
P

R

A

RQ1

D

a

A
R
R
1
A
A

K
S
G
N
H
S

C

h
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
ARTICLE IN PRESSG Model
SL 9059 1–13

Plant Science xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Plant  Science

j ourna l ho me  pa ge: www.elsev ier .com/ locate /p lantsc i

eview

mino  acids  –  A  life  between  metabolism  and  signaling

ainer  E.  Häusler ∗,  Frank  Ludewig,  Stephan  Krueger
epartment of Botany II, University of Cologne, Cologne Biocenter, Zülpicherstr. 47B, 50674 Cologne, Germany

 r  t i  c  l  e  i  n  f  o

rticle history:
eceived 24 July 2014
eceived in revised form
8 September 2014
ccepted 19 September 2014
vailable online xxx

eywords:
erine
ABA

a  b  s  t  r  a  c  t

Amino  acids  serve  as constituents  of  proteins,  precursors  for anabolism,  and,  in  some  cases,  as  signaling
molecules  in  mammalians  and  plants.  This  review  is focused  on  new  insights,  or  speculations,  on signaling
functions  of serine,  �-aminobutyric  acid  (GABA)  and  phenylalanine-derived  phenylpropanoids.  Serine
acts  as signal  in brain  tissue  and  mammalian  cancer  cells.  In plants,  de  novo  serine  biosynthesis  is also
highly  active  in  fast  growing  tissues  such  as  meristems,  suggesting  a similar  role  of  serine  as  in mam-
malians.  GABA  functions  as  inhibitory  neurotransmitter  in the  brain.  In  plants,  GABA  is  also  abundant
and  seems  to be  involved  in sexual  reproduction,  cell  elongation,  patterning  and  cell  identity.  The  aro-
matic  amino  acids  phenylalanine,  tyrosine,  and  tryptophan  are  precursors  for  the  production  of  secondary
plant  products.  Besides  their  pharmaceutical  value,  lignans,  neolignans  and  hydroxycinnamic  acid  amides
eolignans
ydroxycinnamic-acid-amides
ignaling

(HCAA)  deriving  from  phenylpropanoid  metabolism  and,  in  the  case  of  HCAA,  also  from arginine  have
been  shown  to  fulfill  signaling  functions  or are  involved  in the  response  to biotic  and  abiotic  stress.
Although  some  basics  on  phenylpropanoid-derived  signaling  have  been  described,  little  is known  on
recognition-  or signal  transduction  mechanisms.  In  general,  mutant-  and  transgenic  approaches  will be
helpful  to elucidate  the  mechanistic  basis  of metabolite  signaling.
©  2014 Published  by  Elsevier  Ireland  Ltd.
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. Introduction

All life depends on a constant flow of metabolites that provide
uilding blocks as well as energy and reducing power for growth,
evelopment, and reproduction. Beside of their role in biochem-

stry, metabolic intermediates can also serve as signaling molecules
ontributing to the complex regulatory network that eventually
dapts gene expression to altered requirements during the life
ycle, or as a response to a changing environment. In this review
e focus on the dual functions of certain amino acids and their
erivatives as metabolic intermediates/end-products and signaling
olecules. Such dual functions are well documented in the med-

cal/mammalian field, and evidence for similar functions is also
merging for the plant system.

The amino acid serine has recently been suggested to act as a
ignal controlling the proliferation of mammalian cancer cells [1,2].
s the demand for nutrients in fast growing cells is high, the nutri-

ional state determines the rate of cell proliferation. In plants, de
ovo serine biosynthesis is highly active in fast growing tissues,
uch as meristems [3] suggesting a similar role of serine as signaling
olecule in plants.
Likewise, in the mammalian brain glutamate-derived �-amino

utyric acid (GABA) is an inhibitory neurotransmitter that exerts
ts signaling effect after binding to specific receptors [4]. In plants,
vidence for GABA-dependent signal transduction pathways exists
nd awaits a detailed characterization.

Besides their role as constituents of proteins, the aromatic amino
cids phenylalanine, tyrosine and tryptophan are the precursors
or a variety of secondary products [5,6] among them compounds
ith signaling function. The phenylpropanoid pathway, starting

rom phenylalanine delivers, for instance, the neolignan dehy-
rodiconiferyl alcohol glucoside (DCG), which has been shown to
xert cytokinine-like effects in plants [7–9]. Likewise, amines and
olyamines deriving from the amino acid arginine together with
he phenylpropanoid p-coumaric acid converge in the synthesis
f hydroxycinnamic acid amides (HCAAs). HCAAs are involved in
tress- and pathogen responses and might also act as signaling
olecules during developmental processes [10].
Fig. 1 shows an overview on the compartmentation of anabolic

nd catabolic pathways in a mesophyll cell including branch points
eading to those metabolic signals that are highlighted in this
eview. In contrast to catabolism, which is mainly localized in
he cytosol or mitochondria, the majority of the anabolic reac-
ion sequences are initiated in the plastid stroma. Chloroplasts
re the site of CO2-, ammonia- and sulphur assimilation and of a
ariety of pathways leading to the biosynthesis of building blocks
ike fatty acids [11], aromatic amino acids [5,6], branched chain
mino acids [12], isoprenoids via the mevalonate-independent
ay (methylerythritol 4-phosphate pathway; [13], serine [3,14],

nd arginine [15]). The glycolytic intermediate phosphoenolpyru-
ate (PEP) obviously plays a central role both in anabolism and
atabolism [16] and hence also in the production of amino acid
erived signaling molecules.

In this review we elucidate the dual or multiple functions of
erine, GABA, neolignans like DCG as well HCAAs with respect to
etabolism and signaling. Mutant plants impaired in the biosyn-

hesis of amino acids or downstream products might help to dissect
he involvement of amino acid metabolism in cellular signaling
rocesses.

. Serine, a key regulator for development?
Please cite this article in press as: R.E. Häusler, et al., Amino acids
http://dx.doi.org/10.1016/j.plantsci.2014.09.011

.1. Serine, an indispensable metabolite

In addition to its role as constituent of proteins, l-serine is
 precursor for the biosynthesis of a multitude of metabolites.
 PRESS
ce xxx (2014) xxx–xxx

For instance, it is required for the biosynthesis of the amino
acids glycine, cysteine and tryptophan (for the latter see Fig. 1),
or for the biosynthesis of lipids like sphingolipids and phos-
phatidylserine [17,18]. In addition l-serine delivers one-carbon
units for the tetrahydrofolate metabolism [19]. In most orga-
nisms l-serine is synthesized by the glycolytic or ‘phosphorylated’
pathway, in which 3-phosphoglycerate is converted to phos-
phoserine and subsequently to l-serine [3]. However, in plants,
l-serine is predominantly generated during the overall process
of photorespiration [14]. As photorespiration is tightly coupled
to photosynthesis, this path of l-serine production is restricted
to autotrophic tissues. In addition to photorespiratory l-serine
biosynthesis, plants contain all genes essential for the ‘phos-
phorylated’ pathway [3,20]. These genes are highly expressed in
non-photosynthetic tissues like roots or in the regions of pri-
mary meristems, where cell proliferation takes place. Mutant
plants deficient in the ‘phosphorylated’ pathway are embryo lethal,
underlining the importance of this path of l-serine biosynthesis.
Moreover, even if the activity of this pathway was  only dimin-
ished by artificial silencing of genes involved, it resulted in severely
impaired leaf and root development [3,20]. However, these devel-
opmental constraints cannot be explained by a general decrease
in l-serine contents, because these remain unaltered in transgenic
plants [3,20]. At the present state it has not been resolved yet
whether the observed developmental constraints are simply based
on metabolic limitations or whether l-serine functions as a growth-
regulating signal itself as it has been reported for other organisms.

