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The paper presents a physically-based constitutive model for unsaturated soils that considers the bond-
ing effect of water menisci at inter-particle contacts. A bonding factor has been used to represent the
magnitude of the equivalent bonding stress, defined as the bonding force per unit cross-sectional area.
The average skeleton stress is employed to represent the effect of average fluid pressures within soil
pores. Based on an empirical relationship between the bonding factor f and the ratio e/es (where e and
es are void ratios at unsaturated and saturated states, respectively, at the same average skeleton stress),
we propose an elasto-plastic constitutive model for isotropic stress states, and then extend this model to
triaxial stress states within the framework of critical state soil mechanics. Because only one yield surface
Bonding effect
Water menisci
Plasticity
Critical state

1. Introduction

Modeling the stress–strain behav
of the greatest challenges of geotech
been recognized that Terzaghi’s effec
cessfully describe the mechanical be
is needed in the proposed model, a relatively small number of parameters are required. Comparisons
between experimental data and model results show that, in most cases, the proposed model can reason-
ably capture the important features of unsaturated soil behavior.

� 2014 Elsevier Ltd. All rights reserved.

nsaturated soils is one
ngineering. It has long

ress can be used to suc-
of saturated soils. But

pendent constitutive variables are also used in the model pre-
sented in this paper.

In early elasto-plastic models, suction was commonly employed
together with net stress to describe the mechanical behavior of
unsaturated soils [11,1,12–14]. For example, Alonso et al. [11] as-
sumed that normal compression lines are a function of suction
plays a

deformation behavior is difficult, owing to the existence of bonding
forces induced by water menisci between soil particles. This bond-

central role in their model. The model is able to reproduce impor-
tant features of unsaturated soils and has provided a basic frame-
ing force acts at the points of contact between soil particles [1–3]
and complicates the description of the soil mechanical behavior.
This bonding force has a significant effect on the mechanical
behavior of unsaturated soils and is closely related to degree of sat-
uration, suction and pore size distribution. Some investigators have
attempted to use a single stress variable to describe the stress–
strain relationship of unsaturated soils [4–6] while others have
used two independent constitutive variables [9,10,7,8]. Two inde-
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work for subsequent developments. For models of this kind,
however, the capillary bonding effect of water menisci is measured
by suction alone, which is not enough to properly describe real
behavior.

Other elasto-plastic models have been proposed where the
bonding effect is described by a constitutive variable which also in-
cludes degree of saturation [15–24]. Wheeler et al. [17] discussed
the inter-relationships between the hydraulic and mechanical
behavior in unsaturated soils emphasizing the role of the inter-par-
ticle forces associated to the water retention behavior. This bond-
ing effect is also considered in a model by Buscarnera and Nova
[23] that deals with mechanical instabilities in unsaturated soils.
Recently, Zhou et al. [24] represented bonding and debonding ef-
fects in unsaturated soils by assuming that stiffness is a function
of the effective degree of saturation.



To the best of our knowledge, Gallipoli et al. [25] were the first
to consider the effect of capillary bonding within an elasto-plastic
constitutive model. They used the variable, n, to describe the mag-
nitude of the bonding exerted by inter-particle water menisci:

n ¼ f ðsÞ � ð1� SrÞ ð1Þ

where Sr is water saturation and the term (1 � Sr) accounts for the
number of water menisci per unit volume of solid fraction; the
function f(s) expresses the ratio of the inter-particle attraction at

where b is a parameter that decreases with increasing values of the
contact angle (b = 1 for zero contact angle) and R is the radius of the
idealized soil particles.

Unlike silt/sand/gravel particles, which have generally sub-
rounded shapes, clay particles are flat and plate-like. Nevertheless,
a clay compacted dry of optimum could still be represented as an
assembly of aggregates of individual clay particles, where each
aggregate is modeled as a sphere with an equivalent radius R
[27] of the order of magnitude of 1 lm [25]. Along the same line,

Fig. 1. Illustration of water meniscus between two identical contacting spheres.
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the two suctions of s and zero for the ideal case of a water meniscus
located at the contact between two identical spheres. This leads to a
unique relationship between the bonding variable n and the ratio e/
es, where e and es are void ratios calculated at the same value of
average skeleton stress under unsaturated and saturated condi-
tions, respectively [25,26]. The model is capable of reproducing
many important features of unsaturated soil behavior with a single
yield surface and requires only a small number of model parameters
under isotropic stress conditions. The definition of the bonding var-
iable in the model of Gallipoli et al. [25] is derived from physical
considerations of a qualitative nature rather than from a closed-
form calculation of the bonding force. This paper presents a differ-
ent approach to the definition of the bonding variable based on the
explicit consideration of the solid–liquid–gas geometry at the inter-
particle contact in order to rigorously calculate the bonding stress.

