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a b s t r a c t

This paper proposes a novel Maximum Power Point Tracking (MPPT) method suitable for any application
in which very fast changing and not uniform shading conditions continuously occur, as in case of photo-
voltaic systems (PVs) installed in the roof of electric vehicles. Basically, an Artificial Neural Network
(ANN) based approach is utilized to automatically detect the global maximum power point of the PV
array by using a preselected number of power measurements of the PV system. The method requires only
the measure of PV voltages and currents, thus avoiding the use of additional sensors providing informa-
tion about the environmental operating conditions and temperature of PV modules. The time interval
required to achieve the maximum power generation from the PV modules is about constant and estab-
lished a priori. The greater the number of power–voltage characteristic scansions, the greater the ANN’s
ability to meet the maximum and its prediction accuracy. The algorithm is cost-effective, with no addi-
tional hardware requirements and limited dependence on system parameter variations. Numerical
simulations have validated the effectiveness of the proposed method, and have highlighted the tradeoff
between the preselected number of power–voltage characteristic scansions, the size of the ANN and its
prediction accuracy.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

As it is well known, the use of photovoltaic systems (PV) are
becoming more and more important due to their environment
friendly and economically sustainable energy source, also in elec-
tric vehicles. On the other hand, the photovoltaic technology still
faces efficiency limits, thus control techniques named Maximum
Power Point Tracking (MPPT) have been proposed to optimally
exploit the available power. These algorithms are tracking controls
employed to extract the maximum power from PV modules
depending on the array temperature, solar irradiation, shading
conditions and PV cell ageing.
The most widely used MPPT methods can be grouped in two
different categories: hill climbing methods, such as Perturb and
Observer (P&O) and Incremental Conductance (INC), and constant
voltage methods [1–4]. Starting from the standard implementa-
tions, other technical solutions [5–18] have been proposed in order
to improve the accuracy and dynamic behavior of the tracking con-
trols. On the other hand, most of them neglect that MPPT is a mul-
timodal optimization problem [19] since there are local optima in
the P–V characteristic curve when not uniform irradiance occurs
over the photovoltaic system.

Considerable research efforts have been directed toward the
development of more sophisticated MPPT algorithms able to iden-
tify the Global Maximum Power Point (GMPP) in order to extract
the whole available power from the PV system under partially
shaded conditions [20–33]. The computational burden, range of
effectiveness and convergent speed of these algorithms is quite
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Nomenclature

VPV, IPV PV array output voltage and current
Rs resistance of the metallic contacts and ohmic resistance

of the material
Rsh resistance associated to the leakage of the current

across the p–n junction or at the cell edges
q electron charge
Iph_STC, Iph photo-generated current in Standard Test Conditions

(STC) and operating conditions
Io dark saturation current in STC
TSTC, T temperature at STC and operating conditions
ISC_STC short circuit current measured at STC

A diode quality (ideality) factor
k Boltzmann’s constant
np, ns number of cells connected in parallel and series
Voc_STC, Voc open circuit voltage at STC and operating condition
GSTC, G irradiance at STC and operating condition
VT thermal voltage
KI, KV temperature coefficient of short-circuit current and

temperature coefficient of open-circuit voltage
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different and depends on the adopted theoretical methodology.
Some methods determine the GMPP by exploiting deterministic
searching algorithms such as constant power operation [21], divid-
ing rectangles (DIRECT) method [22], restricted voltage window
search algorithm [25], Cuckoo search [30], while other MPPT algo-
rithms are based on metaheuristic approaches such as the particle
swarm optimization [20] and Artificial Neural Networks (ANNs)
[26]. More in general, in the field of multimodal optimization the
Evolutionary Algorithms [34], e.g. genetic algorithms [35], apply-
ing niching strategies [36] are designed to properly address multi-
modal functions. Furthermore, some niching algorithms are
coupled with Deterministic Methods (DMs) [37] to enhance the
final solution accuracy [38]. The basic idea is to firstly search the
global optimum using a niching algorithm and, then the DM starts
from the provided solution to draw up to the actual optimum.
Therefore, a further distinction among algorithms that can be
adopted to MPPT concerns the number of stages that the MPPT
algorithms use. In fact, some techniques track the GMPP by using
a unique procedure, while other methods identify the GMPP by
adopting two stages. The latter ones, firstly adopt an algorithm
to identify the ‘‘hill’’ where the GMPP is potentially located, and
then a further algorithm is employed to reach the GMPP. In this
perspective, the use of metaheuristic approaches coupled with a
DM seems a good solution provided that information about the
solar irradiance distribution on the panels and/or their tem-
perature as well as the knowledge of the system model are given.
Actually, these techniques could be applied without the use of a
model, but the approach becomes very harmful because each
objective function evaluation calls for changing the PV voltage in
order to measure the current.

