Based on this observation a simple hand
method has been developed to predict the fundamental period of a steel plate shear wall. In the
development of the hand method the steel plate shear wall has been recognized as a vertical cantilever for
which simplified analytical solutions exist. Contributions of shear and bending stiffness of the wall have
been explicitly taken into account. Furthermore, this simple method has been extended to dual systems
having plate walls and special moment frames in the context of theories on wall-frame structures. Natural
period estimations using the method that was developed in this study are compared with the finite
element solutions and a good agreement is demonstrated. In addition, the effects of geometrical and
material nonlinearities on the fundamental period were explored. The fundamental periods of steel plate
walls were investigated at various drift levels. Based on the numerical analysis, elongation of the periods
due to buckling and yielding of infill plates were quantified and are presented herein.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction and background

Steel plate shear walls (SPSW) can be used in buildings to resist
forces produced during an earthquake. In a typical SPSW system
steel infill plates that are one story high and one bay wide are
connected to stiff horizontal and vertical boundary elements (HBE
and VBE). The resulting system is a cantilever which resembles a
plate girder. Design philosophies for SPSW systems can be divided
into two categories. Earlier designs used thick or stiffened plates to
prevent buckling due to shear stresses forming at low load levels.
Recent designs employ thinner plates and rely on the post buckling
capacity. Experimental and numerical studies [1–16] reported to
date revealed that SPSW systems have high stiffness, excellent
energy absorption capacity and stable hysteresis characteristics.

Most of the seismic building codes [17–19] provide expressions
for design base acceleration as a function of the natural period of
the structure. Therefore, accurate computation of the fundamental
natural period has paramount importance in determining the
magnitude of lateral forces in design.

For determination of the fundamental period of vibration of the
structure, expressions based on methods of structural dynamics
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(for example Rayleigh’s method or computer based eigenvalue
analysis) are permitted by design specifications such as ASCE
7 [17], Eurocode 8 [18], and National Building Code of Canada
(NBCC) [19]. In addition, design specifications provide empirical
formulas to estimate the fundamental period of the structure.
Usually, these formulas depend on the type of the structural
system, materials used, and the gross dimensions. Traditionally,
code period expressions have been derived or validated using
measured building periods during earthquakes [20,21]. These
expressions are generally adjusted to give lower-bound estimates
so that design seismic forces are not underestimated. There are
two main uses for these empirical formulas. First, these period
formulas are useful in design as the actual structure period is not
known before a first trial design is performed. Second, in design
codes such as ASCE 7 [17] and NBCC [19], these approximate
formulas together with a coefficient are used to provide an upper
limit on the fundamental period calculated based on the methods
of structural dynamics. In NBCC [19] it is specified that for
shear walls the value obtained by such methods not exceed 2.0
times the value determined by empirical expressions. Similarly,
in ASCE 7 [17] the basic period can be increased up to 1.4 times
for high seismic zones and to 1.7 times for low seismic zones.
These restrictions are imposed to safeguard against unreasonable
assumptions in the methods of structural dynamics, which may
lead to unreasonably long periods and hence unconservative
values of base shear.
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According to design specifications ASCE 7 [17] as developed
in AISC Seismic Provisions for Structural Steel Buildings [22], EC
8 [18], and NBCC [19], the fundamental period of vibration (T) of
an SPSW system can be found by:

T = 0.05H3/4 (1)

where; H: height of the building in meters.
In this paper, the accuracy of the empirical equations given

by the design specifications is assessed. For assessment a class
of structures with steel plate shear walls possessing different
geometrical and mass properties was selected. The fundamental
natural periods of these structures were determined using three
dimensional geometrically linear finite element analyses. The
values obtained from numerical analysis were compared against
the approximations provided by design specifications. Next, a
practical hand method is developed to estimate the natural period
of SPSW systems. This method is based on the premise that the
SPSW is a shear weak vertical cantilever, for which approximate
analytical solutions exist. The formulation of this practical method
is presented and its accuracy is assessed by making comparisons
with finite element results. Finally, the period elongation due to
buckling and yielding of infill plates is explored. Structures were
subjected to various drift levels and elongation in fundamental
period due to buckling and yielding was computed by making use
of numerical analysis. The details of the finite element procedure
are explained and the results from these analyses are presented.

2. Assessment of the empirical equation presented in design
specifications

In order to make an assessment of code recommendations,
a class of structures was considered. Two typical floor plans
shown in Fig. 1 were used for this assessment. Perimeter frames
and walls in the N-S direction were designed according to the
recommendations given in AISC Provisions for Structural Steel
Buildings [23] and AISC Seismic Provisions [22]. Two different
lateral load resisting systems were considered. In the first one,
it was assumed that the perimeter framing has pinned beam
to column connections and the steel plate wall is used as the
sole lateral load resisting system. In the second one, it was
assumed that the perimeter framing has rigid beam to column
connections and the dual system (wall-frame) is used as a lateral
load resisting system. In both lateral load resisting systems HBE to
VBE connections were assumed rigid.