2.2. Serine, a metabolic signal?

Recently it has been shown that d-serine, synthesized by
serine racemase from proteinogenic l-serine, occurs in plants. d-
Serine functions as a signaling molecule in the communication
between male gametophytes and the pistil by regulating a gluta-
mate receptor-like Ca2+ channel in the apical region of pollen tubes
[21]. This regulatory mechanism resembles those known from
mammalians, where d-serine functions as neurotransmitter in the
brain and regulates the activity of the N-methyl-d-aspartate recep-
tor, a non-selective ion channel [22]. In plants, not only d-serine,
but also l-serine is supposed to act as metabolic signal. Deletion
of the gene encoding the photorespiratory enzyme hydroxypyru-
vate reductase1 only affected the l-serine content in the respective
mutants, but not the contents of most metabolites. Moreover, the
mutation in this gene leads to a considerable change in expres-
sion of photorespiration-related genes. Similar alterations in gene
expression pattern have been observed for wild-type plants grown
on a medium supplemented with physiological concentrations of
l-serine [23]. Nevertheless, it remains elusive whether or not l-
serine is directly or indirectly responsible for the deregulation of
photorespiratory genes.

Recently notable advances have been made on the path to
understand the regulatory function of l-serine in mammalian can-
cer cells [24]. l-Serine plays an important role in controlling cell
proliferation during cancer progression. On the one hand, the
flux of 3-phosphoglycerate to l-serine synthesis via glycolysis is
enhanced, to provide sufficient l-serine required for protein syn-
thesis in the cancer cells, and on the other hand, also as carbon
donor for one-carbon (C1) metabolism. C1-metabolism is the source
for a large number of molecules essential for regeneration and
proliferation of cells, such as S-adenosylmethionine, an important
methyl-group donor, and purine bases required for DNA and RNA
synthesis [1]. In proliferating cancer cells, l-serine controls the
 – A life between metabolism and signaling, Plant Sci. (2014),

flux into C1 metabolism by balancing the carbon flow between
glycolysis and its own biosynthesis. Beside its signaling potential,
l-serine functions as an allosteric activator of pyruvate kinase M2,
an isoenzyme specific for embryo and tumor cells. In these cells

167

168

169

170

dx.doi.org/10.1016/j.plantsci.2014.09.011


 ING Model
P

t Scien

t
b
a
n

b
2
o
(
c
i
g
e
b
k
a
[
t
t
s
r
r
T
k
t
o
i

p
a
p
T
s
m
s
e
t
s
m
h
R
t
i
r
c
p
c
[

r
n
l
p
l
d
t
b
i
e
l
d
l
k
p
i
T

malate transporters. In any case experimental evidence for the
direct involvement of GABA is still lacking.
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he glycolytic flux into the tricarboxylic acid cycle is diminished
ecause of the low activity of pyruvate kinase M2.  However, the
ctivity of this enzyme is enhanced in the presence of high endoge-
ous l-serine concentrations.

Deficiency in l-serine activates the expression of l-serine
iosynthesis genes via the ‘general control of the non-derepressible

 kinase-activating transcription factor 4’-pathway [24]. More-
ver, l-serine activates ‘mammalian target of rapamycin complex 1’
mTORC1), a master regulator integrating nutrient availability and
ell growth. Whether or not l-serine has similar functions in plants
s not yet known. The Arabidopsis thaliana genome contains one
ene encoding a ‘general control non-derepressible 2 kinase-like’
nzyme (AtGCN2). This enzyme seems to be functional as it is capa-
le of complementing a yeast mutant deficient in the endogenous
inase [25]. Plants lacking the ‘non-derepressible 2 kinase’ enzyme
re more susceptible to herbicide-induced amino acid starvation
26]. In yeast the ‘non-derepressible 2 kinase’-pathway is known
o induce the expression of multiple genes involved in the biosyn-
hesis of a variety of different amino acids in response to amino acid
tarvation [27]. However, in plants only the expression of nitrate
eductase, the key enzyme of nitrogen assimilation, seems to be
egulated by the ‘non-derepressible 2 kinase-like’ enzyme [26,28].
hese results indicate that the function of the ‘non-derepressible 2
inase’-pathway in plants appears to be similar, but not identical to
hat observed in other organisms. It remains to be shown whether
r not l-serine homeostasis in proliferating cells of plant meristems
s regulated by the ‘non-derepressible 2 kinase’-pathway.

Another possible mechanism to integrate l-serine signaling in
lants could be the ‘target of rapamycin’ (TOR) pathway. TOR is

 relatively large protein kinase associated with other regulatory
roteins in two high mass complexes (TORC1 and TORC2) [29]. The
OR pathway functions as regulatory integrator of environmental
ignals, like the availability of nutrients, and conveys this infor-
ation to adjust cellular processes such as metabolism, protein

ynthesis, and cell proliferation. In plants, TOR is expressed in the
ndosperm, the embryo, and primary meristems [30]. Homozygous
or mutant embryos are arrested in development, and inducible
ilencing of TOR leads to a retardation in growth, induction of pre-
ature senescence, and accumulation of amino acids [31,32]. It

as been demonstrated that TOR deficiency caused by an inducible
NA interference approach mimics nitrogen and carbon starva-
ion responses in plants leading, among other effects, to a massive
ncrease in the content of free amino acids [33,34]. Because TOR
egulates loading of ribosomes with amino acids and recycling of
ellular components, amino acid accumulation in TOR deficient
lants has been attributed to a diminished protein biosynthesis
ombined with an enhanced protein degradation by autophagy
34].

A link between TOR signaling and l-serine homeostasis has
ecently been discovered in proliferating human lung carci-
oma cells (H1299) [24]. Down-regulation of the ‘phosphorylated’
-serine biosynthesis pathway in H1299 cells inhibits the phos-
horylation of the ribosomal S6 kinase, a prominent target of TOR

eading to a reduced cell proliferation [24]. Although there is no
irect evidence for the regulation of TOR by l-serine in plants,
here are some indirect indications. (1) The ‘phosphorylated’ serine
iosynthesis pathway seems to be more restricted to proliferat-

ng cells in the primary meristems, and hence overlaps with TOR
xpression. In addition, (2) plants deficient in the ‘phosphory-
ated’ pathway as well as tor mutant plants are embryo lethal, and
own-regulation of the ‘phosphorylated’ pathway leads to simi-

ar growth defect as observed for plants with a diminished TOR
inase activity [3,20]. (3) Plants deficient in the ‘phosphorylated’
athway accumulate amino acids in a similar way as observed for
Please cite this article in press as: R.E. Häusler, et al., Amino acids
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nducible TOR-silencing plants [3,20,30]. However, whether or not
OR signaling is regulated by l-serine in plants still remains elusive.
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3. GABA signaling in plants

The four carbon, non-proteinogenic amino acid GABA is well-
known as main inhibitory neurotransmitter in the central nervous
system of mammalians. Nevertheless, GABA has also been found in
some non-neuronal cells [35] as well as in plants, which of course
also lack neurons. GABA rapidly accumulates in plant tissues as a
response to abiotic or biotic stresses and it is important for sex-
ual reproduction and cell elongation. Moreover, GABA and/or its
derivatives play an important role in defining cell identity in leaves
and the shoot apical meristem. Furthermore, GABA is involved in
the interaction of plants with bacteria and insects [36–38]. How-
ever, the latter aspects belong to a different topic and will hence
not be covered by this review.

