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Atomistic Study of the Lattice Thermal
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Abstract— Following our recent study on the electronic prop-
erties of rough nanoribbons [1], in this paper the role of
geometrical and roughness parameters on the thermal properties
of armchair graphene nanoribbons is studied. Employing a
fourth nearest-neighbor force constant model in conjuction with
the nonequilibrium Green’s function method the effect of line-
edge-roughness on the lattice thermal conductivity of rough
nanoribbons is investigated. The results show that a reduction of
about three orders of magnitude of the thermal conductivity can
occur for ribbons narrower than 10 nm. The results indicate
that the diffusive thermal conductivity and the effective mean
free path are directly proportional to the ribbon’s width and
the roughness correlation length, but inversely proportional to
the roughness amplitude. Based on the numerical results an
analytical model for the thermal conductivity of narrow armchair
graphene nanoribbons is proposed in this paper. The developed
model can be used in the analysis of graphene-based nano
transistors and thermoelectric devices, where the appropriate
selection of geometrical and roughness parameters are essential
for optimizing the thermal properties.

Index Terms— Correlation length, graphene nanoribbons
(GNRs), line-edge-roughness (LER), roughness parameters, ther-
mal conductivity.

I. INTRODUCTION

THERMAL properties of nanostructures are recently inves-
tigated as they are of interest for nanoelectronic and

thermoelectric applications. A high thermal conductivity is
beneficial for thermal management and nanoelectronic devices,
in which hot spots, caused by heat dissipation in a relatively
small volume, need to be cooled down [2], [3]. On the other
hand, the performance of thermoelectric devices is inversely
proportional to the thermal conductivity. A low thermal con-
ductivity is, therefore, required for these devices [4], [5].

Graphene, a recently discovered form of carbon, has
received much attention over the past few years because of
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its excellent electrical, optical, and thermal properties [6]. A
linear dispersion around the Dirac point and extremely high
carrier mobility render graphene a promising material for opti-
cal and electronic applications [7]–[10]. Experimental studies
have also reported a high Seebeck coefficient in graphene-
based devices [11], [12]. In addition, a high thermoelectric
performance is theoretically predicted in some graphene-based
structures [13], [14] by degrading the extraordinary ability
of pristine graphene to conduct heat [2]. The high thermal
conductivity of graphene is mostly because of the lattice
contribution, whereas the electronic contribution to the thermal
conduction is negligibly small [15]–[18]. Therefore, by proper
engineering of phonon transport a relatively high or a low
thermal conductivity, as needed by a specific application, can
be achieved.

As a zero bandgap material, pristine graphene can neither
be used as a semiconducting channel in transistors nor as
a thermoelectric material, because of its very small See-
beck coefficient [19]. However, one can open up a band-gap
by appropriate patterning of the graphene sheet [20]–[22].
Graphene nanoribbons (GNRs) are thin strips of graphene,
where the bandgap depends on the chirality of the edges and
the width of the ribbon. Zigzag GNRs show metallic behavior,
whereas armchair GNRs (AGNRs) are semiconductors with a
bandgap inversely proportional to the width [20]. To obtain a
bandgap of 0.5 eV, the width of the AGNR should be scaled
down to around 3 nm. However, it is shown that boundaries
and edge roughness can strongly influence the electrical and
thermal properties of such narrow ribbons [23]–[26].

Recently, the electrical properties and device performance
of AGNR-based field-effect transistors in the presence of
line-edge-roughness (LER) and electron-phonon scattering are
studied [1], [27]–[31]. On the other hand, several studies
are recently conducted on the thermal properties of rough
GNRs [32]–[37]. However, LER in these studies is modeled
by either employing a specularity parameter [33], [36], [37]
or randomly removing atoms along the edge chains [32], [35].
In addition, recent experimental studies on the thermal con-
ductivity of silicon nanowires have demonstrated that besides
the root mean square (rms) of the roughness amplitude, the
roughness correlation length can also influence the thermal
conductivity [38], [39]. Therefore, in this paper we use an
exponential autocorrelation function to model the LER, which
captures more details of realistic edges [1]. We numerically
study the effects of the ribbon’s geometrical parameters as
well as roughness parameters, to show how these parameters
can be used for engineering the thermal properties.