In order to cover a wide range of slenderness and aspect ratios,
infill plate thickness values of 3.0 mm and 6.0 mm and plate
aspect ratios of 1 and 2 were considered. These values are within
the bounds recommended by AISC Seismic Provisions [22]. For all
structures, the clear height between HBE was taken as 3 m. A dead
load of 4.4 kN/m2 and a live load of 2 kN/m2 were considered
during the design. Mass per story including the reduced live load
was 0.5 tons/m2. According to these assumptions, mass per story
for each perimeter frame was taken as 150 tons for 3 bay structures
(Floor Plan 1) and 250 tons for 5 bay structures (Floor Plan 2).
For plate walls 2,4,6,8,10 story structures were considered. For
dual systems 2,4,6,8,10,15,20,25,30,35,40 story structures were
considered. For plate wall only systems, no more than 10 stories
was considered because the height of these structures designed
per seismic category F of AISC Seismic Provisions [22] is limited
to 30 m. A total of 40 steel plate walls and 88 dual systems were
designed according to capacity design principles and the details of
the sections are given in Tables 1 and 2.

Fundamental natural periods of this class of structures were
determined using three dimensional finite element analyses. Infill
plates, VBE, HBE, beams and columns were modeled using 8-
node shell elements. Lumped masses were placed at story levels.
Fig. 1. Floor plans.

Fig. 2. A typical finite element mesh and fundamental mode of vibration.

A commercially available finite element program ANSYS [24]
was used to conduct the analysis. An eigenvalue analysis was
performed for each case to determine the fundamental natural
period of vibration. A typical finite element mesh displaying the
fundamental mode of vibration is given in Fig. 2.

Natural period values determined using finite element analysis
are given in Tables 1 and 2. The periods found using the empirical
Eq. (1) were normalized with the results from the finite element
analysis and are presented in Figs. 3a and c. In these figures,
analysis cases are sorted so that the estimates are plotted in
descending order. According to Fig. 3a period estimations using
Eq. (1) produce overestimations (unconservative results) for 6
cases out of 40 plate walls, and for 5 cases out of 88 dual
systems. The statistical measures related with the period estimates
are given in Table 3. According to the statistical measures and
Fig. 3c there are large discrepancies between the estimates and
the numerical solution for dual systems. The upper limit provided
by the design specifications were evaluated by comparing the
lengthened periods and the periods from numerical analysis. For
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Table 1
Properties of wall systems

Case # of
story

Plate thickness
(mm)

Plate
width (m)

Floor
plan

VBE section
HD

Period
(s)

Case # of
story

Plate thickness
(mm)

Plate
width (m)

Floor
plan

VBE section
HD

Period (s)

1 2 3 3 1 320× 158 0.289 21 6 6 3 1 400× 744 0.645
2 2 3 3 2 320× 158 0.373 22 6 6 3 2 400× 744 0.832
3 2 3 6 1 320× 158 0.203 23 6 6 6 1 400× 744 0.412
4 2 3 6 2 320× 158 0.262 24 6 6 6 2 400× 744 0.532
5 2 6 3 1 400× 287 0.208 25 8 3 3 1 400× 509 1.285
6 2 6 3 2 400× 287 0.268 26 8 3 3 2 400× 509 1.660
7 2 6 6 1 400× 287 0.148 27 8 3 6 1 400× 509 0.796
8 2 6 6 2 400× 287 0.191 28 8 3 6 2 400× 509 1.028
9 4 3 3 1 400× 287 0.563 29 8 6 3 1 400× 990 0.901
10 4 3 3 2 400× 287 0.727 30 8 6 3 2 400× 990 1.163
11 4 3 6 1 400× 287 0.373 31 8 6 6 1 400× 990 0.564
12 4 3 6 2 400× 287 0.481 32 8 6 6 2 400× 990 0.728
13 4 6 3 1 400× 551 0.402 33 10 3 3 1 400× 634 1.692
14 4 6 3 2 400× 551 0.518 34 10 3 3 2 400× 634 2.185
15 4 6 6 1 400× 551 0.267 35 10 3 6 1 400× 634 1.032
16 4 6 6 2 400× 551 0.345 36 10 3 6 2 400× 634 1.332
17 6 3 3 1 400× 421 0.885 37 10 6 3 1 BUILT UP 1.196
18 6 3 3 2 400× 421 1.143 38 10 6 3 2 BUILT UP 1.544
19 6 3 6 1 400× 421 0.567 39 10 6 6 1 BUILT UP 0.735
20 6 3 6 2 400× 421 0.731 40 10 6 6 2 BUILT UP 0.949

All HBE are HEA 300. (BUILT UP section depth = 580 mm, flange width = 475 mm, flange thickness = 130 mm, web thickness = 90 mm).
Table 2
Properties of dual systems

Case # of
story

Plate T.
(mm)

Plate
W. (m)

Floor
plan

VBE and column section
HD

Period
(s)

Case # of
story

Plate T.
(mm)