This work assumes an idealized soil consisting of identical, reg-
ularly distributed, spherical particles. This means that all pores
have the same shape and dimension, though this shape and dimen-
sion can change with changing void ratio. This implies that, for val-
ues of degree of saturation smaller than one, pore water exists only
in the pendular regime and the presence of bulk water is neglected
for the definition of the capillary bonding factor. This is of course a
simplification because real soils have pores of different sizes and,
for values of degree of saturation smaller than one, there will be
smaller pores filled with water (bulk water) and larger pores filled
with air, with water menisci at inter-particle contacts (meniscus
water). In real soils, bulk water will only disappear at very low val-
ues of degree of saturation.

Despite these simplifying assumptions, which are necessary to
obtain a closed form expression of the bonding force, the paper
provides a useful theoretical framework for comparison against
experimental data and allows a rigorous quantification of capillary
bonding between soil particles in the pendular regime for different
values of void ratio.

To rigorously represent the effect of capillary bonding, we de-
fine the bonding stress as the bonding force divided by the area
that the force acts on. Then, we propose a relationship between
the ratio (e/es) and the bonding stress, and validate that relation-
ship against a series of experimental data from isotropic and triax-
ial loading tests. After that, we develop a physically based
constitutive model, with a single yield surface, for isotropic stress
states and then extend that model to triaxial stress states. A num-
ber of different experimental data sets are used to evaluate the
model.

2. The bonding factor

For calculating the bonding force due to inter-particle water
menisci, we conceptualize the soil as consisting of identical spher-
ical particles. Consider a water meniscus between two such soil
particles (Fig. 1). The relationship between the radius of curvature
of the air–water interface r and the shortest distance from the con-

tact point B to the interface r1 can be described by
ðbr þ RÞ2 ¼ R2 þ ðr þ r1Þ2 ð2Þ
the clay soils are approximately represented by spheres in this
study. In other words, the radius R in this study is referred as the
average size of soil particles.

The capillary pressure, defined as the difference between pore
air pressure and pore water pressure, is given by the Young–La-
place equation (e.g. [28]):

s � pa � pw ¼ Ts
1
r
� 1

r1

� �
ð3Þ

where pa and pw are the pore air pressure and pore water pressure
(compression positive), respectively, and Ts is the surface tension of
water. Note that Ts = 0.0727 N/m for a temperature of 20 �C [29] .

By neglecting gravity, the bonding force induced by the water
meniscus in Fig. 1 can therefore be calculated as (e.g., [30,31])

Fb ¼ pr2
1sþ 2pr1Ts ð4Þ

Eq. (4) expresses the bonding force induced by water menisci. Note
that there is another kind of the bonding force that is associated
with clay mineralogy in the clayey soils, which does not closely re-
late to water menisci or the variation of saturation. Thus, we ne-
glected the bonding stress associated with clay mineralogy in this
study.

As previously indicated, our study is based on the assumptions
that natural soils consist of identical soil particles approximated as
spheres and the neglect of the bonding forces associated with clay
mineralogy. Despite the limitations indicated above, Fig. 1 and the
relevant equations provide a first approximation for soils, which
leads to a simple and explicit expression of bonding stress. The rea-
sonableness of our consideration was evaluated later by compari-
sons between model results and experimental data.

Substituting a = r1/R into Eq. (2) yields

r ¼

b� a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 þ b2 � 2ab

q
1� b2 R; when b < 1

a2

2ð1� aÞR; when b ¼ 1

8>>>><
>>>>:

ð5Þ

Given that suction s must always be positive, a and b must meet
the following condition:



0 6 a 6
2b

4� b2 ð6Þ

and the meaningful range of a values therefore depends on the b va-
lue (i.e. it depends on the contact angle).