GABA is mainly formed in the cytosol as decarboxylation prod-
uct of glutamate catalyzed by various glutamate decarboxylases. It
can be degraded by the reaction sequence of the so-called GABA
shunt inside the mitochondrial matrix (Fig. 1). The import of GABA
into the mitochondria is mediated by GABA permease [39], which is
encoded by a single copy gene in A. thaliana. The lack of any strong
phenotype of the gabp mutant, defective in this GABA permease,
suggests that its function can probably be taken over by unspecific
amino acid permeases. In mitochondria, the amino group of GABA is
transferred to pyruvate by GABA transaminase yielding alanine and
succinic semialdehyde. The latter is oxidized, and thereby detoxi-
fied, by succinic semialdehyde dehydrogenase yielding succinate,
which can be further metabolized in the tricarboxylic acid cycle
(Fig. 1). Apart from its important role in primary metabolism, i.e.
at the intersection of nitrogen and carbon metabolism [40], GABA
also functions as signal molecule. This function will be focused on
in this part of the review.

3.1. Putative plant GABA receptors

Exposure to various abiotic and biotic stresses leads to a rapid
accumulation of GABA, which can be partially explained on the
basis of the regulatory properties of glutamate decarboxylases,
in particular their interaction with Ca2+/calmodulin. The concen-
trations of cytosolic Ca2+ and concomitantly of Ca2+/calmodulin
are strongly increased in response to various stresses. As gluta-
mate decarboxylases are activated when Ca2+/calmodulin binds to
a C-terminal auto-inhibitory domain, Ca2+ indirectly triggers GABA
formation from glutamate [41]. Thus Ca2+ signaling can be trans-
duced by GABA. However, in order to exert a signaling function
itself, GABA has to be recognized by receptors. Evidence for the
existence of GABA receptors in plants emerged from experiments
with the GABA agonist baclofen (�-(4-chlorophenyl)-GABA) and
the two antagonists picrotoxin and bicuculline, which are also used
in pharmacological studies with mammalians. Treatment of duck-
weed (Lemna) with either baclofen or the antagonists resulted in
a promotion or an inhibition of plant growth, respectively [42].
The GABA-dependent growth promotion in the Lemna system was
due to an increased ion uptake into the plant [42]. In the mam-
malian system, GABA is capable of regulating the activities of ion
channels via GABAA- and GABAB-receptors. It is likely, but not yet
proven, that a similar mechanism exists in plants. However, plants
lack GABAA- and GABAB-like receptors. If GABA regulates ion chan-
nels in plants in a similar way  as in mammalians, different receptor
types have to be involved in GABA binding. Two  different functions
of transmembrane proteins are currently discussed as being GABA-
dependent in plants. These are (1) a putative GABA-gated Ca2+

channel (permease) and (2) GABA-dependent aluminum-activated
 – A life between metabolism and signaling, Plant Sci. (2014),

(1) Plant homologues of mammalian ionotropic glutamate
receptors [43,44] have been speculated to mediate the permeation
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Fig. 1. Overview on metabolic pathways leading to amino acid-based metabolic signals and selected phytohormones in a mesophyll cell. The blue boxes, red ellipses, and
green  rhombuses represent major metabolic pathways, end products or important precursors, and metabolic or hormonal signals, respectively. In the chloroplasts, CO2 is
assimilated via the Calvin–Benson Cycle (reductive pentose phosphate pathway; RPPP) leading to triose phosphates (TP), which are exported by the TP/phosphate translocator
(TPT;  purple circle) to support sucrose biosynthesis in the cytosol and the subsequent export to the sinks. Another part of photoassimilates is subjected to glycolysis in order to
form,  for instance, phosphoenolpyruvate (PEP), which is either further metabolized to pyruvate or imported by the PEP/phosphate translocator (green circles) into the stroma
as  a substrate for the shikimate pathway, from which the aromatic amino acids (AAA) phenylalanine (Phe), tyrosine (Tyr) or tryptophan (Trp) derive. For the synthesis of Trp
the  amino acid serine (Ser) is required. Ser can also act as a metabolic signal. In photosynthetic tissues, photorespiration is the main source of Ser formation, followed by the
phosphoserine pathway starting from 3-phosphoglycerate (3-PGA). Following its export to the cytosol, the AAA Phe can be de-aminated to cinnamic acid by Phe-ammonia
lyase  and forms the starting point for phenylpropanoid metabolism, from which flavonoids and lignin derive. The compound dehydrodiconiferyl alcohol glucoside (DCG) is
a  neolignan with a signaling potential. Plastidial PEP can be converted to pyruvate and serves as a substrate for the de novo synthesis of fatty acids, branched chain amino
acids,  or together with glyceraldehyde 3-phosphate (GAP) for isoprenoid biosynthesis via the methylerythritol 4-phosphate (MEP) pathway. Plastidial isoprenoids provide
carbon  skeletons for photosynthetic components such as carotenoids, phytol and the prenyl residues of plastoquinone (PQ) or tocopherol, but they are also involved in the
biosynthesis of phytohormones like abscisic acid (ABA), trans-zeatin (tZ), or gibberellic acid (GA). Nitrate reduction combined with ammonia assimilation via the glutamine
synthetase/glutamate synthase (GS/GOGAT) cycle leads to the formation of glutamate (Glu) from 2-oxoglutarate (2-OG). Decarboxylation of Glu delivers �-amino butyric
acid  (GABA), which can act as a metabolic signal. In the GABA shunt, GABA is imported into the mitochondrial matrix and transaminated to succinic semialdehyde (SSA),

dx.doi.org/10.1016/j.plantsci.2014.09.011
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f cations, such as Ca2+ upon GABA binding [45]. Twenty homo-
ogues have been identified in A. thaliana. However, only a few
f these proteins have been characterized to date, and their role
s amino acid-gated Ca2+-channels has been substantiated only
n the recent years ([46] and references therein). However, GABA
as not been tested frequently as a ligand. Probably this sparse
esting of GABA as a possible ligand of ion channels and other

embrane proteins is the reason for the lack of information on
ABA binding to plant glutamate receptors or any GABA-eliciting
ffect on electrogenic transport [47]. Considering the large num-
er of putative glutamate receptor homologues in plants and their

nterplay among each other [48], it is still likely that a combi-
ation of glutamate receptors might be found that binds GABA
nd elicits Ca2+ uptake into the cytosol. In such a scenario, the
resence of GABA would strongly amplify the Ca2+ signal in a feed-
orward fashion, i.e. Ca2+ stimulates GABA formation via binding of
a2+/calmodulin to glutamate decarboxylases and, in turn, GABA
licits further Ca2+ uptake. GABA has to be exported in order to
et access to its extracellular binding site of the glutamate recep-
or. Such an export can be accomplished by low-affinity (ProTs)
49,50] as well as high-affinity (GAT1) plasma membrane GABA
ransporters [51].