Plate
W. (m)

Floor
plan

VBE and column section
HD

Period (s)

1 2 3 3 1 320× 198 0.242 45 2 3 3 2 320× 198 0.297
2 2 3 6 1 320× 198 0.179 46 2 3 6 2 320× 198 0.225
3 2 6 3 1 320× 198 0.203 47 2 6 3 2 320× 198 0.253
4 2 6 6 1 320× 198 0.142 48 2 6 6 2 320× 198 0.180
5 4 3 3 1 320× 198 0.529 49 4 3 3 2 320× 198 0.647
6 4 3 6 1 320× 198 0.368 50 4 3 6 2 320× 198 0.463
7 4 6 3 1 320× 198 0.472 51 4 6 3 2 320× 198 0.584
8 4 6 6 1 320× 198 0.309 52 4 6 6 2 320× 198 0.392
9 6 3 3 1 320× 198 0.880 53 6 3 3 2 320× 198 1.064
10 6 3 6 1 320× 198 0.606 54 6 3 6 2 320× 198 0.758
11 6 6 3 1 320× 198 0.813 55 6 6 3 2 320× 198 0.990
12 6 6 6 1 320× 198 0.530 56 6 6 6 2 320× 198 0.668
13 8 3 3 1 320× 198 1.272 57 8 3 3 2 320× 198 1.518
14 8 3 6 1 320× 198 0.885 58 8 3 6 2 320× 198 1.098
15 8 6 3 1 320× 198 1.196 59 8 6 3 2 320× 198 1.437
16 8 6 6 1 320× 198 0.796 60 8 6 6 2 320× 198 0.994
17 10 3 3 1 320× 198 1.692 61 10 3 3 2 320× 198 1.996
18 10 3 6 1 320× 198 1.196 62 10 3 6 2 320× 198 1.470
19 10 6 3 1 320× 198 1.608 63 10 6 3 2 320× 198 1.907
20 10 6 6 1 320× 198 1.095 64 10 6 6 2 320× 198 1.354
21 15 3 3 1 320× 198 2.833 65 15 3 3 2 320× 198 3.264
22 15 3 6 1 320× 198 2.075 66 15 3 6 2 320× 198 2.493
23 15 6 3 1 320× 198 2.740 67 15 6 3 2 320× 198 3.163
24 15 6 6 1 320× 198 1.953 68 15 6 6 2 320× 198 2.355
25 20 3 3 1 400× 216 4.000 69 20 3 3 2 400× 216 4.496
26 20 3 6 1 400× 216 3.003 70 20 3 6 2 400× 216 3.519
27 20 6 3 1 400× 216 3.891 71 20 6 3 2 400× 216 4.388
28 20 6 6 1 400× 216 2.865 72 20 6 6 2 400× 216 3.365
29 25 3 3 1 400× 237 5.208 73 25 3 3 2 400× 237 5.725
30 25 3 6 1 400× 237 3.984 74 25 3 6 2 400× 237 4.564
31 25 6 3 1 400× 237 5.102 75 25 6 3 2 400× 237 5.612
32 25 6 6 1 400× 237 3.831 76 25 6 6 2 400× 237 4.400
33 30 3 3 1 400× 262 6.410 77 30 3 3 2 400× 262 6.900
34 30 3 6 1 400× 262 4.975 78 30 3 6 2 400× 262 5.584
35 30 6 3 1 400× 262 6.289 79 30 6 3 2 400× 262 6.785
36 30 6 6 1 400× 262 4.808 80 30 6 6 2 400× 262 5.412
37 35 3 3 1 400× 287 7.692 81 35 3 3 2 400× 287 8.105
38 35 3 6 1 400× 287 6.024 82 35 3 6 2 400× 287 6.637
39 35 6 3 1 400× 287 7.576 83 35 6 3 2 400× 287 7.987
40 35 6 6 1 400× 287 5.882 84 35 6 6 2 400× 287 6.460
41 40 3 3 1 400× 347 8.696 85 40 3 3 2 400× 347 8.995
42 40 3 6 1 400× 347 6.897 86 40 3 6 2 400× 347 7.441
43 40 6 3 1 400× 347 8.621 87 40 6 3 2 400× 347 8.879
44 40 6 6 1 400× 347 6.711 88 40 6 6 2 400× 347 7.263

All HBE are HEA300, Beams HEA450 for Floor plan 1, and HEA400 for Floor plan 2.
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Fig. 3. Comparison of specification equation estimates with finite element results.
Table 3
Statistical measures of estimates

Period normalized by period from finite element analysis
Plate walls Dual systems
Eq. (1) Hand method Eq. (1) Hand method

Average 0.73 1.06 0.47 1.00
Standard deviation 0.25 0.04 0.26 0.05
Maximum 1.39 1.16 1.45 1.15
Minimum 0.31 1.02 0.22 0.92
cases where the estimations from the empirical equation produce
unconservative results, period values from numerical solution can
be used in design. For others, the estimates were multiplied by
2.0 as recommended by NBCC [19] and smaller of the lengthened
period and the period from numerical solution was used to
determine the governing one. Fig. 3b and d show the governing
cases when the upper limit is applied to the period estimation
equation. According to these figures for 33 cases out of 40 plate
walls period values from numerical solution can be used in design
and for 7 cases the upper limit on the period governs the design.
Similarly, for 29 cases out of 88 dual systems period values from
numerical solution can be used in design while 59 cases are
governed by the upper limit.

