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Abstract
In this paper, real-time process data are aligned in time-order with destructive test data to reduce cost by better predictive

modeling. A modified principal component analysis (PCA) is used to develop an empirical model to predict the internal bond of
MDF based on a selected subset of process variables. These process variables are selected by picking variables with the highest
absolute correlations with internal bond. Our modified PCA is used on these selected standardized process variables to obtain
transformed composite variables or modes. The 10 modes are reduced to three using correlation criteria and the three best modes
are used to generate an empirical model to predict internal bond. Results for the most produced thickness category of MDF are
presented primarily, while some comments are made on two other thickness categories. The root mean square error relative to the
mean of each category varied from 9.3 percent to 11.2 percent, which are quite helpful improvements in this manufacturing
setting. More attention to the collection of the current process variables via information quality efforts might be useful for
additional future improvements. Even though the plant had 179 quantitative process variables, our PCA and correlation analyses
suggests some other variable(s) need exploring and collecting to further reduce these error rates.

It is critical to minimize cost due to panels being down-
graded because of low strength and the waste due to excessive
raw material use to compensate for undetected process
changes; therefore, predictive modeling is important. This pa-
per outlines a creative, modified use of principal components
analysis (PCA) to predict the internal bond (IB) strength of
medium density fiberboard (MDF) and identifies key sources
of process variation that lead to IB variation (compare for or-
dinary PCA in Stone and Cutler 1996). Utilizing this approach
may lead to improved IB strength, lower density targets, less
waste, lower costs, and improved business competitiveness.
This is in agreement with the general strategy of Deming
(1986 and 1993). See comments in Young and Guess (1994)
on improving reliability via processes, etc. Though we focus
in this paper on MDF improvements, the same approach can
be applied to many other wood products and manufacturers.

The wood composites manufacturing process for MDF has
a large number of interdependent process variables that have
complex functional forms, which influence final mechanical
board properties. Raw material passes through many process-
ing stages that may influence mechanical board properties.
Key process variables may include wood chip dimensions,

fiber dimension, fiber-resin formation, mat-forming consis-
tency, line speed, press closing characteristics, etc. At the time
of production, the IB strength of the board is unknown;
samples are analyzed later using destructive testing. The time
between destructive tests can reach 2 hours, during which pro-
duction continues; hence, a significant volume of unaccept-
able MDF production may go undetected. Significant cost
savings from accurately predicting IB before destructive test-
ing may be realized by a reduction in waste, reduced customer
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claims, faster press cycles, lower wood usage, lower resin us-
age, and lower energy usage.

Most wood composite manufacturers have real-time data
warehousing platforms that collect and store large quantities
of process data (Greubel 1999, Bernardy and Scherff 1998,
1999; Young and Winistorfer 1999, Young et al. 2004). How-
ever, engineered wood manufacturers are only moderately
successful at understanding key real-time relationships be-
tween process parameters and final mechanical board proper-
ties. Most wood composite manufacturers have not linked me-
chanical board properties data measured during destructive
testing with real-time process data. The purpose of this study
is to develop methods for industry to minimize these knowl-
edge gaps.

Methods
The objective of this research is to develop a methodology

to predict the IB, using a select set of process variables. The
data set for the analysis has 184 entries with 179 different
online sensor process variables that are numerically aligned
with the IB of MDF. Three data sets for three thickness cat-
egories are selected, each yielding a sample of 100 observa-
tions for analysis. The thickness categories are 0.500 inches
(12.70 mm), 0.625 inches (15.88 mm), and 0.6875 inches
(17.46 mm). We focus primarily on the second thickness since
it is the most often produced product.

Real-time relational database
A real-time, automated relational database is created that

aligns real-time process sensor data with the destructive test
data of the laboratory. Real-time process data are collected
using Wonderware IndustrialSQL™ 8.0 (www.wonderware.
com) and are combined with the laboratory test results by
product type at the instant when a panel is extracted from the
production line for testing. The process data are collected us-
ing a median value from the last 100 sensor values (e.g., for
most of the 184 different sensor variables, this represents a
2- to 3-minute time interval). Lag times, corresponding to the

time required for the material to travel through the process
from the point where a given parameter has an influence to the
point where the panel is extracted for destructive testing, are
taken into account when collecting process data with Indus-
trialSQL. A unique number (idnum) is generated when the
panel is extracted from the process, and this number is later
used to match process data with corresponding test results.