Hence, the techniques mentioned so far require the measure-
ment of solar radiation over the panel and their temperature,
and/or the scansion of a large portion of the PV characteristic to
suitably determine the GMPP. Consequently, the main limitation
of the first kind of techniques is the necessity of using additional
sensors and properly system models, whereas the main limitation
of the second ones is the lost of energy owing to the time spent to
sample the PV characteristic. In this perspective, in [39] a tech-
niques based on the DIRECT search algorithm (first stage) and a
suitable P&O algorithm (second stage) has been proposed. More
in general, the aforementioned techniques have been designed for
PV system placed in fixed installation, where the shading phe-
nomena does not suddenly and frequently change as in case of
installations on the roof of electric vehicles. In this case, a very accu-
rate and fast GMPP tracking is necessary in order to maximize the
extracted energy, taking into account that the PV system operates
under the high probability that the solar irradiance on the panel
is not uniformly distributed, especially due to the presence of other
vehicles, buildings and any other obstacles that blocks or refracts
the solar rays impacting the PV modules, and this distribution con-
tinuously changes meanwhile the vehicle moves in the traffic.

In order to overcome the aforementioned limitations, the paper
aims to study the effectiveness of an ANN based MPPT approach
whose goal is to quickly and accurately estimate the GMPP when
no information about the solar irradiance distribution over the
modules and their temperature is given, and when the PV system
is subjected to continuously and rapidly changing shadowing pat-
terns. Few measures are used to esteem the GMPP by means of the
ANN, and they are set a priori. Consequently, the estimation time is
small and fixed. In this work, the solution provided by the ANN is
given, as starting point, to a zero-order P&O method, named as Pat-
tern Search (PS) [37], in order to improve the accuracy of the
esteemed maximum power point (EMPP). Therefore, differently
from [39] the ANN is used to directly estimate the GMPP at first
stage, while the P&O method is exploited only to refine the result.
Finally, to evaluate the performance of various ANN’s structures
some quality indices are proposed, and the robustness of the pro-
posed approach to parameter variations of PV system has been also
assessed.

Actually, ANNs have been already applied to MPPT problems,
but it is the first time that ANNs are used to identify the GMPP
as proposed in this paper, far as authors know. The other ANN
based MPPT algorithms presented in past literature are usually
exploited to compensate the parameter variations occurring in
the PV system in the identification of local MPPs [14–18]. On the
other hand, the ANN based MPPT method presented in [32] esti-
mates the GMPP by means of a single voltage and current measure-
ment but the study is limited to a very restricted number of
shading combinations, thus it is few practicable for a generic PV
system especially when it is continuously subjected to very fast
changing and not uniform shading conditions.

The paper is structured as follows: a brief description of the
considered PV model is presented in Section 2, while Section 3
deals with the explanation of the entire proposed MPPT method;
a detailed analysis of the ANN based MPPT method is described
in Section 4, and a case study is investigated in Section 5; finally,
some conclusions and future work are pointed out in Section 6.
2. PV system modeling

As mentioned in the previous section, a PV module can be
analytically represented by its current vs voltage electrical charac-
teristic, achieved by combining the solar cells in series and parallel.
The characteristic curve is not linear because of operational physi-
cal phenomena.