3. Development of a simple hand method for fundamental
period estimation of steel plate walls

A simple hand method is formulated herein to be used for
estimation of fundamental natural periods of steel plate shear
walls. This formulation is based on the observation that the SPSW
acts as a vertical cantilever. Both bending and shear deformations
have to be taken into account to accurately model the physical
system. Equation of motion for a cantilever with shear deformation
and rotational inertia effects is expressed with the following
equation [25,26]:

m
∂2u

∂t2 + EIw
∂4u

∂x4 − mr2
(

1+
E

KG

)
∂4u

∂x2∂t2 +
m2r2

KGAw

∂4u

∂t4 = 0 (2)

where; m: mass per unit height of the wall (constant), E: modulus
of elasticity, G: shear modulus, Iw: second moment of area of the
wall with respect to the neutral axis, K: shear constant, Aw: area
of the wall, r: radius of gyration of SPSW cross section, x: distance
along height of the wall, u: lateral displacement of the wall.

Usually numerical techniques are used for the solution of Eq.
(2) to obtain natural periods. There are approximate solutions [27]
for some special cases that neglect rotational inertia effects.
However, these solutions are lengthy and are not practical for
design purposes.

On the other hand, Souhwell-Dunkerley [28] approximation
(Eq. (3)) can be used to estimate the fundamental natural period
of the wall. In this approximation, the fundamental natural period
(Tw) of the wall is expressed in terms of the cyclic natural
frequencies, fb and fs, of two cantilevers, one deforming in bending
and the other one in shear, respectively.

Tw ≈

√
1
f 2
b

+
1
f 2
s

. (3)

Cyclic natural frequency of a cantilever deforming in bending
can be found by:
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Table 4
rf factors proposed by Zalka [29] as a function of number of stories

# of story n 1 2 3 4 5 6 7 8 9 10 11
rf 0.493 0.653 0.770 0.812 0.842 0.863 0.879 0.892 0.902 0.911 0.918

# of story n 12 13 14 15 16 18 20 25 30 50
rf 0.924 0.929 0.934 0.938 0.941 0.947 0.952 0.961 0.967 0.980
fb = rf
0.5595

H2

√
EIw
m

. (4)

In Eq. (4) rf is a factor proposed by Zalka [29] that takes the
contribution of lumped masses at story levels into account.
Actually, the frequency expression is derived for a beam with
uniform mass and the solution is further modified using the rf
factor to include the effects of lumped masses. The rf factors
proposed by Zalka [29] are given in Table 4.

Similarly, cyclic natural frequency of a cantilever deforming in
shear can be found by:

fs = rf
1

4H

√
KGAw

m
. (5)

Same set of rf factors given in Table 4 is used for the cantilever
deforming in shear.

At this point, in order to compute the natural frequency of a
cantilever deforming in shear, one has to know the shear factor
(K) for the SPSW cross section. Shear factors (K) for such cross
sections are not readily available. By definition the effective shear
area (KAw) is computed as follows [30]:

KAw =
I2w
β

β =

∫
Aw

Q2

b2 dA
(6)

where, Q: statical moment of the area with respect to the neutral
axis, b: width of the section.

The exact calculation of β requires the integration of fourth
order polynomials that might be cumbersome during routine
design practice. However, Atasoy [31] developed a simpler
approximation for computation of β by assuming linear variation
of Q/b along continuity regions. In this approximation, the
contribution from vertical boundary elements (β1) and the one
from the infill plate (β2) are added together as follows:

β = β1 + β2

β1 =
Q2

1 + Q2
2

tw
dVBE β2 =

Q2
3 + Q2

4

2ptk
plw

Q1 = Af l(0.5plw+ dVBE)

Q2 = Q1 + Aweb0.5(plw+ dVBE)

Q3 = AVBE0.5(plw+ dVBE)

Q4 = Q3 +
(plw)2

8
ptk

(7)

where, plw: width of the infill plate, ptk: thickness of the infill plate,
dVBE: depth of VBE section, tw: thickness of VBE web, Af l: area of VBE
flange, Aweb: area of VBE web, AVBE: area of VBE.

It should be emphasized that β2 is much larger compared to β1
for typical steel plate shear wall geometries.

The accuracy of the developed hand method is checked by
making use of the 40 walls details of which are given earlier. The
natural periods obtained using this hand method are compared
against the finite element solutions in Fig. 4. It is evident from this
figure that the hand method provides excellent estimations when
compared with the numerical solution. Statistical measures for the
estimates are given in Table 3. An example problem is presented in
the Appendix.
Fig. 4. Comparison of the hand method estimates with finite element results (Plate
walls).