Note that Eq. (5) is obtained by solving a second order equation
which has two solutions. Only one of these two solutions (that
with the minus sign in front of the square root) is retained while
the second one (that with the plus sign in front of the square root)

Jaafar [34] introduced a pore-scale framework for modeling the
water retention behavior of partially saturated granular materials.

In this work, the relationship between Sb and e is approximated
by a quadratic fitting function [32]: Sb = g(e)R2 = (0.32e2 + 4.06-
e + 0.11)R2. As a result, the equivalent bonding stress rb for differ-
ent packing patterns is written as:

rb ¼
pTsð2b� b1aÞ

gðeÞR ð10Þ
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is discarded. The second solution is discarded because, in order for
suction to be positive, it would be necessary to impose a restriction
on the values of a and b that results in a negative argument of the
square root.

Substituting Eqs. (3) and (5) and r1 = aR into Eq. (4) leads to

Fb ¼ pRTs bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 þ b2 � 2ab

q� �
ð7Þ

Interestingly, the bonding force tends to a finite positive value when
r1 ? 0 (i.e. when a ? 0) despite the cross-sectional area over which
suction acts tends to zero. This is explained by inspection of Eq. (4),
whose second term vanishes as r1 ? 0 while the first term tends to
a finite value due to the fact that s ? +1 when r1 ? 0.

For different b values, the relationship between the normalized
bonding force Fb/(pRTs) and a is shown in Fig. 2 (solid lines), indi-
cating that the normalized bonding force varies from 2 to zero and
decreases approximately linearly with a at a given value of b. Thus,
the relationship of Eq. (7) can be approximated with a simpler lin-
ear expression:

Fb ¼ pRTsð2b� b1aÞ ð8Þ

where b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� b2

q
. A comparison of the original Eq. (7) with the

simpler linearized Eq. (8) is also shown in Fig. 2.
For a given particle packing, the equivalent bonding stress rb

can then be estimated as

rb ¼ Fb=Sb ð9Þ

where Sb is the cross-sectional area normal to the force direction
(Fig. 3). As shown in Fig. 3, for simple cubic packing (e = 0.91), the
force Fb spreads over an effective area Sb = 4R2. For other packings,
such as tetrahedric (e = 1.95), octahedric (e = 0.47) and dodecaedric
(e = 0.35), the values of Sb are 16R2=

ffiffiffi
3
p

, 4R2=
ffiffiffi
3
p

, and
ffiffiffi
2
p

R2, respec-
tively [32]. Previous research has investigated the effect of pore-
scale on soil properties. For example, Willson et al. [33] conducted
X-ray computed tomography (XCT) to quantitatively assess the par-
ticle- and pore-scale properties of fine Ottawa sand, while Likos and
Fig. 2. Relationship between Fb/(pRTs) and a for different b values.
The variable a in Eq. (10) is proportional to the one-fourth power of
the degree of saturation [29,35], i.e. a = C � (Sr)1/4 where C is a con-
stant depending on particle packing. Substituting a = C � (Sr)1/4 into
Eq. (10) yields:

rb ¼
pTsð2b� Cb1S1=4

r Þ
gðeÞR ð11Þ

Obviously, the bonding effect of inter-particle water menisci
vanishes at the saturated state, i.e. rb = 0 for Sr = 1. Thus, the vari-
ables C, b, and b1 should meet the following condition:

C ¼ 2b=b1 ð12Þ

By Eqs. (11) and (12), the bonding stress rb can then be rewrit-
ten as:

rb ¼
2pbTs

R
�

1� S1=4
r

� �
gðeÞ ð13Þ

The bonding stress rb is therefore expressed as the product of two
factors, 2pbTsR and (1 � Sr

1/4)/g(e). The first factor, 2pbTsR, depends
on contact angle, surface tension, and mean particle radius. The
contact angle depends on the characteristics of the solid–liquid
interface, the surface tension depends on temperature, and the
mean particle radius depends on soil type (note that the change
of mean particle radius is far smaller than the change in pore vol-
ume during deformation [36]). Thus, the factor 2pbTsR can be rea-
sonably assumed to be constant during isothermal deformation.