Different analytical model of the PV system have been proposed
in literature [40,41], and among of them a single diode model rep-
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Fig. 2. Flowchart of the proposed MPPT method.
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resentation of each solar cell has been taken into consideration in
the following analysis. The model is given by:

IPV ¼ np Iph � I0 e
qðVPVþRs IPV Þ

AkTns � 1
� �

� ðVPV þ RsIPV Þ
nsRsh

� �
ð1Þ

Iph ¼ Iph STC þ KIðT � TSTCÞ
G

GSTC
ð2Þ

I0 ¼
ISC STC þ KIðT � TSTCÞ
eðVoc STCþKV ðT�TSTC Þ=VT�1Þ ð3Þ

Relationships (1)–(3) clearly show the dependence of the model on
the solar radiance and temperature conditions. Moreover, the
degradation of the cells due to the outdoor conditions can affect
the parameters included in (1)–(3).

Starting from this mathematical representation, the power
curve associated to the PV array is obtained by considering the ser-
ies and parallel connection of the PV modules.

Assuming to consider a PV array consisting of identical photo-
voltaic cells, under uniform solar irradiation, the typical P–V curve
of the array includes a single peak, as depicted in Fig. 1.

When partial shading occurs in one of the cell composing the PV
module, the last reduces the current circulating through the
unshaded cells, causing the so called hot-spot heating and thus
the crack of the shaded cell [28]. This drawback is overcome by
using an external bypass diode conducting every time the solar cell
is reversed biased, allowing the current of unshed cells to flow
externally to the shaded cell, thus preventing the hot-spot dam-
ages. A similar approach is applied at module level. Although the
impact of shaded cells can be mitigated by inserting bypass diodes,
partial shading still significantly impairs the energy produced from
the PV system due to two reasons: the P–V curve presents multiple
peaks and the position and amplitude of the global maximum
change as the shading conditions change. Fig. 1 highlights these
two aspects by showing the P–V characteristic of a PV array under
uniform and partially shaded operating conditions.

The main goal of the following sections is to present a novel
MPPT implementation able to extract the maximum allowable
power from the PV array even when sudden and recurring shading
condition variations take place.

3. Maximum power point searching method

The proposed MPPT method consists of two different procedures,
which are activated by using one technique proposed in literature
[42]. A flowchart of the entire MPPT method is reported in Fig. 2.
The voltage and current are measured at the PV array terminals with
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Fig. 1. Example of P–V characteristic of a PV array (a) under uniform irradiation and
(b) shading distribution.
a sampling time DT of few seconds. Hence, it is expected that the
calculated output power variation DP is greater than a suitable
threshold THR (e.g. 0.1–0.2PEMMP) when the insolation distribution
changes. Significant power variations with uniform insolation are
unlikely for the considered DT.

Whenever the power variation is limited under a certain thresh-
old THR, it is assumed that the P–V curve maintains the same shape
and the tracking of the Maximum Power Point (MPP) is performed
by using a local method: the PS. In case the threshold is overcome,
the ANN based method is applied, followed by the local MPPT
method. In particular, whenever the proposed ANN based MPPT
method is activated, the power converter connected to the PV array
terminals forces it to sequentially operate at n (chosen a priori) dif-
ferent voltages by modifying the resistance ‘‘seen’’ by the PV sys-
tem. Then, the related currents are measured together to the
applied voltages and acquired by the ANN method, which provides
the voltage to be set in order to obtain the MPP. In other words,
these points (VPV, IPV) represent the input of the ANN, and the PV
array voltage VEMMPA related to the EMPPA, that is the global MPP
esteemed only by the ANN, at the current operating conditions is
the output of the ANN.

The working point (VEMMPA, PEMPPA) is thus imposed by the pow-
er converter to the PV array and subsequently the PS is activated to
improve the accuracy of EMPPA, thus obtaining the EMPP. The
main advantage of using the proposed method is the ability to pre-
dict the GMPP in a very short time, maintaining good accuracy
even under different shading and environmental conditions. The
time required by the ANN to predict the GMPP is strictly depending
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on the number, n, of sampling of the PV array, on the complexity of
the ANN and on the hardware resources. In the following section a
detailed description of the ANN based GMPP prediction and some
quality indices useful to assess the goodness of the method are
provided.
4. ANN based maximum power point prediction

An Artificial neural network is a computational model miming
the biological neural network [43]. In such a model, a neuron is a
processing unit that first linearly weighs the inputs, then elabo-
rates the sum by means of an nonlinear function, called activation
function (AF) and, finally, sends the results to the following neu-
rons [44]. The model of a common neuron is given by the relation-
ship (4), where z is the argument of the AF, as shown in Fig. 3:

z ¼
XM

m¼1

wmxm þ a ð4Þ

and x1, x2, . . . , xM are the M incoming signals, and w1, w2, . . . , wM are
the related synapses weights.