When the test results are matched with the process data, the
combined data are recorded in two tables that appear in a com-
bined SQL database, yielding a relational database of real-
time sensor data and destructive test data. The real-time rela-
tional database is automatically updated as new test samples
are taken using Microsoft Transact SQL code with Microsoft
SQL “Jobs” and “Stored Procedures” (Young and Guess
2002).

Correlation analysis technique
We first outline (via an algorithm) our approach, then pro-

vide more technical details.

Outline:
1. We first select the top 10 process variables out of the 179

numerical process variables based on those with the
highest (absolute value) correlation of each variable
with IB. For example, the correlation of process variable
“Core Refiner Total Steam Flow” with IB is in the top 10
for each of three products, ranging from 0.5 inches
(12.70 mm) to 0.6875 inches (17.46 mm), Figure 1 and
Table 1. Note the number 10 is arbitrary. It is readily
possible to expand to larger (or less) than 10 variables,
also.

2. We next construct a 10 × 10 (or other size as needed)
matrix of the correlations of these 10 process variables
with each other. Note carefully the correlation of the
process variable is not with IB at this step, but the cor-
relation with each of the other independent variables.
For example, we calculate the correlation of process
variable “Core Refiner Total Steam Flow” with process
variable “Core Resin Pressure” as one element in the
correlation matrix for product 0.625 inches (15.88 mm).

Figure 1. — Flowchart of Modified Principle Component
Analysis approach.

Figure 2. — Absolute values of the correlations of process
variables with IB for thickness of 0.625 inches (15.88 mm)
where the top 10 are marked as crosses.
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3. We find the eigenvector and eigenvalues of this “corre-
lation” matrix of the top 10 process variables with each
other (see Fig. 2 for these eigenvalues).

4. With these eigenvectors we transform the original 10 se-
lected standardized process variables into new trans-
formed variables or “composite” variables. These new
transformed composite variables are linear transforma-
tions of the original standardized variables by the appro-
priate eigenvectors. These transformed variables have
the advantage that they are orthogonal or independent of
each other. The original (or standardized) process vari-
ables do not have this helpful property. See Equation [8]
where cvec(k, j) represent the kth transformed variable
for the jth observation, where j runs from 1 to 100, from
our sample size of 100.

5. We next check and calculate new correlations of these
transformed composite variables with IB. The single
highest (absolute valued) correlated transformed vari-

able with IB of these compos-
ite variables is selected to pre-
dict IB. We select the top three
transformed variables based on
their correlation with IB. See
Figure 2 (where the larger dots
are for the eigenvalues of asso-
ciate transformed variables
with the higher correlations
with IB) and Table 2 (where
the indices are relabeled in
Table 2 in order of their corre-
lation, e.g., original label 10
becomes 1). These top three
transformed variables are later
combined via a weighted linear
combination to better predict
IB. The coefficients that make
this linear combination are the
transformed variables correla-
tions with IB. Note: three is
used for illustration, but any
other number could have been
used. You can use the law of
diminishing returns, e.g., add-
ing another transformed vari-
able to the linear combination
does not improve the total cor-
relation with IB much.

Note in the above outline that
three separate types of correlations
are calculated to help increase pre-
dictability. This approach is a modi-
fication and improvement of a typi-
cal principal component analysis
(Fig. 1).