The second factor (1 � Sr
1/4)/g(e) depends on degree of satura-

tion and void ratio and represents the evolution of the bonding
stress during isothermal deformation. Thus, we define the dimen-
sionless term (1 � Sr

1/4)/g(e) as the bonding factor, f, directly re-
lated to the magnitude of the bonding stress, rb:

f ¼ 1� S1=4
r

gðeÞ ð14Þ

It is of interest to compare the bonding factor given by Eq. (14) with
that proposed by Gallipoli et al. [25]. Firstly, our bonding factor is
derived based on the reasoning that bonding force exists for any
two contacting soil particles under unsaturated conditions. How-
ever, Gallipoli et al. [25] considered that only a portion of contacting
soil particles are subjected to bonding force under unsaturated con-
dition and their fraction is equal to 1 � Sr. Essentially, they assumed
that contacting particles associated with pores filled with water
have no bonding force even under unsaturated conditions. Based
on current unsaturated flow theories [37,38], local equilibrium (that
the same capillary pressures exist across all pores) holds, although
water fills small pores first as a result of capillary effects. In other
words, under unsaturated conditions, pore water from different
pores has the same capillary pressure no matter whether they are
completely filled or not. Therefore, a bonding force always exists
between two contacting particles as long as suction exists.

Secondly, in this work the bonding factor is derived from a
closed-form calculation of the bonding stress taking into account
factors like particle packing, contact angle and degree of saturation.
This provides a rigorous characterization of capillary bonding,
which is again different from Gallipoli et al. [25] where a function



f(s) is invoked to describe the variation of capillary bonding with
suction without an explicit relation with the bonding stress.
Whether f(s) can be used for soil particles that are larger than
1 lm needs to be further investigated. Note that our closed-form
expression of bonding factor is not limited by particle sizes.

Finally, the present paper presents a general constitutive model
for triaxial stress states while the work of Gallipoli et al. [25] is
only applicable to isotropic stress states. The present model is
therefore able to reproduce the main features of unsaturated soil

saturation are different, because of the different action of water
menisci in the two cases.

Using a methodology similar to that reported by Gallipoli et al.
[25], we propose the following empirical relationship to describe
the effect of inter-particle bonding on the irreversible volumetric
behavior of the soil, based on the experimental observation that
e/es increases with increasing values of the bonding factor f:

e ¼ hðfÞ ¼ 1þ afb ð16Þ

Fig. 3. Schematic view of the bonding force due to water menisci for cubic packing.
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behavior under shearing. For example, the model can capture the
development of irreversible shear strains during wetting under
constant deviator stress as shown in Section 5.4.2.

3. Model assumptions

In the previous section, the bonding factor has been derived to
represent the inter-particle bonding due to capillarity. In this sec-
tion, we use this factor and the average skeleton stress to develop
an empirical relationship describing the irreversible volumetric
behavior of soils under both saturated and unsaturated states.

3.1. Stress variables

By extending Terzaghi’s effective stress principle to the unsatu-
rated state, the average skeleton stress is defined as [36]:

r0ij ¼ ðrij � padijÞ þ Srsdij ð15Þ

where rij
0 is the average skeleton stress tensor, rij is the total stress

tensor, dij is Kronecker delta and rij � padij is the net stress tensor.
The traces of the net stress tensor and average skeleton stress ten-
sor are the mean net stress pnet, and the mean average skeleton
stress, p0, respectively. Eq. (15) is obtained from the expression of
Bishop’s stress [39] if the weighting factor, v, is replaced by the de-
gree of saturation. As mentioned above, the bonding effect of water
menisci cannot be fully captured by the average skeleton stress.
That is why a single stress variable, as that of Eq. (15), cannot cap-
ture fundamental features of unsaturated soil behavior, including
wetting-induced irreversible compression (at high confining stress),
reversible swelling (at low confining stress) [40] and drying-in-
duced irreversible compression during wetting–drying cycles [17].
In order to overcome such limitations, two constitutive variables,
rij
0 and f, are used in our model, where f is the bonding factor

accounting for the presence of inter-particle water menisci.