Different AFs have been proposed in literature [45] such as
threshold, linear and sigmoid transfer functions; the last one (5)
is used in the case study.

y ¼ 1
1þ e�z

ð5Þ

Basically, the ANN can be represented by a directed graph
where the nodes and the edges are, respectively, the neurons and
the synapses [46]. Two different main kinds of ANN’s structure
arise from the way the neurons are connected to each other:
feed-forward neural network (FNN) [47] and recurrent neural net-
work (RNN) [48]. The structure of a multilayer FNN considered in
the proposed application is depicted in Fig. 5, where the neurons
of the input layer acts only as buffers for distributing the input sig-
nals (VPV, IPV). The output layer has one neuron providing the volt-
age value VEMMPA corresponding to the EMPPA.

The considered ANN has been trained by using the back-
propagation (BP) algorithm with the Levenberg-Marquardt opti-
mization method [49], which is the most used supervised learning
method for FNN. A supervised learning method [50] aims to train
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Fig. 3. Multilayer feed-forward neural network considered in the proposed
application.
the ANN by providing it some combinations of desired solutions
and the related value of the inputs. At first, the weights are, usually
randomly, set. Then a supervised learning method is applied to
properly modify the weights, in order to reduce the error between
each desired output pattern and the solution provided by the ANN
for the related input pattern. In the proposed application, at each
stage of the learning process, the desired output pattern is the volt-
age value related to the GMPP and the input patterns are the values
of VPV, IPV at the n points where the P–V characteristic is evaluated
for a specific configuration of solar irradiance distribution and pan-
els temperature. The patterns with an identical P–V curve could be
gathered together to reduce the training period, that is when a pat-
tern generates a curve identical to a pattern already used to train
the ANN, use the curve again could be avoided in order to reduce
the training time. On the other hand, the greater the number of
patterns with an identical P–V curve, the greater the probability
that similar scenarios occurs, and, consequently, the greater the
probability that the ANN has to met the real GMPP in similar
curves. The ANN should be able to find the real GMPP especially
for the more probable scenarios in order to maximize the stored
energy. Therefore, the use of all patterns to train the ANN aims
to make it more suitable to correctly identify the real GMPP in
PV curves frequently occurring, although this approach entails a
greater training time.

The ability of the entire method (ANN + PS) to correctly identify
the real GMPP depends on the learning process as well as on the
ANN’s structure. The greater the number of couples (VPV, IPV) at
which the P–V characteristic is evaluated the greater the probabil-
ity that the EMPP approaches the real GMPP. On the other hand, a
high number of measurements (VPV, IPV) to be evaluated implies a
more complex network and, especially, involves a high time to
track the GMPP variations. The performance of the entire method
have to be computed for different ANN structures, by using always
the same PS method, in order to support decision makers in the
choice of the number of ingoing couples (VPV, IPV), the number of
hidden layers and neurons per layer, which are suitable to provide
the best tradeoff between the performance of the entire method
and its computational burden. In this perspective, the following
Performance Quality Indices (PQIs) are considered to assess the
goodness of the solution provided by the entire MPPT method as
well as by the ANN alone:

PQI1 ð%Þ ¼
100

I

XI

i¼1

EMPPi

GMPPi

� �
ð6Þ

PQI2 ð%Þ ¼
100

I

XI

i¼1

ai ð7Þ

PQI3 ð%Þ ¼ 100

PI
i¼1 ai

EMPPAi
GMPPi

� �h i
PI

i¼1ai

ð8Þ

PQI4 ð%Þ ¼ 100

PI
i¼1 ð1� aiÞ EMPPi

GMPPi

� �h i
I �
PI

i¼1ai

ð9Þ

where I is the number of tests executed to assess the performance,
GMPPi is the global MPP when the i-th test is considered, EMPPi is
the global MPP esteemed by the overall system when the i-th test
is considered, EMPPAi is the global MPP esteemed only by the
ANN when the i-th test is considered (that is, before the PS is
applied); ai is a constant equals to 1 if EMPPAi falls inside the same
hill of the GMPPi when the i-th test is considered, otherwise it is
equal to 0 (see Fig. 4).