(2) The group of aluminum-activated malate transporters
AlMTs) can be considered as second type of transmembrane pro-
eins acting as putative GABA receptors [52,53]. However, members
f this group have characteristics of anion channels rather than
ransporters, e.g. AlMT9, a malate-gated Cl− channel of guard cell
onoplasts [54] and AlMT12, also known as QUAC1 (quick anion
hannel 1; [55,56]), functions as malate and sulfate outward rec-
ifier in guard cells. AlMT proteins contain putative GABA binding
ites that are homologous to GABA binding motifs of mammalian
ABAA receptors [53]. The binding of GABA to the putative bind-

ng site occurs at the intracellular side of the plasma membrane
nd inhibits the conductivity of these channels for anions. Site-
irected mutagenesis of a conserved phenylalanine (or tyrosine)
esidue within this sequence abolished binding of GABA. This was
emonstrated by transient expression of the mutagenized wheat
IMT1 in Xenopus laevis oocytes and the determination of ion
ux-dependent currents. In contrast to its native version, the muta-
enized protein was functional as an ion channel in the presence
f GABA.

However, it is puzzling that none of the suggested topologies
f AlMTs predict the complete putative GABA binding site to be
ntracellular [57–59] questioning either the topology predictions,
inding site predictions or the experimental setup. Taken together,
ABA might be recognized by anion- and cation-conducting chan-
els in plants. As binding of GABA to the ‘receptors’ modulates ion
ow across membranes, GABA might be regarded as messenger for
ellular communication, i.e. for signaling in plants.

.2. The role of GABA in plant sexual reproduction

Apart from stress signaling, GABA is involved in plant sex-
Please cite this article in press as: R.E. Häusler, et al., Amino acids
http://dx.doi.org/10.1016/j.plantsci.2014.09.011

al reproduction in that it influences pollen tube growth and
uidance [60]. This part will be focused on the role of GABA in
eproduction. Of course, there is much more needed than func-
ional GABA metabolism or signaling to ensure successful double

hich then enters the tricarboxylic acid (TCA) cycle after oxidation to succinate (Succ). Ot
itrate  (Cit), isocitrate (Iso), and succinyl-CoA (SuccCoA). Alternatively SSA can be exported
icarbonate can be used for the synthesis of carbamoyl phosphate (CP) leading to the sy
rea  cycle or decarboxylated to agmatine. Agmatine together with putrescine, the decarb
ydroxycinnamic acid amides (HCAAs), which can have signaling functions in plants. The
oiety from the amines, agmatine, putrescine, or tyramine and tryptamine as decarboxyl

ransporters in the inner envelope membrane of chloroplasts, the cristae membrane of m
ames  have been omitted.

407
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fertilization, as described in a recent review [61]. Indeed, it is
not yet clear whether the aspects on the role of GABA in sexual
reproduction discussed below should be regarded as signaling or
as a consequence of metabolic imbalances, which eventually lead
to the accumulation of toxic intermediates of GABA metabolism.
Generally, it is a big challenge to differentiate between both
options.

In an A. thaliana mutant deficient in GABA transaminase (pop2-1)
sperm cells, delivered by the pollen tubes, were impaired in effi-
cient self-fertilization of mutant ovules [60]. In contrast, pop2-1
pollen tubes were capable of fertilizing wild-type ovules and vice
versa. These findings are interesting due to their inherent complex-
ity. The GABA concentration determines pollen tube growth both
in vitro and in vivo (i.e. in the carpels). An increased GABA concen-
tration resulted in enhanced elongation of A. thaliana, tobacco and
lily pollen tubes. However, GABA concentrations in excess inhibited
pollen tube elongation almost completely [60,62,63]. In the carpels
of A. thaliana wild type a GABA gradient is established with increas-
ing concentrations from the stigma via the stylar tissue to the
micropyle of the ovary [60,63]. This gradient is disrupted in the
carpels of pop2-1 because GABA cannot be degraded and hence
accumulates. The absence of a proper GABA gradient within the
carpels leads either to a complete growth arrest of pollen tubes
or, in rare cases, to a misguided growth of pollen tubes. Hence
the pop2-1 mutant is not completely sterile, as some pollen tubes
and the sperm cells therein manage to accomplish their mission.
It is, however, remarkable that wild-type pollen tubes manage to
grow from the stigma to the ovaries of the pop2-1 mutant despite of
high GABA concentrations and the concomitant absence of a GABA
gradient. Indeed, the resulting heterozygous mutant plants lack
any decrease in fertility [60,62]. This finding can be explained if
it is assumed that wild-type pollen tubes are capable of degrading
excess GABA in the extracellular matrix and by this prevent GABA-
induced growth arrest. However, for its degradation GABA has to
be taken up by the pollen tubes. This uptake of GABA is proba-
bly mediated by the low-affinity GABA transporter ProT1 [49,50].
According to the eFP browser (http://bbc.botany.utoronto.ca/efp/;
[64]) this transporter is strongly expressed in germinating pollen.
Conversely, pop2-1 pollen tubes also efficiently deliver their sperm
cells to wild-type ovules. The presumed high GABA concentra-
tion inside the mutant pollen tubes is obviously not deleterious
for pollen tube growth, when carpels contain moderate GABA con-
centrations and a GABA gradient exist. The mechanism as to how
GABA mediates pollen tube growth remains elusive. However,
there are approaches targeting this issue. For instance, putative
GABA binding sites have been detected on the membranes of pollen
protoplasts using GABA-coated fluorescent probes called quantum
dots [65,66]. Moreover, it was  possible to elicit Ca2+ influx into
pollen tubes upon GABA application [63,66]. Ca2+ currents were
stimulated by moderate GABA concentrations that would usually
stimulate pollen tube growth, but were inhibited by high GABA
concentrations that restrict pollen tube growth. Glutamate recep-
tors could be excluded as being responsible for the GABA-induced
currents by the application of a specific inhibitor for ionotropic
 – A life between metabolism and signaling, Plant Sci. (2014),

glutamate receptors; 6-cyano-nitroquinoxaline 2,3-dione. As a pos-
itive control, glutamate-stimulated Ca2+ currents were blocked
by the inhibitor. Moreover, there are only few candidate genes

her TCA cycle intermediates are fumarate (Fum), malate (Mal), oxaloacetate (OAA),
 and reduced to �-hydroxy butyric acid (GHB). Plastidial ammonium together with

nthesis of the amino acid arginine (Arg), which can be further metabolized via the
oxylation product of ornithine, enters polyamine biosynthesis or the formation of

 acid moiety of HCAAs derives from Phe in form of (e.g.) p-coumaric acid, the amide
ation product of Tyr and Trp. The circles, squares or diamonds represent metabolite
itochondria or the plasma membrane, respectively. For the sake of clarity enzyme
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ncoding glutamate receptors that are expressed in pollen tubes
nd that might be responsible for the observed Ca2+ currents [64].

Taken together, some light has been shed on how GABA might
e involved in sexual reproduction of plants, especially in the deliv-
ry of sperm cells to the ovaries. Nevertheless, much more remains
o be discovered, mainly on the mechanism of how plants exactly

anage this important issue. It would be interesting to analyze
hether a GABA gradient is indeed necessary for the guidance

f pollen tubes to the micropyle or whether the arrest of pollen
ube elongation- or misguidance in pop2 mutants is just a mat-
er of extremely high GABA tissue levels. Different approaches are
equired to tackle this issue in a way complementary to the pop2
utants. For instance, mutants or transgenic plants lacking GABA

n floral organs would be ideal to study the GABA dependency
f pollen tube growth. The decarboxylation of glutamate repre-
ents the main path of GABA formation. Mutants like glutamate
ecarboxylase 5 might probably lack GABA in pollen tubes, as other
lutamate decarboxylases are not expressed. If it were possible to
enerate plants that completely lack GABA in floral organs both
he absolute requirement of certain GABA levels and/or a GABA
radient for proper pollen tube growth and fertilization could be
ested.