This paper is organized as follows. In Section II, the
model and the methodology are explained. In Section III,
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the results are presented and discussed. The effect of the
geometrical parameters and the roughness parameters on the
thermal conductivity are investigated in this section. Finally, in
Section IV a summary and concluding remarks are presented.

II. MODEL AND METHOD

In narrow AGNRs, LER is the dominant scattering source
for phonon transport [34], [40]. Very recently, the effect of
rough boundaries is studied in defective AGNRs [32]–[37].
Those previous works have used a simple model for LER
which neglect the correlation of the roughness. However,
because of the wave nature of phonons, correlation length of
roughness plays an important role as well. To model LER-
limited thermal conductivity, an exponential autocorrelation
function is employed [41]

R(x) = �W 2 exp

(
− |x |

�L

)
(1)

the Fourier transform of which is the power spectrum of the
roughness. In (1), �W is the rms of the roughness amplitude
and �L is the roughness correlation length. The LER in the
real space is achieved by adding a random phase to the power
spectrum followed by an inverse Fourier transform [1], [41].
We have recently employed this model to rigorously study the
role of geometrical and roughness parameters on the electronic
transport of rough AGNRs [1], [29]. Similar to our previous
work many samples with the same roughness parameters
are generated and their thermal properties are evaluated by
considering an ensemble average. The contacts are assumed to
be semi infinite pristine ribbons and the LER is introduced in
the channel part only. In such structure, the calculated thermal
properties arise from the channel part of the device only [42].
To study the transport of phonons an atomistic nonequilibrium
Green’s function method is used in this paper. The device
Green’s function is obtained as [43], [44]

G(E) =
(

E2 I − D − �s − �d

)−1
(2)

where D is device dynamical matrix and E = h̄ω is the
phonon energy. The dynamical matrix is setup using a fourth
nearest neighbor force constant approximation as described in
[42], [45]. The contact self-energy matrices �s,d are calculated
using the Sancho-Rubio iterative scheme [46]. The effective
transmission probability through the channel is given by the
following:

T ph(E) = Trace[�1G�2G†] (3)

where �1 and �2 are the broadening functions of the two
contacts [44].

According to the Landauer formalism, heat current can be
evaluated from the electron and phonon transmission probabil-
ities. In the linear response regime, one can express the lattice
thermal conductance as [23], [47]

Kl =
(

k2
B Tπ2

3h

) ∫ +∞

0
T ph(ω)Wph(h̄ω)d(h̄ω) (4)

Fig. 1. Ballistic transmission of phonons in AGNRs of widths 1, 3, and
6 nm. Inset: phononic window function at T = 150, 300, and 500 K.

where the phononic window function is given by the following:

Wph(h̄ω) = 3

π2

(
h̄ω

kB T

)2 ∂n(h̄ω)

∂(h̄ω)
. (5)

Here, n(ω) denotes the Bose-Einstein distribution function.
The lattice thermal conductivity is given by the following:

κl = Kl
L

W H
(6)

where L is the channel length, W is the ribbon’s width, and
H = 0.335 nm is the effective thickness of the graphene
monolayer [48], [49].

III. RESULTS AND DISCUSSION

In this section, the role of geometrical and roughness
parameters on the phonon transport in AGNRs is studied.
The ribbon’s width varies between 1 nm and 10 nm. This
corresponds to AGNRs with 7, 16 25, 31, 40, 49, and 80
indices. Channel lengths up to 40 nm are studied. The max-
imum roughness amplitude is chosen to be 10% of ribbons’
width, and the correlation lengths varies between 1 nm and
10 nm. The diffusive thermal conductivity is extracted from
the results as well.