The index PQI1 gives a measure of the goodness of the EMPP
provided by the entire method with respect to the real GMPP value.
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The greater PQI1 the better the average ability of the entire method
to meet the real GMPP, e.g. PQI1 equal to 100 means that global
MPP esteemed by the overall system is always equal to the real
one in all executed tests. PQI2 is the percentage of times the EMPPA
falls inside the hill of the GMPP. The greater PQI2 the better the
average ability of the ANN to provide to the PS a starting point
(VEMMPA, PEMMPA), falling in the same ‘‘hill’’ where the real GMPP
is located. The greater PQI2 the lower the PS effort and, conse-
quently, the time spent to reach the GMPP. The index PQI3 gives
a measure of the goodness of the EMPPA considering only when
it falls inside the hill of the GMPP. The greater PQI3 the better the
average ability of the ANN to provide to the PS a starting point
(VEMMPA, PEMMPA) close to the real GMPP, when this starting point
falls inside the same GMPP’s ‘‘hill’’.

An ANN does not work properly when it provides a starting
point outside from the GMPP’s ‘‘hill’’. On the other hand, if the peak
of the hill where the PS operates has a similar amplitude than that
where GMPP is located, the misleading solution provided by the
ANN has a slightly negative effect on the performance of the entire
method. In this regard, PQI4 provides a measure of the goodness of
the EMPP achieved by the entire procedure considering only when
it falls outside from the hill of the GMPP.

PQI1 and PQI4 allow to indirectly compare the ANNs since they
provide a measure of the goodness of the entire MPPT method. In
particular, PQI1 is the most significant since it provides information
about the performance of the entire MPPT method when all the
simulations are considered, whereas only a specific subset of
simulations are considered for PQI4. PQI2 and PQI3 directly measure
the goodness of the ANN based MPPT method alone, but they lack
on an overview on the performance of the entire MPPT method. On
the other hand, an improvement on PQI2, PQI3 and PQI4 positively
affects PQI1. In fact, PQI1 encompasses as a whole all the aspects
accounted by the other indices, so it provides the most complete
information about how the performance of the entire method
changes when the ANN’s structure changes.

Hence, PQI1 has to be used to identify the best ANN’s structure.
On the other hand, the other PQIs are useful anyway, since they
enable the designer to grasp how much the different issues affect
the ability of the entire method to meet the real GMPP.

The number of peaks in the P–V characteristic, their magni-
tudes, and the overall nature of the PV curve is strictly dependent
on the temperature of each module composing the PV system, the
insolation level, the shading pattern, and the array configuration
[41]. The maximum number of hills in the P–V curve is related to
the number of PV modules series connected, indicated in the fol-
lowing as nos. Hereafter, the minimum number of couples (VPV,
IPV) is chosen equal to nos, thus the minimum number of input neu-
rons is 2nos. Actually, the number of input couples (VPV, IPV) is a
performance parameter (objective function), since the greater this
number, the greater the time needing to collect the input values of
the ANN. Therefore, the number of couples (VPV, IPV) is both an opti-
mization variable and a performance parameter. As a consequence,
2nos is the best solution in terms of response time, and it is expect-
ed to be the worst in terms of accuracy in the GMPP estimation.

As MPPT is a multimodal optimization problem, it involves to
deal with a nonlinear function and, as it is well known, an ANN
without hidden layer is not able to properly address a nonlinear
function [51]. Hence, the ANN needs at least one hidden layer. A
common method to size the hidden layer is to average the number
of inputs and outputs [52]. Therefore, the minimum number of
neurons in the hidden layer is chosen nos + 1 (by rounding up).
By considering the minimum number of ANN’s inputs and one hid-
den layer, the minimum number of synapses mns is given by:

mns ¼ ð2nosþ 1Þðnosþ 1Þ ð10Þ

The performance of the proposed entire method is expected to
enhance by increasing the number of input couples (VPV, IPV) and
could also enhance by increasing the size and the number of hid-
den layers, involving the need on more computational resources.
Hence, the number of synapses is also chosen as performance para-
meter (objective function), thus mns can be considered as the best
solution from the computational burden point of view, but it is
probably the worst in terms of MPPT method accuracy as it could
provide the lowest PQI1.