.3. GABA and cell elongation

GABA is also involved in the elongation of cells other than pollen
ubes. Exogenous supply of GABA resulted in a diminished growth
f etiolated hypocotyls [62] or roots [62,67]. This GABA-dependent
rowth restriction was, in both cases, more pronounced in the pop2
utants defective in GABA transaminase. A closer inspection of

ypocotyl epidermal cells as well as root cortical cells revealed that
he growth retardation was  based on a restriction of cell elongation
ather than a decreased cell number [62]. Moreover, the suppres-
ion of root growth by E-2-hexenal, one of the major C6-volatiles
roduced in Arabidopsis in response to wounding or herbivore
ttack, was accompanied by an increase in GABA contents in wild-
ype roots. However, an inhibition of root growth was absent in the
o-called E-2-hexenal response1 mutant. Strikingly this mutant is
llelic to pop2, i.e. it lacks GABA transaminase activity. This failure to
nhibit root growth in the presence of E-2-hexenal was completely
nexpected and awaits an explanation. Probably, a threshold level
f GABA has to be exceeded to confer E-2-hexenal resistance [68].
his would either mean that extremely high GABA concentrations
romote rather than inhibit root growth or that the susceptibility
f putative GABA receptors is decreased in mutants lacking GABA
ransaminase.

.4. A role for GABA in patterning and cell identity

Derivatives of GABA also seem to be involved in signaling.
ccumulation of the transamination product of GABA, succinic
emialdehyde, led to a severe growth retardation phenotype in
sadh mutants defective in succinic semialdehyde dehydrogenase.
hese plants accumulated reactive oxygen species, which may
e partly responsible for the phenotype [69]. A simultaneous
nock-out of the GABA transaminase gene upstream of the suc-
inic semialdehyde dehydrogenase reaction almost completely
escued this phenotype [70]. However, a closer inspection of cotyle-
ons of the enf1-1 allele of mutations in the succinic semialdehyde
ehydrogenase gene [71] revealed the absence of a full rescue by
he simultaneous knock out of GABA transaminase. Cotyledons of
nf1-1 contained a white sector that also persisted in the gaba
Please cite this article in press as: R.E. Häusler, et al., Amino acids
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ransaminase/enf1-1 double mutant [71]. The enlarged fil expres-
ion domain1 (enf1) mutation was detected in an EMS-mutagenized
2 generation that carried a FIL promoter-GFP construct. The FIL

ene is expressed on the abaxial side of the leaf primordia [72,73].
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The size of the FIL expression domain changed more frequently
in both directions in enf1-1 mutants, compared to the wild type,
i.e. more mutant plants had abnormally small or large FIL expres-
sion domains. Robust leaf patterning along the adaxial–abaxial
(upper–lower) axis was impaired in these plants [74]. Interest-
ingly, the size of the FIL expression domain also changed in gaba
transaminase mutants in that it increased significantly compared
to the wild type. In the enf1-1/gaba transaminase double mutant,
the size of the FIL expression domain was reduced back to wild-
type size, i.e. the enf1-1 mutation rescued the increased FIL domain
phenotype of the gaba transaminase mutant. Moreover, the appli-
cation of succinic semialdehyde at a position of the shoot apical
meristem destined to develop the next leaf primordium resulted
in leaves with abnormal adaxial–abaxial polarity. Some plants
showed complete reversions of the abaxial and adaxial sides of
the leaves, i.e. they carry more trichomes on the ‘lower’ side of the
leaf. The identity of the ‘shoot apical meristem organizing center’
was disrupted in a way that several of the enf1-1 mutant plants
either lack a meristem, or have smaller, bigger or even multi-
ple meristems. This has been exemplified in plants expressing a
Wuschel promoter-GUS construct [74]. Wuschel can be considered
as a marker gene for the ‘shoot apical meristem organizing cen-
ter’.

Taken together, GABA and derivatives seem to be involved in a
variety of metabolic (not discussed) and signaling functions. Still
most of the underlying mechanisms have not been discovered
despite the obvious importance of GABA in stress responses, sexual
reproduction and development of plants. Even more puzzling, it is
unclear how the absence of a hypostatic gene such as succinic semi-
aldehyde dehydrogenase (compared to GABA transaminase) should
lead to the rescue of a given phenotype, i.e. the reduced size of the
FIL expression domain in enf1-1/gaba transaminase double mutants
compared to the gaba transaminase single mutant. Two  possible
explanations should be analyzed in more detail in the future: The
first is the existence of a source for succinic semialdehyde other
than GABA, the second is a specific spatio-temporal expression of
a different aminotransferases (i.e. not GABA transaminase) capable
of using GABA as substrate.

4. Signal molecules deriving from aromatic amino acids

The aromatic amino acids phenylalanine, tyrosine, and trypto-
phan are essential for the diet of humans and animals because only
bacteria, yeast, fungi and plants are capable of their de novo biosyn-
thesis [5]. Beside of their role as constituents of proteins, aromatic
amino acids are the precursors for the biosynthesis of large varieties
of secondary products, among them compounds with hormonal or
signaling function.

Phenylalanine is the precursor for phenylpropanoid metabolism
(Fig. 1), which leads, for instance, to quantitatively important lignin
in woody plants [75] or the blue to red pigments of the antho-
cyanin class as well as other flavonoids of the flavonol class [5,76].
The latter function as UV-shield and thus represented an important
prerequisite for plants on the way to colonize the land during evo-
lution [77]. Moreover, the flavonoid naringenin has been proposed
to be involved in the regulation of auxin transport and is hence
indirectly involved in hormonal signaling [78,79].

Phenolics deriving from the shikimate pathway intermediate
chorismate, such as salicylic acid, are involved as signals in the
response of plants to pathogens in a process termed systemic
acquired resistance [80].
 – A life between metabolism and signaling, Plant Sci. (2014),

Tryptophan is the precursor for the synthesis of the auxin indole
acetic acid [81] and, in Brassicacean species, for indole glucosino-
lates, which play a profound role in the defense against herbivores
together with aliphatic glucosinolates [82].
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Fig. 2. Structures of putative signal molecules belonging to the neolignan
and hydroxycinnamic acid amide (HCAA) class deriving from phenylpropanoid
metabolism (i.e. from phenylalanine) and arginine (i.e. p-coumaroylagmatine and

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615
ARTICLESL 9059 1–13

R.E. Häusler et al. / Plan

.1. Phosphoenolpyruvate, an important link between primary
etabolism and aromatic amino acid-based signaling

In plants, the synthesis of aromatic amino acids via the shiki-
ate pathway takes place exclusively inside the plastids [5,6,83]

nd starts from erythrose 4-phosphate and PEP (see Fig. 1). As most
lastids lack a complete glycolysis [84] and are hence unable to pro-
uce PEP inside the stroma, it has to be imported from the cytosol
ia a PEP-specific phosphate translocator (PPT; [85]).