Fig. 5. Wall-frame structure idealized as a shear-flexure cantilever.

4. Natural period estimation of dual systems

Natural period estimation of wall-frame structures has been
studied in the past [29,32–35]. Theorems developed for wall frame
structures can be coupled with the hand method developed in the
previous section to calculate the natural period of steel plate shear
wall systems with moment resisting frames. As shown in Fig. 5, the
idea is to idealize the wall frame structure as an equivalent shear-
flexure cantilever. Bending and shear rigidity of the equivalent
shear-flexure cantilever need to be determined from the properties
of the wall frame system. The bending rigidity (EI) of the coupled
system is influenced by the bending rigidity of the walls and that of
the columns. One also has to account for the reduction in bending
rigidity of the wall due to shear deformations. This can be included
into the analysis by considering the method developed in the
previous section. For each wall that is a part of the lateral load
resisting system a modified second moment of area, Imw, is defined
as follows:

Imw =
mH4

0.313r2
f T

2
wE

(8)

where, Tw: fundamental natural period of the wall itself calculated
using the principles outlined earlier.

The bending rigidity of the equivalent shear-flexure cantilever
is then calculated as:
EI =

∑
EImw +

∑
EIc (9)

where, Ic: second moment of area of column.



C. Topkaya, C.O. Kurban / Journal of Constructional Steel Research 65 (2009) 542–551 547
It should be noted that the term due to second moment of area
of columns is much smaller compared to the counterpart due to
second moment of area of the walls and can therefore be neglected
for practical cases.

The shear rigidity per story (Ks) of the framing can be calculated
by considering the contributions of the columns and beams [33].
At this point, it should be recognized that beams that belong to
the bays adjacent to the wall require a special treatment. Due to
the stiff end sections, rigidity of these beams is treated separately
from the rest of the framing system. According to this observation,
shear rigidity per story (Ks) can be calculated as follows:

Ks = ξ(Ks1 + Ks2) (10)

where,

Ks1 =
12E

h

[
1∑
( Ic

h )i

+
1∑(
Ib
L

)
j

] (11)

Ks2 =
∑(6EIb

Lh
[(1+ r) (1+ 2r + s)]

)
i

in which r =
plw

2Lb
s =

η− 3r − 1
η+ 2

η =
6IcL
Ibh

(12)

where, h: story height, Ib: second moment of area of beam, L: length
of beam.

In Eq. (10), Ks1 represents the rigidity of the framing excluding
the beams adjacent to the wall and Ks2 represents the rigidity
of beams that are adjacent to the wall. The summation of these
rigidities is modified by an efficiency factor [29] ξ to account for
the reduction in stiffness due to full height bending of the frame as
follows:

ξ =
f 2
f b

f 2
f b + f 2

f s

where f 2
f s =

r2
f (Ks1 + Ks2)

(4H)2 m
f 2
f b =

0.313r2
f EIg

H4m

in which Ig =
∑

Acd
2

(13)

where, Ig: global second moment of the column and wall sectional
areas acting about a common centroid, Ac: cross sectional area of
column, d: distance of column to the centroid.

The efficiency factor, ξ, is used to take the axial deformations
of columns of the framing into account. Reduction due to axial
deformations is significant for narrow and tall structures. For short
frames, this factor can be safely neglected and using ξ = 1 for all
cases result in an underestimation of the fundamental period.

The governing differential equation of the equivalent cantilever
can be written as follows [29]:

rfEI
∂4u

∂x4 − rfKs
∂2u

∂x2 + m
∂2u

∂t2 = 0. (14)

The solution of the differential equation yields the following
expression for the fundamental natural period of the system (Tsys):

Tsys =
2π
λ2
sf rf

√
m

EI
(15)

where, λsf : eigenvalue of the problem.
The eigenvalue of this problem is dependent on the relative

values of the shear and bending rigidities. The ratio of shear and
bending rigidities can be expressed by a factor αwhere:

α =

√
Ks

EI
. (16)
Fig. 6. Comparison of the hand method estimates with finite element results (Dual
systems).

The eigenvalue (λsf ) can be found by solving the following
expression [33]:

2+
[(
λ1

λ2

)2

+

(
λ2

λ1

)2]
cosλ1H coshλ2H

+

[
λ2

λ1
−
λ1

λ2

]
sinλ1H sinhλ2H = 0

for which

λ2
2 = λ

2
1 + α

2

λ4
sf = λ

2
1λ

2
2.

(17)

Approximate solutions of Eq. (17) can be found by [33]:

(
λsfH

)2
≈ (1.875)2

[
1+

αH

1.875

]1/2
αH < 6

(
λsfH

)2
≈
π

2
[1+ αH] αH > 6.