By tuning the optimization parameters, that are the number of
input couples (VPV, IPV), the size and the number of hidden layers, a
curve can be carried out for each performance parameter, that are
the PQIs, the number of synapses as well as the number of (VPV, IPV)
couples. When the curve related to a specific PQI is considered, e.g.
PQI1, and the curve related to the number of synapses and input
couples are also considered, then a Pareto front can be carried
out. A point on such a front is a tern made by: PQI1 value, the num-
ber of ANN’s input couples and synapses. As it is well known, there
is not a point in a Pareto front better than another one; in fact,
when two points of this front are compared, each one has at least
one objective function value better and one worse than the other. It
is worth to note that the number of ANN’s input couples and
synapses provide a time based comparison when no specific hard-
ware solution is considered. The overall system response time will
depend on the adopted hardware solutions and thus on the related
cost the decision maker wants to face. Therefore, the decision mak-
er chooses among these points the one that better complies with
the specifications.
5. Case study

The effectiveness of the proposed GMPP searching method has
been evaluated by considering a PV array consisting of two strings
of three series (nos = 3) connected modules (2 � 3). This configura-
tion could be installed on the roof of an electrical vehicle.

The technical specifications of PV modules under standard test
conditions are reported in Table 1. Without loss of generality, the
shading phenomenon on a PV module is modeled in Matlab by
considering on it an uniform lower irradiance with respect to
unshaded modules.

In order to evaluate the performances of the ANN based MPPT
method, different ANN structures have been investigated. In par-
ticular, Table 2 reports the variation ranges related to the number
of input P–V couples, the number of hidden layers and neurons in
the first hidden layer (HL1); hence 216 ANN structures have been
investigated (exhaustive search).

The number of neurons in the hidden layers following the first
one is chosen equal to half of neurons number in the previous one
(by rounding up):
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Table 1
Specification of PV modules.

Parameter Value

Voc 21.06 V
Isc 3.80 A
Current at Pmax (IMPP) 3.50 A
Voltage at Pmax (VMPP) 17.10 V
Maximum power (PMPP) 59.90 W
Voc coef. of temperature (KV) �0.084 V/�C
Isc coef. of temperature (KI) 3.3e�4 A/�C

Table 2
Range variations of the ANN design parameters.

Section Minimum Maximum

Input (VPV, IPV) couples 3 10
Number of HLs 1 3
Size of HL1 4 20

Table 3
Best and worst PQIs values provided by the entire MPPT method or by considering
only the ANN.

PQI (extreme) Value (%) Input couples Number of HLs Size of HL1

PQI1 (Best) 98.47 10 3 12
PQI1 (Worst) 69.30 3 1 20
PQI2 (Best) 96.40 10 3 12
PQI2 (Worst) 67.94 3 1 16
PQI3 (Best) 98.97 10 3 12
PQI3 (Worst) 73.44 3 1 20
PQI4 (Best) 94.50 9 3 12
PQI4 (Worst) 42.96 9 1 8
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Fig. 6. Power error between EMPPA and GMPP in case of worst PQI1.
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Size ðHLkÞ ¼ 0:5 � Size ðHLk�1Þ k P 2 ð11Þ

Many different shadowing factors, such as the height of other
vehicles, buildings and any other obstacles, and their position with
respect to the considered electric vehicle can simultaneously and
partially affect the PV system of the vehicle moving in the traffic.
Moreover, the shadowing pattern changes along the time since
the position of the electric vehicle with respect to surrounding
obstacles continuously changes while it moves in the traffic. There-
fore, the set of data pattern employed to train the examined ANNs
has been selected to cover the entire region where the they are
expected to operate. In particular, the interval 0–1000 W/m2 has
been divided into six subintervals and the solar irradiance level
in the center of each subinterval has been considered. Furthermore,
ten temperature values between 10 and 55 �C have also been con-
sidered. The P–V characteristic curve obtained by means of Eqs.
(1)–(3) has been carried out for each combination of the previous
environmental operating conditions with all shading pattern com-
binations. In particular, 62�3 different solar irradiance combina-
tions over the PV system has been considered to accounting for
the aforementioned various shadowing conditions that can occur,
and for each scenario 10 temperature levels (uniform along the
system) has been considered. Therefore, each ANN has been
trained by using 466,560, that are 62�3 � 10 combinations of data
pattern. In particular, the input pattern (i.e. the values of VPV, IPV)
for each ANN and the output pattern (i.e. the voltage value related
to the GMPP), obtained from the characteristic curve, have been
stored and provided to each ANN 500 times (that is the number
of epochs) when the BP is applied.