The chlorophyll a/b binding protein underexpressed1 (cue1)
utant defective in one of the two PPTs of A. thaliana [86], exhibits

 developmental phenotype characterized by reticulate leaves and
tunted roots [87,88]. A complete loss of PEP supply to plas-
ids in a double mutant lacking both PPT1 and plastidial enolase
84] resulted in gametophytic lethality of the double homozygous

utant plants [89]. In an earlier report, a general restriction of the
hikimate pathway by limiting PEP supply has been assumed [86], a
iew that seemed to be oversimplified, as some downstream prod-
cts of the shikimate pathway appeared to be decreased whereas
thers were increased in cue1 [90]. The complex developmental
henotype of the cue1 mutant cannot be solely explained by an

mpaired metabolism, but suggests constraints in signaling path-
ays as well.

Probably not only metabolic intermediates and signals deriving
irectly from the shikimate pathway and downstream products are
ffected in cue1, but also anabolic sequences starting from plas-
idial pyruvate [16], like de novo fatty acid or plastidial isoprenoid
iosynthesis (see Fig. 1). Beside of carotenoids or the phytol-chain
f chlorophyll the latter also generates the precursors of the phy-
ohormones gibberellic acid and abscisic acid [91] as well as the
renyl side-chain of the active cytokinin trans-zeatin [92]. Thus,

n cue1, hormonal signaling might be affected beside of metabolic
ignaling. It would therefore be challenging for future experiments
o dissect such hormonal and metabolic signaling pathways in sim-
lar mutant systems.

.2. Lignans and neolignans deriving from phenylpropanoid
etabolism act as signal molecules

Products of the shikimate pathway play multifaceted roles in
rimary and secondary metabolism. Lignans and neolignans repre-
ent signal molecules deriving from phenylpropanoid metabolism.
hey are products of the oxidative dimerization of two phenyl-
ropanoid molecules [77], whereby the C3 side chains of the
onomers are linked by C C bonds either tail-to-tail (lignans)

r head-to-tail (neolignans). Neolignans have been discussed as
utative signal molecules in plants for approximately 20 years
tarting from the time point when the infection mechanism of
grobacterium tumefaciens and its potential for plant transforma-
ion had been unraveled [93,94]. However, at the end of the 1990s
eolignans almost completely disappeared from the focus of plant
cience, but experienced a renaissance thereafter based on their
harmaceutical potential, in particular as both substance classes
ppear to have anti-cancer properties [95,96].

At the end of the 1970s the mechanism of infection of host
lants by A. tumefaciens had been resolved in detail. Axenic cultures
f tumor cells generated from the crown galls of infected plants
xhibited an apparently phytohormone-independent growth. This
s due to the fact that biosynthesis genes for auxins and cytokinins
re contained on the transferred DNA of the bacterial tumor
nducing plasmid, which is stably integrated in the host genome
fter infection [97]. There were, however, early indications for
Please cite this article in press as: R.E. Häusler, et al., Amino acids
http://dx.doi.org/10.1016/j.plantsci.2014.09.011

ther, yet unidentified components synthesized by Vinca rosea
rown galls [98]. Based on its capacity to replace the cytokinin
equirement of axenic tobacco pith cultures, a new compound has
een isolated from V. rosea crown gall tissue, dehydrodiconiferyl
p-coumaroylputrescine).

alcohol glucoside (DCG; see Figs. 1 and 2A), that seemed to be
linked to cytokinin accumulation [7]. Various enantiomers of DCG
have either been purified or were chemically synthesized and they
all exhibited growth-stimulating effects on tobacco pith cultures
albeit to a different extent [8,9]. From a structural point of view
DCG or its aglycon DCA resemble cell wall components, which can
be formed as side products of lignin biosynthesis [8]. In Zinnea ele-
gans the accumulation of DCG coincides with tracheary element
differentiation [99]. Indeed the biosynthesis of DCA starts from
the phenylpropanoid coniferyl alcohol. Dimerization of coniferyl
alcohol monomers can occur non-enzymatically in the presence of
H2O2. The glucose moiety is then added by glycosyl transferases
[100]. More recent studies in flax cells revealed that four major
di-lignols could be identified when cell suspension cultures were
fed with 13C labeled coniferyl alcohol, i.e. the lignan lariciresinol
diglucoside, and the neolignans DCG as well as the erythro-
and threo-forms of guaicylglycerol-�-coniferyl ether glucoside
 – A life between metabolism and signaling, Plant Sci. (2014),

[101].
The cytokinin-like role of DCG has been re-inforced following

the infection of tobacco leaf discs with an A. tumefaciens strain that
lacks the cytokinin biosynthesis locus tumor morphology r (tmr).
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nstead of developing a rooty phenotype, indicative for a high auxin
o cytokinin ratio, the explants produced fast growing, unorganized
umors suggesting that DCG can substitute cytokinins in callus
rowth [102]. DCG belongs to the about 40 low molecular weight
henolics that are capable of inducing virulence genes of A. tumefa-
iens, and might therefore determine the susceptibility of the host
oward A. tumefaciens infection [103]. In the meantime pathways,
y which lignans and neolignans are synthesized in planta have
een studied in more detail, e.g. [101].

.3. Transgenic and mutant plants with impaired neolignan
ignaling

Transgenic tobacco plants overexpressing the weak MYB  tran-
cription factors AmMYB308 and AmMYB330 from Antirrhinum
ajor exhibited a perturbed phenylpropanoid metabolism due

o the replacement of strong endogenous tobacco MYB  factors
rom their target genes. The transgenic plants showed stunted
rowth, reticulate leaves and less lignification in their stems [104].

 detailed analysis of the leaf phenotype revealed a reduced size of
esophyll cells accompanied by increased intercellular air spaces

105]. Both characteristics resemble the leaf- and growth pheno-
ype that had been previously reported for the A. thaliana cue1

utant [86,87].
A further analysis of the phenylpropanoid composition of the

mMYB308 and AmMYB330 overexpressing lines compared to the
ontrol plants revealed that the contents of DCG and its aglycon
CA were diminished [105]. In a cell culture system the aberrant

od-shaped mesophyll cells of the transgenic lines could be rescued
y the application of either 100 �M DCA or 10 �M DCG, suggesting
hat the lowered content of this substance might be linked to the
henotype [105].

In addition, tobacco antisense lines with a diminished activity
f cytosolic enolase show a similar phenotype as the MYB  factor
verexpressing lines [106]. In the case of the antisense plants, PEP
eneration further upstream of phenylpropanoid metabolism or
EP import by the PPT is impaired.

The reduced epidermal fluorescence8 (REF8) locus of A. thaliana
ncodes a p-coumarate hydroxylase [107]. The corresponding
utant accumulates p-coumarate esters instead of sinapylmalate

ike wild-type plants [108]. It has been speculated, but not shown,
hat diminished contents of DCG and other phenylpropanoid
erivatives might be responsible for the severe growth retardation
f the mutant.

Recently we could demonstrate that DCG, but not DCA is capa-
le of rescuing the reticulate leaf phenotype of cue1 [88]. However,
nlike other soluble compounds, DCG cannot be taken up by the
oots of the mutants. Hence roots had to be excised and the sub-
tance was then fed via the cut-edge of the stems.