Details
To build a method of predicting

the IB from measured data, a way of
selecting a subset of 10 process sen-
sors from the total set of 179 process
sensors is developed. Correlation
analysis is used to determine the pro-
cess variables that best predict the

standardized IB (Rencher 1995). The correlation analysis is
based on normalized signal fluctuations (Haddad and Parsens
1991, Stone and Cutler 1996). The first step in the analysis is
selecting the number of values to use in the correlation calcu-
lation. The correlation process uses a sample size of 100 for a
given thickness. A normalization technique is used to gener-
ate a standardized variable for use in the correlation analysis
(Ramsay and Silverman 1997). Let the set of measured pro-
cess variables be defined by s(i,j) where the i = 1, . . . , 179
index defines the measured process variable, and the j =
1, . . . , 100 index defines the sample number. For example,
for product 0.625 inches (15.88 mm) index i = 136 is “Core
Resin Pressure,” while j = 3 would be the third observation of
that process variable. The average value for a signal or process
variable is calculated by

savg�i� =
1

100 �
j=1

100

s�i, j�. [1]

Table 1. — Ten largest (by absolute value) correlations of process variables with IB by
thickness product type (common variables across thickness categories are highlighted in
bold).

Product: 0.500 inches (12.70 mm)

Process variable original index Process variable name Correlation with IB

91 Core humidifier temperature −0.494162

161 Core refiner total steam flow 0.430287

171 Face humidifier temperature 0.423236

149 Swing main motor power 0.397664

96 Face humidifier temperature 2 0.376511

38 Swing separator outlet pressure −0.374294

26 Face resin to wood set point 0.372677

174 Relative humidity −0.367590

64 Core dryer outlet temperature −0.365446

22 Face plate position of refiner 0.357881

Product: 0.625 inches (15.88 mm)

Process variable original index Process variable name Correlation with IB

139 Face plug feeder screw speed −0.393538

14 Chips percent of raw material 0.342740

161 Core refiner total steam flow 0.316009

172 Face humidity 0.314649

98 Humidifier supply pressure −0.311030

136 Core resin pressure −0.304242

103 Shave off mat thickness 0.299450

170 Pressure of steam flow 0.298284

123 Press pre position −0.288227

115 Press final position hold time −0.282230

Product: 0.6875 inches (17.46 mm)

Process variable original index Process variable name Correlation with IB

182 Position time at press 0.340046

173 Outside head temperature −0.335775

46 Swing plate position of refiner −0.323889

58 Core dust speed −0.317065

146 Resin water tank temperature 0.315587

161 Core refiner total steam flow 0.308229

156 Core dust ratio −0.300089

57 Core digester pressure −0.291343

22 Face plate position of refiner 0.284425

139 Face plug feeder screw speed −0.266567
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The signal fluctuation or standardized process variable,
snfl(i,j), is obtained by using the following equations:

sfl�i,j� = s�i, j� − savg�i�, [2]

mssfl�i� = �
j=1

100

sfl�i, j� × sfl�i, j�, [3]

msfl�i� =
1

�mssfl�i�
, [4]

snfl�i, j� = msfl�i� × sfl�i, j�. [5]

Note Eq. [5] can be interpreted by snfl(i, j) × (√n − 1) is
simply the ith process variable’s jth observation normalized
by subtracting the sample mean and dividing by sample SD.
The standardized control variable (IB), ync(j), is determined
using the same procedure that produced Eq. [5]. The equa-
tions and standardizations we use allow for computational
savings and further usefulness in the following calculations.

The correlation coefficients, cc(i), are determined for i =
1, . . . , 179 by

cc�i� = �
j=1

100

ync� j� × snfl�i, j�. [6]

For example, for process variable i = 136 then cc(i) is math-
ematically equivalent to the sample correlation of the “Core
Resin Pressure” with IB. The absolute values of all correlation
coefficients are sorted to obtain the top 10 process variables
with the largest (absolute) correlation values with IB. See Fig-
ure 2 where these are marked with crosses. These top 10 stan-
dardized process variables are relabeled as snkfl(l,j) (where l =
1, . . . , 10 for their respective sample number of j = 1, . . . ,
100) and are used to generate a new correlation matrix whose

elements are correlations of the pro-
cess variables with each other de-
fined by

cm�l, m� = �
j=1

100

snkfl�l, j�

× snkfl�m, j� [7]