After the training process has been completed, the PQIs have
been evaluated by simulating 1000 randomly-generated different
solar irradiances and temperatures, inside the same environmental
ranges used at the train stage, so 216,000 simulations have been
carried out. For each random simulation, the ANN estimates the
optimal operating voltage VEMPPA, providing the EMPPA, then, the
PS is applied to obtain the VEMPP related to the EMPP, and the PQIs
are assessed. Whenever ANNs set negative voltage values or values
greater than the open circuit voltage Voc, the VEMPPA is set to 0.77Vco

[17]. It is worth to note that among all simulations, the ANN based
MPPT method has set 0.1% times a negative voltage value and
0.02% times has set a value greater than the open circuit voltage
Voc.

Table 3 reports the extreme values of PQIs provided by the
entire MPPT method and by the ANN alone, among the 216
simulated ANNs. In this case study, except for PQI4, the ANNs with
3 input couples (VPV, IPV), 1 hidden layer with an high number of
neurons (i.e. HL1 has a large size) achieve the worst performances.
Furthermore, it is worth noting the best performance are reached
by using an high number of input (VPV, IPV) couples, 3 hidden layers
and only a middle number of neurons.

Figs. 5 and 6 display the power error associated to the EMPPA in
each simulation, when, respectively, the best and worst ANN con-
figuration is considered. It is clearly visible that the implementa-
tion of a simple ANN structure provides a high number of false
detection of the optimal operating condition, yielding to a consid-
erably loss of extracted power from the PV system. On the con-
trary, this drawback is abundantly overcome when the best ANN
configuration associated to PQI1 is used.

Figs. 7–9 show the plots of the Pareto front as a scatter plot
matrix [53]. This is a useful way to represent a 3-D Pareto front
since each figure shows the value of a pair of objective functions
for each solution. Moreover, the linear regression curve is reported
as well. In particular, Figs. 7 and 8 show the tradeoff between the
number of input P–V couples and synapses, respectively, against
the values of PQI1. The results bring to light that the greater the
number of input P–V couples (and synapses) the better the PQI1.
Fig. 7 displays several optimal solutions for each input P–V couple
because for a given input size, the ANN’s performances can be
sometimes improved by means of enlarging the size and/or the
number of hidden layers. In fact, by tracing an horizontal line in
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Table 4
Effect of parameter variations in the ANN with worst PQI1.

PV specification PQI1 PQI2 PQI3 PQI4

Voc Isc 69.30 69.32 73.44 52.11
1.1 Voc Isc 70.61 73.49 73.81 56.62
Voc 1.1 Isc 68.89 66.74 73.31 53.60
1.1 Voc 1.1 Isc 70.56 73.67 74.53 52.41
1.2 Voc Isc 69.15 72.42 71.40 58.23
Voc 1.2 Isc 68.97 66.22 72.83 56.05
1.2 Voc 1.2 Isc 70.33 73.11 72.91 56.19
1.3 Voc Isc 64.66 72.27 65.66 56.92
Voc 1.3 Isc 67.83 65.91 71.23 53.93
1.3 Voc 1.3 Isc 66.07 72.94 66.76 58.83

Table 5
Effect of parameter variations in the ANN with best PQI1.

PV specification PQI1 PQI2 PQI3 PQI4

Voc Isc 98.47 96.40 98.97 84.98
1.1 Voc Isc 95.59 93.50 96.65 80.25
Voc 1.1 Isc 98.23 96.30 98.75 84.82
1.1 Voc 1.1 Isc 95.55 94.20 97.05 71.10
1.2 Voc Isc 78.41 73.30 86.46 56.31
Voc 1.2 Isc 98.02 95.80 98.47 87.73
1.2 Voc 1.2 Isc 81.88 79.10 89.18 54.27
1.3 Voc Isc 75.14 71.80 80.28 62.05
Voc 1.3 Isc 97.52 95.00 98.31 82.41
1.3 Voc 1.3 Isc 74.28 70.10 80.72 59.17
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Fig. 10. Circuital scheme of the simulated PV system and block diagram of the
control algorithm.
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the figure it can be noticed that two ANNs with different input
sizes can provide similar performances, by properly adopting an
higher number of hidden layers and/or increasing their size.