(18)

This method for wall-frame structures was applied to 88
dual systems investigated in this paper. The eigenvalue (λsf ) was
found by solving Eq. (17). Fig. 6 presents the comparisons of
finite element solution with the hand method proposed herein.
Comparisons reveal that combining the findings of the previous
section with the theories on wall-frame structures yield in a simple
method to accurately calculate the fundamental natural period of
dual systems. The statistical measures of the estimates are given in
Table 3. An example problem is presented in the Appendix.

5. Effect of geometrical nonlinearities

All of the analysis presented so far was conducted under the
premise that infill plates do not buckle under lateral loads. In other
words, undeformed geometry was used in the analysis to calculate
the natural period of steel plate walls. Geometrically linear analysis
can be acceptable for walls with thick plates or stiffened walls. On
the other hand, for walls with thin infill plates that encompass a
wide range of structures built nowadays this assumption is not
realistic. In walls with thin infill plates the slenderness of the plate
(short dimension/thickness) can be in the range of 500 to 2000. For
such slenderness values the infill plates buckle at very low stresses.
Buckling of infill plates occurs at very low lateral loads or due to
gravity even before the application of lateral loads. Therefore, in
practice a perfectly flat plate is not encountered. Design engineers
have to be aware of the implications of having a buckled infill
plate as a part of the lateral load resisting system. It was shown
by Wagner [36] that buckling of infill plates does not necessarily
limit the structural usefulness. The infill plate has significant post
buckling strength and stiffness due to formation of tension field
action. The post buckled stiffness of the infill plate contributes to
the lateral load resistance.
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Based on this discussion, it is apparent that a more realistic
estimate of the fundamental natural period of a steel plate wall is
found by considering the post buckled stiffness of the infill plate
rather than the original pre-buckled one. In order to investigate
the effects of buckled infill plates on the fundamental natural
period, the aforementioned 20 steel plate shear walls which
were a part of Floor Plan 1 in Fig. 1 were considered. These
systems were analyzed using the finite element method with a
special procedure to include buckling of infill plates. This special
procedure is essentially an eigenvalue analysis that takes into
account the prestressing effects. In this kind of an analysis, first
quasi-static loads are applied to the structure and the structure
is analyzed by considering geometrical nonlinearities. Second, by
making use of the instantaneous stiffness under the set of stresses
forming due to quasi-static loads, an eigenvalue buckling analysis
is performed. The procedure adopted in this paper to find an eigen
solution at a reduced stiffness is not rigorous. Several assumptions
related with the geometrical imperfections, type and magnitude
of lateral loading are needed. The results are influenced by these
analysis assumptions.

Initial imperfections need to be introduced into finite element
analysis for modeling buckled infill plates. For this reason a plate
center imperfection of 3 mm was considered in all analysis for all
stories. It was found by Behbahanifard et al. [37] that the amount
of initial imperfection has effects on the lateral stiffness, but this
effect is much more pronounced for larger imperfection values
that are out of the bounds dictated by construction tolerances.
Therefore, considering an imperfection value of 3 mm is within
the limit developed by Behbahanifard et al. [37]. In addition,
preliminary analysis revealed that considering other imperfection
values in the vicinity of 3 mm does not significantly alter the results
on the fundamental natural period of the system.

For a particular wall geometry of interest, the first mode of
vibration was determined using finite element analysis. Then
the wall was loaded laterally with concentrated loads at the
story levels with a distribution along the height determined
according to the first mode of the structure. A geometrically
nonlinear analysis was conducted under these lateral loads.
Newton–Raphson method was used to trace the displacement
history. The value of the natural period is dependent on the
magnitude of lateral forces because the structural behavior
deviates from a linear behavior and the tangent stiffness is a
function of the amount lateral drift. For all wall systems, lateral
loads were applied until the top story drift reaches 0.3%. This drift
threshold was determined by observing drift levels at first yield in
experiments [15] conducted. In addition, for a maximum drift of
2% including inelastic action, the maximum allowed elastic drift
is calculated as 0.3% if a displacement amplification (Cd) value
of 6 is used as recommended by AISC Seismic Provisions [22].
After the wall system has been subjected to a top drift of 0.3%,
an eigenvalue analysis that takes the pre-stressing effects into
account was conducted to determine the natural period.

Natural period of twenty structures were computed using the
outlined method. Typical first mode of vibration of an SPSW system
is presented in Fig. 7 and the buckling of infill plates is displayed in
this figure. Obviously, as a result of the reduction in lateral stiffness,
an elongation in period was observed. Results of these analyses
are presented in Fig. 8. In this figure, the period of the system
considering post buckled plates is normalized by the period of the
wall without considering buckling. It is evident from this figure
that the period elongation due to early buckling of infill plates
is not pronounced. The maximum amount of period elongation
stayed under 30% and was observed for 2 story structures. As the
height of the structure increases, bending deformations dominate
over the shear deformations; with this effect the amount of period
elongation decreases with the height of the system. Lower values
Fig. 7. Fundamental vibration mode of a steel plate wall with buckled infill plates.