The major obstacle for further elucidating the mechanism by
hich DCG or similar compounds interfere with plant growth is

he lack of commercial availability. Indeed DCG had to be either
urified from tissues that produce substantial amounts, such as
oots of a certain Linum usitassimum variety [96] or it has to be
hemically synthesized. As a matter of fact, the feeding studies
onducted with the cue1 mutant [88] were done with DCG or DCA
reparations used for the transgenic tobacco plants [105] and these
ere obtained from David Lynn’s lab in the first place. The lack of

vailability is probably one major reason for the decreased interest
n mechanistic studies of this substance class in plant metabolism,
evelopment or signaling.

In the meantime a large number of different lignans and neolig-
Please cite this article in press as: R.E. Häusler, et al., Amino acids
http://dx.doi.org/10.1016/j.plantsci.2014.09.011

ans have been isolated and their chemical structure unraveled, for
nstance, those involved in the biosynthesis of the lignin hinokinin
n Linum corymbulosum [109] including neolignans like DCA or lig-
ans like lariciresinol or pinoresinol. However, neither DCA nor
 PRESS
ce xxx (2014) xxx–xxx

both lignans had any rescuing effect in the A. thaliana cue1 mutant
[88].

4.4. Hydroxycinnamic acid amides (HCAA) as metabolic signals

Hydroxycinnamic acids also belong to the class of phenyl-
propanoids originating from the aromatic amino acid phenylala-
nine. The metabolic fate of hydroxycinnamic acids is tightly coupled
with the biosynthesis of polyamines [110], which starts from the
amino acid arginine (see Fig. 1) or other urea cycle intermedi-
ates [111]. Following the decarboxylation of arginine by arginine
decarboxylase, its product agmatine can be converted to putrescine
by two  enzymatic steps accompanied by the release of urea.
Likewise, the arginine precursor ornithine can be directly decar-
boxylated to putrescine. The chain elongation of putrescine to
spermidine or spermine involves the decarboxylation product of
S-adenosylmethionine [111].

For arginine biosynthesis, carbamoyl phosphate is required as
a substrate in the step from ornithine to citrulline catalyzed by
ornithin transcarbamoylase (Slocum, 2005; see Fig. 1). Surpris-
ingly, the A. thaliana venosa3/6 (ven3/6) double mutant, which is
impaired in two different subunits of carbamoyl phosphate syn-
thase, exhibits a similar reticulate leaf phenotype as the cue1
mutant [112]. Obviously defects in completely different metabolic
pathways lead to similar developmental constraints.

The agmatine, putrescine and polyamines are substrates for
the synthesis of hydroxycinnamic acid amides (HCAA) such as
p-coumaroylagmatine or p-coumaroylputrescine (Fig. 2B). HCAAs
are widely distributed among the plant kingdom, but their phys-
iological function is still controversially discussed. As previously
summarized [10], the function of HCAAs during development
ranges from induction of flowering, and sexual differentiation to
tuber induction of potato plants, as well as cell division, and photo-
morphogenesis. A function of HCAA and its polymers as an integral
constituent of pathogen defense in the cell wall appears to be gener-
ally accepted. A detailed analysis of the impact of these compounds
is awaited.

Genes involved in the synthesis of HCAA in A. thaliana have
been partially annotated. For instance, the transferase, which cat-
alyzes the agmatine-dependent synthesis of p-coumaroylagmatine
has been functionally and molecularly characterized in barley
[113]. Beside of p-coumaroylCoA this enzyme also uses other
hydroxycinnamic acid CoA esters such as feruloylCoA or caffeoyl-
CoA as substrates. A comparison of the amino acid sequence of
the agmatine O-hydroxycinnamoyl transferase from barley with
those of other organisms revealed that this protein belongs to a
highly diverse transferase superfamily. There is for instance no
clear sequence homology of the gene encoding the barley enzyme
with genes from A. thaliana. However, the shikimate/quinate O-
hydroxycinnamoyl transferase of A. thaliana, leading for instance
to p-coumaroylshikimate (Fig. 2B), belongs to the same family.
A knockout of this transferase leads to an inhibition of lignin
biosynthesis combined with an increase in flavonoid contents and
a de-regulation of auxin effects [114]. Moreover, the mutant is
severely compromised in growth. Enzymes involved in the biosyn-
thesis of hydroxycinnamic acid conjugates with spermidine have
recently been identified in A. thaliana [115].

4.5. HCAAs have multiple functions in plants and mammalians

Like lignans and neolignans HCAAs stimulate vir genes in
A. tumefaciens [116]. One of the most profound functions of
 – A life between metabolism and signaling, Plant Sci. (2014),

polyamines and their conjugates is the role in plant pathogen inter-
actions [117,118]. For instance, in winter wheat the antifungal
component p-coumaroylagmatine accumulates when the plants
are covered with snow. This compound is probably induced by cold
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tress and protects the plant from snow mold by a yet unknown
echanism [119].
Some more recent publications provide examples that demon-

trate the impact HCAAs have on the response of plants toward
athogens. In tomato plants infection with the bacterium Pseu-
omonas syringae resulted in the accumulation of HCAAs, among
hem novel compounds such as p-coumaroyldopamine and feru-
oyldopamine [120]. Similarly, the hypersensitive response elicited
y the pathogen Cladosporium fulvum is accompanied by a mas-
ive alteration in the transcriptome and metabolome in tomato
lants giving rise to the accumulation of phenylpropanoids includ-

ng HCAAs [121]. HCAAs are also induced when A. thaliana plants
re infected with pathogens like Alternaria brassicicola [122]. Tore-
ia plants overexpressing agmatine coumaroyl transferase, the
nzyme catalyzing the final step in the synthesis of the HCAA
-coumaroylagmatine, were resistant against the fungus Botrytis
inerea, but not against herbivores [123]. Late blight is a serious
athogen in potato crops and can lead to complete crop loss. Several
uantitative trait loci have been identified that confer resistance
o late blight. Factors involved in this resistance could recently
e identified by an undirected metabolome approach. Among the
henylpropanoids, HCAAs play a profound role in the resistance to
his pathogen [124]. Undirected metabolome and proteome anal-
ses of another quantitative trait locus in wheat reveal HCAAs as
ajor factors involved in the resistance against the fungus Fusarium

raminearum [125].
Similar approaches were conducted with tobacco plants in

esponse to inoculation with pathogens. Again HCAAs were
mong the compounds that accumulated [126]. The importance of
ryptophan-derived secondary compounds such as conjugates of
he decarboxylation product tryptamine or serotonin in pathogen
efense [127] has been tested by inhibition of tryptophan decar-
oxylase in rice plants infested by the fungus Bipolaris oryzae [128].

Wounding is another abiotic stress that leads to the accu-
ulation of HCAAs. The composition of wound-induced HCAAs

ormation has been further studied in transgenic tobacco plants
verexpressing tryptophan- or tyrosine decarboxylases [129].
lthough tryptamine accumulated in tryptophan decarboxylase
verexpressors after wounding, they lack the accumulation of
ydroxycinnamic acid conjugates. In contrast overexpression of
yrosine decarboxylase led to the accumulation of wound-induced
ydroxycinnamic acid conjugates with tyramine suggesting that
yrosine decarboxylase is a rate limiting step in their synthesis
129]. Similarly, a combined constitutive overexpression of tyro-
ine decarboxylase and tyramine hydroxycinnamoyl transferase
lso led to an increase in tyramine conjugates of hydroxycinnamic
cid [130].