For example, from Table 1, when
thickness 0.625 inches (15.88 mm)
we have cm(1, 6) is equivalent to the
correlation between the process
variables of “Face Plug Feeder
Screw Speed” (l = 1 with original in-
dex of i = 139) and “Core Resin
Pressure” (l = 6 with original index
of i = 136). This 10 × 10 correlation
matrix is used to obtain eigenvalues
and eigenvectors that are used in
principal component decomposition
(Palacios et al. 1998). The eigenval-
ues, eva(k), give an indication of the
signal strength of the transformed
composite variables or modes gener-
ated by using the corresponding eig-

envector to combine the original 10 standardized process vari-
ables (Uenohara and Kanade 1997). Each eigenvector pro-
duces a new transformed composite variable. These
transformed variables are sorted, and the three transformed
variables having the strongest correlation with IB are used to
select the eigenvalue index that will generate three trans-
formed variables. The eigenvectors, evec(k�,l), where the
original k� index is for the eigenvalues having the strongest
correlation with IB and the l index is for the process variables,
are used to generate transformed composite variables by

cvec�k�, j� = �
l=1

10

evec�k�, l� × xnkfl(l, j). [8]

In Figure 2, for example k� = 10 will be relabeled as a new
k = 1, while k� = 7 will be relabeled as a new k = 2 in Table 2.
The new three transformed variables determined by cvec(k,j)
for relabeled k = 1 to 3 are standardized by scaling the trans-
formed variables to obtain a mean square value of one and are
defined by now cvecn(k,j). The standardized transformed
variables are used to obtain correlation for the transformed
variables with IB by

corc�k� = �
j=1

100

cvecn�k, j� × ync� j�. [9]

These transformed variables can be recombined using the
correlation coefficients, corc(k), as scaling factors to obtain a
predicted value, yp(j), for the control variable of the IB;

yp� j� = �
k=1

3

corc�k� × cvecn�k, j�. [10]

This predicted value is standardized using the same tech-
nique to obtain ypn(j). The combined correlation with IB is
then calculated by

corcom = �
j=1

100

ypn� j� × ync� j�. [11]

Table 2. — Correlations of transformed composite variables with IB by thickness product
type.

Product: 0.500 inches (12.70 mm)

Transformed Variable Relabeled Index Eigenvalue Correlation of Transformed Variable with IB

1 4.494327 0.585555

2 0.8271829 0.156461

3 0.1275780 0.127578

Linear combination of three variables above 0.617777

Product: 0.625 inches (15.88 mm)

Transformed Variable Relabeled Index Eigenvalue Correlation of Transformed Variable with IB

1 3.694971 0.47772

2 0.9308886 –0.353916

3 0.6097161 0.145076

Linear combination of three variables above 0.611981

Product: 0.6875 inches (17.46 mm)

Transformed Variable Relabeled Index Eigenvalue Correlation of Transformed Variable with IB

1 4.263849 0.451150

2 0.4241965 0.220625

3 0.9933302 −0.218155

Linear combination of three variables above 0.547543
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Results and discussion
Correlation analysis of the data

Each data set was recorded between May and November of
2005. Information for the top 10 process variables for each
thickness is presented briefly in Table 1 for comparison. The
eigenvectors corresponding to the three key eigenvalues (see
Clapp et al. 2007 for more details) are used to generate three
dominant transformed composite variable process variables.
These three key eigenvalues are chosen by their correspond-
ing transformed variables having the largest correlation with
IB. Table 2 shows the correlation coefficients for the three
dominant transformed variables and for the linear combina-
tion of all three.

Thickness of 0.500 inches (12.70 mm). — The root mean
square error (RMSE) between the observed IB and the pre-
dicted value using a combination of the three dominant trans-
formed variables is 12.8 pounds per square inch (p.s.i.) (or
0.0883 MPa) with a maximum deviation of 28.6 p.s.i. (1.97
MPa) and a minimum deviation of -36.2 p.s.i. (−0.250 MPa).
The average IB for 100 samples is 137.6 p.s.i. (0.949 MPa) with
a maximum value of 179 p.s.i. (1.234 MPa) and a minimum
value of 100 p.s.i (0.689 MPa).