Tables 4 and 5 report the effects of parameter variations on the
estimation of GMPP. In particular, the performance of the proposed
MPPT method has been evaluated by modifying till 30% two of the
technical specifications of the PV modules: Voc and Isc. The results
show that a considerable reduction of PQIs occurs when Voc is
subjected to significant variations. On the contrary, variations of
Isc do not appreciably modify the performance of the proposed
MPPT method.

Time varying simulations have been performed as well, by
applying the proposed MPPT algorithm to the aforementioned PV
array. In particular, the PV array was modeled by (1)–(3) and con-
nected to a DC load by means of a DC–DC power converter. The
operating point of the PV array has been modified by applying
the proposed MPPT method and a closed loop voltage control.
The duty cycle d of the converter is modified according to the error
between the desired V⁄ and measured V voltages. A circuital
scheme of the PV system and a block diagram of the simulated con-
trol algorithm are shown in Fig. 10.

Dynamic response of the MPPT control algorithm applied to the
same PV array configuration are shown in Figs. 11 and 12, consid-
ering two different ANN structures. The former ANN, indicated in
the following as ANN1, has 4 input couples (VPV, IPV) and 2 hidden
layers, the size of the first hidden layer is equal to 20. The second
ANN, indicated as ANN2, differs from the former by only the num-
ber of input couples, which are 8.

The sequential simulations are performed assuming that
DT = 5 s, DP = 0.15 PEMMP, the operating point of the PV array is
updated by the control system every 100 ms, and the shadowing
pattern changes every 10 s. Initially, the system is at steady state
at a given shadowing pattern whose GMPP is identified by
VPV = 48 V, IPV = 7.3 A. At t = 10 s the procedure of Fig. 2 activates
the ANN based MPPT algorithm due to the PV array is subjected
to a different shadowing pattern that modifies the P–V curve and
thus the GMPP. Similarly, at t = 20 s the ANNs are operated again.
The figure displays the voltage, current and power of the PV array
as well as the P–V curves associated to each shadowing pattern.
The estimated MPP provided by ANN2 always converges to the real
GMPP faster than ANN1 since the EMPPA provided by ANN2 is clo-
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ser to the GMPP. Therefore, when the considered sequence occurs,
the second stage gives a more significant contribution if a small
number of inputs are considered.
Furthermore, when the second shadowing pattern occurs,
ANN1 provides an EMPPA located in a wrong ‘‘hill’’ of the P–V
curve; therefore, the PS algorithm will move toward a suboptimal
solution, yielding to a continuous little loss of energy even at
steady state due to the erroneous identification of the MPP carried
out by the ANN. It worth to note that these specific shadowing pat-
terns have been chosen because they involve, especially the second
one, a hard curve to deal with. Finally, the use of an enhanced PS,
e.g. using a variable voltage step, or of a derivative algorithm can
reduce the time necessary to reach the GMPP.

6. Conclusions and future work

The paper has presented a novel MPPT method that provides an
accurate and fast estimation of the GMPP in a PV system subjected
to continuous and rapidly changing shadowing patterns. Some
quality indices have been proposed in order to compare the perfor-
mance of different ANN structures and they have been computed
in the case study considering numerous random generated scenar-
ios. The results have also highlighted a good robustness of the
method to parameter variations of PV system. In particular, this
work have investigated, by means of a detailed analysis based on
numerical simulations, the benefits of a novel implementation of
a global MPPT algorithm, highlighting its effectiveness and suit-
ability when applied to small PV systems installed, for instance,
on the roof of electrical vehicles. In future works, experimental
tests of the proposed MPPT could highlight which hardware solu-
tions are more suitable also considering the economical invest-
ment point of view. In particular, the trade-off among
implementation costs and energy losses could be investigated.
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