Fig. 8. Effects of geometrical nonlinearities on fundamental period.

of period elongation are due to the presence of stiff vertical
boundary members that contribute significantly to the bending
and shear stiffness. Although infill plates buckle and exhibit a
more flexible response, their contribution to the overall stiffness is
lower when compared with the stiffness provided by the boundary
members that remain intact. Furthermore, the general use of
the square root of the stiffness during the calculation of natural
period further reduces the importance of reduction in stiffness. The
average elongation in period for the systems investigated is 17%.
Based on these observations, it is recommended that the effect of
buckled infill plates be neglected in determining the natural period
of the wall. Hence, the hand method proposed in this paper is
sufficient for design purposes. If a more precise value for the period
is required, then an eigenvalue analysis including geometrical
nonlinearities can be conducted or the period value obtained
from linear analysis can be increased by 15% to accommodate
for the period elongation. It should also be noted that neglecting
geometrical nonlinearities in determining natural period results in
conservative designs.

6. Effect of material nonlinearities

In this section, period elongation due to yielding of infill plates is
investigated. A similar technique explained in the previous section
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Fig. 9. A typical load versus maximum interstory drift ratio response for a SPSW.

was used for this study. Twenty steel plate walls were considered
and it was assumed that the infill plates are grade S235 [38] and
boundary members are grade S355 [38] steel. As mentioned before
capacity design principles were used in the design of these walls.
AISC Seismic Provisions [22] mandate that the boundary elements
remain elastic during seismic events. This recommendation was
influential in selecting relatively stiff vertical boundary members.
During a seismic event it is expected that the infill plates yield
and behave as a ductile fuse while other elements display an
elastic behavior. It was shown by Sabouri-Ghomi and others [3,
14] that when the infill plate yields, lateral forces are carried by
the frame action of the boundary members. After plate yielding
there is significant reduction in the lateral stiffness and this causes
an elongation in the fundamental period. Period elongation is
expected to be dependent on the level of inelasticity and on the
stiffness of the boundary elements.

Usually natural periods of yielded systems are not of interest for
structural designers. Designs are based on the original unyielded
configuration. However, the amount of period elongation can be
an indicator of the level of force reduction during seismic events.
When a typical response spectrum is considered it is observed that
the amount of base acceleration reduces as a function of the natural
period in the constant velocity region.

Based on this discussion it is useful to quantify the amount
of period elongation due to yielding of infill plates. In order
to determine this relationship a series of prestressed buckling
analysis was performed on steel plate walls. A particular wall
was subjected to lateral loads in accordance with the first mode
shape. The magnitude of these lateral forces was incremented.
For a particular load level, the wall system was first analyzed by
considering material nonlinearities. Lateral drifts at story levels
were documented. Later, an eigenvalue analysis was performed to
find out the natural period of the wall system. A typical plot of
lateral load versus maximum interstory drift is given in Fig. 9. In
this figure, each data point belongs to a separate analysis case.

All twenty walls were analyzed at various load levels by using
the procedure explained above. Interstory drift was considered
as an indicator of the level of inelasticity. For all analysis
cases, the maximum interstory drift and the natural period were
documented. Results are presented in Fig. 10 in normalized form.
The final period values are normalized with respect to values
from the analysis of the original unyielded configuration. It is
obvious from this figure that there is significant amount of period
elongation due to yielding of infill plates and this effect is much
more pronounced for higher interstory drift levels. In order to
quantify the amount of period elongation (T/Tw), a straight line is
fitted to this data set and the following relationship is obtained.

T

Tw
= 1.65ISD+ 1 (19)

where, ISD: interstory drift ratio in percent.
Fig. 10. Effects of material nonlinearities on fundamental period.

This expression can be used to estimate the amount of period
elongation as a function of the interstory drift. Eq. (19) was
developed based on a limited amount of analysis on 20 SPSW
details of which are given in Table 1. Design philosophies used
other than the one adopted in this paper may result in the selection
of different boundary members. The amount of period elongation
is also expected to be influenced by the size of the boundary
members. Similar expressions can be developed for other lateral
load resisting systems and this can lead to comparisons among
systems in terms of force reduction due to period elongation.

7. Conclusions

The fundamental natural period of steel plate shear wall
systems is studied through numerical analysis. A class of structures
which consist of walls and wall-frame systems was considered.
This class of structures was analyzed by making use of the
finite element method to obtain the fundamental natural period.
Values obtained from numerical analysis are compared against
the estimations provided in design specifications. A simple hand
method is developed in this paper to estimate natural periods
of steel walls and dual systems. Furthermore, the effects of
geometrical and material nonlinearities on the fundamental
natural period are investigated.