An analysis of each data record revealed that residuals are
greater when there is a time gap between production runs for
a thickness category (see Clapp et al. 2007). For example, the
first two records of 0.500 inches (12.70 mm) correspond to
one production run for a customer order. Twenty-seven days
passed before the next production run of 0.500 inches (12.70
mm), indicated by records three through seven in the data.
Fifty-eight days passed before the next production run of re-
cords 8 through 12. The effect of larger residuals for time gaps
in production runs was less pronounced for the combined trans-
formed variables predictions. The larger residual at the begin-
ning of a production run may indicate that some other factor is
affecting the process, which is not measured by the 184 sensor
variables, e.g., raw material change, change in operating set

points not measured by the 184 sensors, refiner plate wear not
measured by the 184 sensors, human dimension, etc. A more
detailed summary of all results is presented in the technical re-
port by Clapp et al. (2007).

Thickness of 0.625 inches (15.88 mm). — The 10 process
variables with the largest (absolute) correlation coefficients
are shown as crosses at the top peaks in Figure 2. The values
of the correlation coefficients for the 0.625 inch (15.88 mm)
samples are slightly smaller than the values for the 0.500 inch
(12.70 mm) samples (Table 1). Six of the 10 sensors with the
largest correlation coefficients are different from the sensors
for a thickness of 0.500 inches (12.70 mm). Recall three dom-
inant eigenvectors are used to generate three transformed
composite variable. The eigenvectors corresponding to the
three largest correlation (of their respective transformed com-
posite variables) are marked with larger dots in Figure 3 for
their corresponding eigenvalues (i.e., indices are relabeled in
Table 2 so 10 becomes 1 due to it having the largest correla-
tion with IB, while 5 becomes 2 due to it yielding the second
largest correlation, then 7 becomes 3 index in Table 2,
respectively). The correlation coefficient for the three
combined transformed variables for the 0.625 inch (15.88
mm) thickness samples (0.612) is slightly smaller than the
correlation coefficient for the 0.500 inch (12.70 mm) thick-
ness samples (0.618), Table 2.

The sorted set of eigenvalues for the samples with a thick-
ness of 0.625 inches (15.88 mm) is shown in Table 2. The
relation between IB and the first dominant transformed vari-
able for these samples is shown in Figure 4. The composite
signal is determined by combining three transformed vari-
ables. The results of the combined transformed variables are
shown in Figure 5. The RMSE between the IB and the pre-
dicted value that uses a combination of the three dominant
transformed variables is 13.8 p.s.i. (0.0951 MPa) with a maxi-
mum deviation of 39.5 p.s.i. (0.272 MPa) and a minimum de-
viation of −36.3 p.s.i. (−0.250 MPa). The average IB for 100
samples is 136.9 p.s.i. (0.944 MPa) with a maximum value of
185 p.s.i. (1.276 MPa) and a minimum value of 104 p.s.i.

Figure 3. — Ten eigenvalues for process variables shown in
Table 1 for thickness of 0.625 inches (15.88 mm), larger
dots are for the associate transformed composite variables
with the higher absolute correlations with IB with their asso-
ciated indices are later relabeled as 1 (highest), 2, and 3
respectively.

Figure 4. — Observed internal bond with mean IB subtracted
and predicted IB with mean subtracted from first dominant
transformed composite variable for thickness of 0.625 inches
(15.88 mm).
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(0.717 MPa). The relationship between the predicted IB mi-
nus its mean and the observed IB minus its mean for the com-
bined transformed variables for the sample with a thickness of
0.625 inches (15.88 mm) is shown in Figure 5.

Thickness of 0.6875 inches (17.46 mm). — The RMSE be-
tween the IB and the predicted IB values using a combination
of the three dominant transformed variables is 15.2 p.s.i.
(0.105 MPa), with a maximum deviation of 29.4 p.s.i. (0.203
MPa) and a minimum deviation of −39.6 p.s.i. (−0.273 MPa).
The average IB for 100 samples is 135.8 p.s.i. (0.936 MPa)
with a maximum value of 193 p.s.i. (1.331 MPa) and a mini-
mum value of 94 p.s.i. (0.648 MPa).