A. Ballistic Properties

The ballistic transmission function of phonons, which is the
number of phononic channels at some energy h̄ω, is shown
in Fig. 1. As expected, the transmission function increases
with the ribbon’s width. In addition, the phononic window
function is shown in the inset of Fig. 1 at various temperatures.
This function, which qualifies the contribution of different
phonon frequencies in the thermal conductance, increases with
temperature. Therefore, at higher temperatures high energy
phonons contribute to the thermal transport as well.

Fig. 2 shows the ballistic thermal conductance of AGNRs
as a function of temperature and the ribbon’s width. By
increasing the temperature and thus the phononic window
function, the thermal conductance increases. However, as the
energy spectrum of AGNRs is limited to 0.2 eV (Fig. 1),
the thermal conductance saturates at very high temperatures
(∼ T > 800 K). As shown in Fig. 2(b), the ther-
mal conductance increases linearly with the ribbon’s width.
The ballistic thermal conductance divided by the width is
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Fig. 2. Ballistic lattice thermal conductance of AGNRs at various widths as
a function of (a) temperature and (b) width.

constant. This is because of the fact that by increasing the
width and thus the number of carbon atoms in the unit cell, the
number of modes increases almost linearly in the whole energy
spectrum, and, therefore, the ballistic transmission function is
directly proportional to the width.

On the other hand, a high thermal conductivity in the range
of ∼2000–5300 W/mK is reported for suspended single-layer
graphene [16], [50], which is only weakly affected by the
boundary and substrate scatterings. Using this superior thermal
conductivity a phonon mean-free-path (MFP) of ∼775 nm
is extracted [2]. Because of this relatively large MFP, no
saturation is observed in the thermal conductivity of short
ribbons with smooth edges [51]. When the MFP is large
enough the conductivity is mostly determined by the channel
length (6) rather than phonon scattering. In the next section we
examine how the LER scattering in very narrow AGNRs can
drastically decrease the MFP, which can significantly affect
the length dependence of the thermal conductivity.

B. Role of Channel Length

To investigate the effect of LER on the thermal conductivity
and the MFP, we performed simulations on a statistical sample
of 16-AGNR with roughness parameters of �W = 0.1 nm
and �L = 2 nm. The statistical average of the transmission
function is shown in Fig. 3 for channel lengths of 5 nm and
40 nm. For reference, the ballistic transmission of 16-AGNR
is also shown in black color.

Fig. 3 shows the transmission functions of 16-AGNR assum-
ing perfect edges and rough edges with roughness parameters
of �W = 0.1nm and �L = 2nm. Apparently, increasing
the length decreases the transmission function. To quantify
the dependence of the transmission function on the channel
length, the phonon MFP is defined as [44], [52]

T ph(h̄ω) = Nph(h̄ω)

1 + L/λph(h̄ω)
(7)

where Nph(h̄ω) is the ballistic transmission function and
λph(h̄ω) is the phonon MFP at energy h̄ω. In the inset of
Fig. 4(a), the transmission function of 16-AGNR at h̄ω =
50 meV is shown as a function of the channel length. The
extracted MFP at this phonon energy is about 7 nm. Fig. 4(a)
shows that the MFP is smaller than 30 nm in most of

Fig. 3. Transmission function for 16-AGNR: Ballistic result (black); in the
presence of LER with �W = 0.1 nm and �L = 2 nm for channel lengths of
5 nm (red) and 40 nm (green). Increasing the length decreases the transmission
function of the rough ribbons.