The following can be concluded from this study:

• Equations presented in design specifications for estimation of
the fundamental period can lead to unsatisfactory results for
some SPSW systems.
• The method developed in this paper is a simple and sufficiently

accurate way of predicting the fundamental natural period of
SPSW systems by hand calculation.
• Buckling of infill plates due to high slenderness results in an

elongation of the period of the wall, but the extent of the
elongation of the period is not significant. The effects of buckled
infill plates can be neglected during the design of SPSW systems.
An average elongation of 17% is observed for the wall systems
investigated in this study.
• Yielding of infill plates due to lateral loads can significantly in-

fluence the amount of period elongation. A simple relationship
was developed in this work to quantify the level of period elon-
gation as a function of interstory drift for the wall systems in-
vestigated.
• The developed method is limited to structures that have

uniform properties along the height. Further studies are
required to extend this method to structures with variable
stiffness properties.
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Appendix

A.1. 4 Story SPSW Example (Case #9— Table 1)

ptk = 3 mm plw = 3000 mm 150 tons/story
VBE(HD400× 287) HBE(HEA300)

IVBE = 99710× 104 mm 4 AVBE = 366.3× 102 mm2

dVBE = 393 mm Af l = 14600 mm 2 Aweb = 8880 mm 2

tw = 22.6 mm

H = 4× 3290 = 13160 mm m =
150000

3290
= 45.6 kg/mm

rf = 0.812 E = 2× 108 kg
mm
s2

1
mm2

Q1 = 14600 (0.5× 3000+ 393) = 27.64× 106 mm3

Q2 = 27.64× 106
+ 8880× 0.5 (3000+ 393) = 42.70× 106 mm3

Q3 = 366.3× 102
× 0.5(3000+ 393) = 62.14× 106 mm3

Q4 = 62.14× 106
+

(3000)2

8
3 = 65.52× 106 mm3

β1 =

(
27.64× 106

)2
+

(
42.7× 106

)2

22.6
393 = 4.5× 1016 mm6

β2 =

(
62.14× 106

)2
+

(
65.52× 106

)2

2× 3
3000 = 4.08× 1018 mm6

β = 4.13× 1018 mm6

Iw =
3

12
(3000)3

+ 2× 366.3× 102
× (1697)2

+ 2× 99710× 104

= 2.2× 1011 mm4

KAw =

(
2.2× 1011

)2

4.13× 1018 = 11719 mm2

fb = 0.812
0.5595

(13160)2

√
2× 108

× 2.2× 1011

4.56
= 2.57 Hz

fs = 0.812
1

4× 13160

√
77× 106

× 11719
45.6

= 2.17 Hz

Tw =

√
1

(2.57)2 +
1

(2.17)2 = 0.603 s

TFEM = 0.563 s (7% error).

A.2. 40 Story SPSW-Frame Example (Case #88— Table 2)

ptk = 6 mm plw = 6000 mm 250 tons/story
HBE(HEA300)

Beams (HEA400) Ib = 45070× 104 mm4

VBE& Columns (HD400× 347) Lb = 7000 mm
IVBE = 124900× 104 mm4 AVBE = 442× 102 mm2

dVBE = 407 mm Af l = 17655 mm2 Aweb = 11150 mm2

tw = 27.2 mm

H = 40× 3290 = 131600 mm m =
250000

3290
= 76 kg/mm

rf = 0.97 E = 2× 108 kg
mm
s2

1
mm2 .

Using a similar calculation procedure as in the previous
example the following are found for the SPSW:
Iw = 1.02× 1012 mm4 KAw = 41880 mm2 fb = 0.051 Hz
fs = 0.38 Hz Tw = 19.78 s

Imw =
76× (131600)4

0.313× 0.972
× 19.782

× 2× 108 = 9.89× 1011 mm4

EI =
(

9.89× 1011
+ 4× 124900× 104

)
× 2× 108

= 1.98× 1020 kg
mm
s2 mm2

Ks1 =
12× 2× 108

3290
[

1
4×124900×104

3290

+
1

2×45070×104
7000

] = 8.66× 1010 kg
mm
s2

r =
6000

2× 7000
= 0.428 η =

6× 124900× 104
× 7000

45070× 104
× 3290

= 35.38

s =
35.38− 3× 0.428− 1

35.38+ 2
= 0.89

Ks2 = 2
6× 2× 108

× 45070× 104

7000× 3290
× [(1+ 0.428) (1+ 2× 0.428+ 0.89)]

= 1.84× 1011 kg
mm
s2

Ks1 + Ks2 = 2.71× 1011

Ig = 442× 102
[
2× 30002

+ 2× 100002
+ 2× 170002

]
= 3.51× 1013 mm4

f 2
f s =

1
(4× 131600)2

0.972
× 2.71× 1011

76
= 0.0121 Hz2

f 2
f b =

0.313× 0.972
× 2× 108

× 3.51× 1013

(131600)4
× 76

= 0.091 Hz2

ξ =
0.091

0.091+ 0.0121
= 0.88

Ks = 0.88× 2.71× 1011
= 2.38× 1011 kg

mm
s2

α =

√
2.38× 1011

1.98× 1020 = 3.467× 10−5 1
mm

αH = 4.562

Exact
(
λsfH

)2
= 9.3 Approx.

(
λsfH

)2
= 6.56

Tsys =
2π (131600)2

9.3× 0.97

√
76

1.98× 1020 = 7.47 s

TFEM = 7.26 s (2.8% error).
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