Polyamines, their conjugates and HCAAs are highly abundant
n flowers. Flower-specific HCAAs have been analyzed in pollen
f A. thaliana wild-type plants compared to a mutant lacking
permidine hydroxycinnamoyl transferase [131]. Particularly high
oncentrations of HCAAs were found in the tapetum of the stamen.
he tapetum-localized spermidine hydroxycinnamoyl transferase
lays a key role. The loss of this enzyme results in a strong depletion
f HCAAs in anthers and pollen grains [132].

HCAAs have antiviral, antioxidative, and anti-inflammatory
otentials in humans [133,134]. Hydroxycinnamic acid conju-
ates with serotonin have been shown to exert cytoprotective
ffects in mammalian cell cultures against oxidative stress [135].
n this context it appears interesting that transgenic rice plants
roduce coumaroylserotonin and feruloylserotonin when they
xpress hydroxycinnamoyl-CoA:serotonin N-(hydroxycinnamoyl)
Please cite this article in press as: R.E. Häusler, et al., Amino acids
http://dx.doi.org/10.1016/j.plantsci.2014.09.011

ransferase from pepper under the control of a constitutive maize
biquitin promoter [136]. By chemical fusion of pharmacologically
ctive compounds such as the aporphine alkaloid glaucin, which
tself has some antioxidative and antiviral potential, with cinnamic
 PRESS
ce xxx (2014) xxx–xxx 9

acid or hydroxcinnamic acids, products have been obtained that
showed enhanced individual effects [137].

Apart from pharmacological approaches another focus is a
survey on the occurrence and contents of amines and HCAAs
such as the antioxidant and anti-inflammatory compounds feru-
loyltyramine and p-coumaroylserotonin, which are beneficial for
human diet, in a number of vegetables such as tomato or pepper
fruits [138]. Changes in the composition of phenylpropanoids and
enzymes involved in their metabolism during potato tuber growth
suggest varying nutritional values depending upon the develop-
mental stage [139].

Like for neolignans and lignans mechanistic studies are required
that will help to understand the impact HCAAs have on the perfor-
mance and development of plants.

5. Conclusions and future perspectives

5.1. Serine

The function of l-serine as signaling molecule is currently sub-
ject of intense debate in the fields of cancer research and plant
biology. In proliferating cancer cells, l-serine has been identified as
a regulator of TOR kinase activity. In plants, the ‘phosphorylated’
serine and the TOR pathways are highly active in meristems. A reg-
ulation of TOR kinase by l-serine similar to the mammalian system
can be assumed and would hence represent a promising target for
future studies on the signaling function of l-serine.

The activity of TOR kinase is usually measured as change in
the phosphorylation state of its target protein, i.e. the ribosomal
S6 kinase, by antibodies specific for the phosphorylation site. In
turn, the S6 kinase phosphorylates the ribosomal protein S6, a crit-
ical component of the 40S ribosomal subunit. A possible impact
of l-serine on TOR kinase activity could be studied by determina-
tion of the S6 kinase phosphorylation state either after treatment
of plants with physiological concentrations of l-serine or in plants
deficient in the ‘phosphorylated’ serine biosynthesis pathway. This
approach would not only shed light on the question if l-serine is a
signaling molecule in plants, but it would also help to understand
how growth and development is regulated by metabolite signals in
plants.

5.2. GABA

It is generally challenging to discriminate between a metabolic
and a putative signaling function of a substance. In case of GABA
the metabolic role is beyond dispute. As an amino acid it is located
at the intersection of nitrogen and carbon metabolism. In order
to assign a signaling function to GABA, it has to be recognizable
in the first place. Receptor proteins can usually perceive a signal,
and as outlined above, there are indications that among glutamate
receptors and AlMTs there might also be GABA receptors. A role for
GABA or derivatives as signal has been discussed in sexual repro-
duction, cell elongation, patterning and cell identity. In all these
cases novel insights were obtained from exogenous GABA feed-
ing or from mutants that accumulate GABA or its derivatives. Both
approaches have an increased GABA content in common. A signif-
icant advance in understanding could be achieved by the creation
and analysis of GABA-deficient plants. With help of these plants
the problems in distinguishing between metabolic and signaling
functions of GABA could finally be broken up.

Provided that GABA has no extraordinary importance for
 – A life between metabolism and signaling, Plant Sci. (2014),

primary metabolism unlike e.g. glutamate, strong metabolic phen-
otypes would not be expected in GABA deficient mutant plants. In
contrast, the absence of a signal might elicit strong phenotypes,
especially when plants are grown under conditions where GABA
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sually is increased. Access to GABA-free mutants would certainly
mprove GABA-related research and should therefore be strongly
romoted in the future.

.3. Phenylpropanoids and HCAAs

As already mentioned in Section 4.3, the lack of commercial
vailability of lignans, neolignans or HCAAs might hamper more
etailed analyses on the signaling functions of these compounds in
he future. Probably scientists interested in this branch of research
hould communicate with each other and bring forward sources,
here such compounds of interest can be obtained from, or infor-
ation on who might be capable of synthesizing and/or purifying

arger amounts of these substances. Mutants of A. thaliana or trans-
enic tobacco plants might be a helpful tool. For instance, the ref2
utant of A. thaliana impaired in a P450-dependent monooxyge-

ase and consequently in phenylpropanoid metabolism might help
o unravel the complex interplay of plant phenolics [140]. More-
ver, metabolic mutants that are impaired in different pathways,
ut share a common developmental phenotype might be used as
ools to unravel putative signal molecules or signaling pathways.
s an example, reticulate mutants that show wild-type like vas-
ular bundles and bundle sheath cells, but are affected in the size
nd density of mesophyll cells and chloroplasts therein might share
ommon de-regulated signaling pathways.

The cue1 mutant is defective in PEP provision to the shikimate
athway in most plastid types and is hence partially impaired in
econdary metabolism [90], probably including the generation of
etabolic signals [88]. Another reticulate mutant, small organ1

smo1) allelic to trp2, is defective in tryptophan biosynthesis due to
 lesion in the �-subunit of tryptophan synthase [141]. This mutant
hares not only reticulated leaves with cue1, but also growth retar-
ation of aerial parts and stunted roots [88]. The low cell density1
lcd1) mutants, which is allelic to reticulata [142], is impaired in a
ot yet functionally characterized chloroplast membrane protein
143]. It shares only the reticulate leaf phenotype with cue1 [88].
he reticulate mutant ven3/6 is defective in carbamoyl phosphate
ynthase and hence in the production of arginine [112]. Indeed cit-
ulline, the precursor of arginine synthesis, is severely decreased
n ven3/6.  Interestingly, cue1 shows increased levels of arginine
86,88]. It is hence tempting to speculate that HCAA synthesis might
e impaired in cue1 or ven3/ven6 mutants by an inhibited pro-
ision with either hydroxycinnamic acids or with agmatine (the
ecarboxylation product of arginine), respectively.

For most genes involved in phenylpropanoid metabolism
utants are available. However, to the knowledge of the authors

one of these mutants shows a reticulate leaf phenotype. Hence
he developmental constraints observed in reticulate mutants are
robably based on a combination of defects in metabolism and
ormonal- as well as metabolic signaling. Moreover, a crosstalk
etween phenylpopanoids and transcription factors exists in both
i- and monocotyledonous species (like grasses), as has been
ecently summarized [144].

Combined transcriptome and metabolome analyses of mutant,
ransgenic and wild-type plants will help to unravel detailed mech-
nisms of metabolic signaling. So far, neither interaction partners
or cis or trans elements of metabolite triggered gene regulation
ave been identified.
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