Fig. 4. (a) LER-limited MFP of 16-AGNR for �W = 0.1 nm and
�L = 2 nm as a function of phonon energy. Inset: transmission function
at h̄ω = 50 meV as a function of the channel length. Its corresponding MFP
is about 7 nm. (b) Lattice thermal conductivity as a function of the channel
length. Using (9) with L1 = 5 nm and L2 = 20 nm, the effective MFPs are
extracted as 23, 14, and 13 nm at T = 150, 300, and 500 K, respectively.
The dashed lines are plotted based on (9), L1 = 5 nm, and varying L2 as the
channel length.

the spectrum, except at very low frequencies. The length
dependence of the lattice thermal conductivity of this ribbon
is shown in Fig. 4(b). In contrast to the ribbons with smooth
edges, here the thermal conductivity increases with length and
starts to saturate above L = 40 nm. The symbols in Fig. 4(b)
are ensemble average values, however, the numerical results
show a standard deviation of ∼0.5–1.0 W/mK in the thermal
conductivity. As a rough estimate, the standard deviations of
various quantities calculated in this paper are about 10% of
the corresponding average value for short and narrow channels,
whereas they decrease to ∼5% of the average values for long
and wide channel. To study the dependence of the thermal
conductance on the channel length one can define an effective
MFP λph as [13]

Kl = Kl,B
λph

L + λph
(8)

which covers the contribution of phonons of different frequen-
cies.The ballistic thermal conductance of AGNRs with perfect
edges is denoted by Kl,B . Alternatively, the effective MFP can
be expressed as follows:

κl(L1)

κl(L2)
= L1

L2

λph + L2

λph + L1
(9)

which makes the numerical calculation more tractable. In
Fig. 4(b), using (9) with L1 = 5 nm and L2 = 20 nm, the
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Fig. 5. Ratio of effective MFPs at T = 150 and T = 300 K.

Fig. 6. (a) Thermal conductance and (b) thermal conductivity as a function
of the ribbon’s width at room temperature. Inset: phonon MFP scales linearly
with the ribbon’s width. The parameters are �W = 0.1 nm, �L = 2 nm,
and L = 20 nm. The dashed lines are guides to the eye.

effective MFPs are extracted as 23, 14, and 13 nm at T = 150,
300, and 500 K, respectively. The dashed lines are plotted
based on (9), L1 = 5 nm, and varying L2 as the channel
length. The effective MFP is high at low temperatures because
at low temperatures thermal transport is dominated by low
frequency phonons that have longer MFPs [see Fig. 4(a)]. Low
frequency phonons with long-wavelengths undergo mostly
specular scattering on the boundaries [53]. As shown in Fig. 5,
the ratio of the effective MFPs at T = 150 K and T = 300 K
increases with the roughness amplitude, indicating that short-
length roughness affects the transport of short-wavelength
phonons more than that of long-wave phonons. However, in
the rest of this paper we consider only the room-temperature
operation.

C. Role of Ribbon’s Width

The lattice thermal conductance as a function of width in
the presence of LER with �W = 0.1 nm and �L = 2 nm is
shown in Fig. 6(a). The ballistic conductance is proportional to
the ribbon’s width. In the presence of roughness, the thermal
conductance is smaller than the ballistic one. It increases
quadratically with W for narrow ribbons and then a linear
increase is observed. This behavior can be understood by
considering the fact that effective MFP increases with ribbon’s
width [inset of Fig. 6(b)]. Therefore, in wide ribbons, the MFP

Fig. 7. Room temperature diffusive lattice thermal conductivity as a function
of width. A constant roughness amplitude (�W = 0.1 nm) and a constant
relative roughness (�W/W = 5%) are considered. The roughness correlation
length is �L = 2 nm. The dashed lines are fitted based on the least mean
square error. Experimental data is taken from [40].

Fig. 8. Room temperature effective phonon MFP as a function of the ribbon’s
width. Both a constant roughness amplitude (�W = 0.1 nm) and a constant
relative roughness (�W/W = 5%) are considered. The roughness correlation
length is �L = 2 nm. The dashed lines are fitted based on the least mean
square error.

is larger than the channel length L = 20 nm. According to (8)
the conductance is proportional to the ballistic conductance
that scales linearly with the ribbon’s width. On the other
hand, for narrow ribbons, the MFP in the denominator of (8)
is negligible in comparison with the channel length L, such
that Kl ∼ Kl,Bλph, and as a result Kl ∼ W 2. Therefore, the
thermal conductivity (∼ Kl/W ) saturates for wide ribbons and
the feature of constant ballistic thermal conductance per unit
width [see Fig. 2(b)] is observed in the thermal conductivity.