Conclusions
Examining the correlation results of the three thickness val-

ues show that one sensor, “Core Refiner Total Steam Flow,” is
found in the three different sets of the 10 largest correlation
coefficients. “Core Refiner Total Steam Flow” seems to de-
crease in order of importance as thickness increases. The sen-
sor “Face Plate Position of Refiner” is found in the sets of 10
correlation coefficients for the 0.500 inch (12.70 mm) and
0.6875 inch (17.46 mm) data sets. The sensor “Face Plug
Feeder Screw Speed” is found in the 0.625 inch (15.88 mm)
and 0.6875 inches (17.46 mm) data sets. The variation in the
other parameters may indicate that the parameter set does not
contain the necessary information to more precisely predict
the IB.

It is also noted that the accuracy of the predicted value of the
IB decreases as the MDF thickness increases. This phenom-
enon may indicate that manufacturing process design and pro-
cess capability is dependent on MDF thickness. For example,
it may be that the capability of the MDF mat formers change
by thickness. Another example may be that pressing technol-
ogy and capability is dependent on thickness, i.e., thinner
MDF is produced at faster press cycle times and faster line
speeds than thicker MDF. These changes in the sets of eigen-
values and the set of 10 variables for prediction among thick-
ness categories may represent other sources of unknown vari-
ables affecting IB, e.g., human factors or shift variations that

need further exploring. One might conjecture that additional
variations may occur with increasing product thickness. Evi-
dence of this may be the declining size of correlation coeffi-
cients for increasing thicknesses categories.

One of the important outcomes of this research is the iden-
tification of sources of variation acting on IB that are common
across all product thickness categories. This may greatly ben-
efit manufacturers by identifying sources of variation for ad-
ditional root-cause analysis and facilitate continuous im-
provement. This may also help the practitioner identify im-
portant process variables for the implementation of statistical
process control and designed experiments.

The time-lagging of process sensor data corresponding to
the time required for the furnish to travel through the process
from the point where a given parameter had an influence to the
point where the panel is extracted for destructive testing was
implemented for the press cycle and line speed related to the
nominally produced product, i.e., 0.625 inches (15.88 mm)
MDF. This static time-lagging may be another factor contrib-
uting to the RMSE predictions. The eigenvalues in Figure 2
suggest that the time-lag of sensors can be improved, i.e., the
most influential eigenvalues (large dots) should theoretically
be in order as indices 8, 9, and 10. This was not the case where
the most influential eigenvalues for prediction vary in size and
order across the top 10 eigenvalues. Dynamic time-lagging by
product type, which accounts for changes in press cycle time
and line speed, is beyond the scope and funding support of this
project. The authors hope to improve the time-lagging of sen-
sor data and improve the predictability of IB if more funding
is available. We believe that the automated real-time rela-
tional database developed as part of this study is unique in
itself to the wood composites industry and is an important
foundation for predictive modeling research.

The authors also hope to further investigate the phenom-
enon of larger residuals between actual and predicted IB for
products with increased thickness levels at the start of a pro-
duction run. It is apparent that factors are acting on IB vari-
ability that are not measured by the 179 process online sensors
that were available for this analysis. As noted, these factors
may be raw material changes, undetected changes in operator
settings, refiner plate wear not measured by sensors, human
dimensions, etc. One of the challenges of this type of indus-
trial-based research is the dependence on data provided by a
manufacturer, i.e., not all possible data are measured by sen-
sors and stored in the data warehouse.

Real-time predictive modeling of the final mechanical
properties of wood composites can benefit the forest products
industry by preventing the manufacture of defective products,
reducing woodwaste, and facilitating lower operating density
and resin targets. The modeling method presented in this pa-
per quantifies known and unknown sources of process varia-
tion for the practitioner. Quantifying sources of variation is an
important first-step in reducing variation for any continuous
improvement process.

In conclusion, the root mean square error relative to the
mean of each category varied from 9.3 percent to 11.2 percent,
which are quite helpful improvements in this manufacturing
setting. More attention to the collection of the current process
variables via information quality efforts might be useful for
additional future improvements. Even though the plant had
179 quantitative process variables, our PCA and correlation

Figure 5. — Observed internal bond with mean subtracted
and predicted IB with mean subtracted from linear combina-
tion of all three dominant transformed composite variables for
thickness of 0.625 inches (15.88 mm).
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analyses suggests some other variable(s) need exploring and
collecting to further reduce these error rates.
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