When the channel length is larger than the MFP, the purely
diffusive thermal conductivity, which is length independent,
can be extracted using (9). The diffusive thermal conductivity
as a function of ribbon’s width is shown in Fig. 7 for two
cases of constant roughness amplitude and constant relative
roughness. The experimental result is taken from [40]. The
results indicate that a relative roughness between ∼0.5% and
∼5% can cover the range of the experimental data. It is,
however, worth mentioning that the experimental data is for
rough GNRs supported by SiO2 substrates. However, as shown
in [37], phonon transport in narrow GNRs (W < 130 nm) is
limited by LER, indicating that the distinction is expected to be
negligible. In the case of fixed roughness amplitude, the diffu-
sive thermal conductivity is proportional to the ribbon’s width,
similar to the effective MFP [inset of Fig. 6(b)], implying that
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Fig. 9. (a) Room temperature effective MFP and (b) diffusive thermal
conductivity of 25 AGNR as a function of relative roughness and correlation
length. For �L-varying curves �W/W = 4% and for �W/W -varying curves
�L = 3 nm. The dashed lines are fitted based on the least mean square error.

Fig. 10. Room temperature diffusive lattice thermal conductivity of
(a) 25 AGNR at various roughness parameters and (b) different widths as
well as various roughness amplitude. The dashed lines are the fitted curves
based on (10) and symbols indicate the numerical results.

the LER relaxation time is proportional to W as proposed in
the conventional formula for boundary scattering [36], [53].
On the other hand, at fixed relative roughness, the diffusive
thermal conductivity is only weakly dependent on the width
(∼ W 0.3). This behavior can be understood by considering the
dependence of the effective MFP on the roughness amplitude.
As shown in Fig. 8 the effective MFP is weakly related to the
ribbon’s width, ∼ W 0.3, at fixed relative roughness amplitude.
However, at fixed roughness amplitude it scales linearly with
the width.

D. Role of Roughness Parameters

Fig. 9 shows that both the effective MFP and the diffusive
thermal conductivity are inversely proportional to the relative
roughness amplitude and scale linearly with the correlation
length. It is worth mentioning that the roughness parameters
change at fixed width, in contrast to Fig. 8. Although the
relative roughness amplitude affect the thermal conductiv-
ity stronger than the roughness correlation length, at large
roughness amplitude the role of correlation length will be as
important as the relative roughness amplitude. As described
in Section III-C, the thermal conductivity depends to the rel-

ative roughness rather than the absolute roughness amplitude.
Therefore, we propose the following model for the diffusive
lattice thermal conductivity at room temperature:

κl = (a + b�L)
W

�W 0.7 . (10)

The best fit to the numerical results is achieved for
a = 2.1, and b = 0.35, where W , �W , and �L are expressed
in [nm]. Fig. 10 compares the thermal conductivity obtained
from numerical simulations with the analytical model pro-
posed in (10) at various geometrical and roughness parameters.
Excellent agreement shows the usefulness of the proposed
model for accurate analysis of the thermal properties of
GNR-based devices.

IV. CONCLUSION

Using an atomistic LER model along with the nonequi-
librium Green’s function technique, the thermal properties of
AGNRs less than 10 nm wide were comprehensively studied
and modeled. The results indicated that besides geometri-
cal parameters (width and length) the roughness parameters
played an important role in thermal transport as well. The
results indicated that the diffusive thermal conductivity was
proportional to the ribbon’s width and the roughness cor-
relation length, and inversely proportional to the roughness
amplitude. Therefore, a short ribbon with small roughness
amplitude and long roughness correlation length was appro-
priate for thermal management, whereas a long ribbon with
short correlation length and large roughness amplitude was
more appropriate for thermoelectric applications.
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