3.2. The relationship between e/es and f

Two normally consolidated samples at the same average
skeleton stress can have different void ratios, if their degrees of
es

where a and b are fitting parameters while e and es are the void
ratios corresponding to the unsaturated and saturated states at
the same value of average skeleton stress. Note that es is related
to the average skeleton stress (which coincides with Terzaghi’s
effective stress in the saturated case) by the saturated normal
compression line:

es ¼ esðp0Þ ¼ N � k ln p0 ð17Þ

where N is the void ratio corresponding to p0 = 1 kPa, and k is the
slope of the saturated normal compression line in the lnp0–es plane.

3.3. Experimental evidence

Experimental data from laboratory tests (corresponding to iso-
tropic and triaxial stress states) are here used to validate Eq. (16).
For each experimental data set [41–45], the parameters N and k in
Eq. (17) have been calibrated from saturated isotropic loading tests
(Table 1). During unsaturated loading, the void ratio e, the mean
net stress pnet, the degree of saturation Sr and the suction s were
also recorded (note that the degree of saturation depends on both
suction and void ratio). The bonding factor f = (1 � Sr

1/4)/g(e), the
saturated void ratio es = N � kln(pnet + Sr � s), and the ratio e/es could
therefore be calculated. The measured values of f and e/es were
then fitted by Eq. (16) using the least-square method and the
parameters a and b were finally obtained as shown in Table 1.
The above procedure was also employed to validate Eq. (16) at crit-
ical states but, in this case, the saturated critical state line was used
instead of the saturated normal compression line.

Fig. 4 shows the fitting of Eq. (16) to different soil data corre-
sponding to both isotropic and critical states. The soils are reconsti-
tuted kaolin (Fig. 4a) [42], bentonite/kaolin mixture (Fig. 4b) [43],
speswhite kaolin (Fig. 4c) [45], Barcelona clayey silt (Fig. 4d) [44],
Kiunyu gravel (19.6% 6 w 6 21.9%) (Fig. 4e) [41], Kiunyu gravel at
critical state (24.9%6 w 6 27.7%) (Fig. 4f) [41] and reconstituted
kaolin (Fig. 4g) [42]. A remarkable correlation exists between
e/es and f under isotropic loading (Fig. 4a–d), at critical state
(Fig. 4e–g) and during wetting (Fig. 4d), with values of the correla-
tion coefficient (R2) above 0.93. Fig. 4g also suggests the existence



of a unified relationship between e/es and f under both isotropic
and triaxial stress states.

Inspection of Fig. 4 indicates that the ratio e/es decreases with
decreasing bonding factor f consistent with Eq. (16). Physically,
this is explained by the fact that a decreasing value of the bonding
factor (or bonding force) can induce a relatively large slippage
between soil particles, and therefore reduces pore space.

4. Constitutive model

e� ðN � k ln p0cð0ÞÞ ¼ �jðln p0 � ln p0cð0ÞÞ ð20Þ

The expression of the normal compression surface of Fig. 5 is
calculated from Eqs. (17) and (18) as

e ¼ hðfÞðN � k ln p0Þ ð21Þ

The expression of the yield curve f, given by the intersection of
the elastic wall with the normal compression surface, is finally ob-
tained by combining Eqs. (20) and (21):

Table 1
Calibration of Eq. (16) for different soils and different stress states.

Soil names Stress state Parameters R2

N k a b

Reconstituted kaolin [42] Normal compression state 1.046 0.112 21.096 1.208 0.975
Bentonite/kaolin mixture [43] 1.759 0.144 13.872 1.059 0.992
Speswhite kaolin [45] 1.530 0.130 6.143 0.812 0.987
Barcelona clayey silt [44] 0.934 0.072 5.655 1.085 0.971

Kiunyu gravel [41] Critical state 1.430 0.094 1.580 � 103 2.888 0.933
Kiunyu gravel [41] 1.430 0.094 7.753 � 102 2.325 0.960
Reconstituted kaolin [42] 1.518 0.110 21.096 1.208 0.981
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This section presents a constitutive model, for both isotropic
and triaxial stress states, based on the consideration of the bonding
factor of Eq. (16), while Section 5 focuses on the validation of the
model against experimental observations.

4.1. Constitutive model for isotropic stress states

Plastic deformation of an unsaturated soil is caused by changes
of both average skeleton stress and capillary bonding. Thus, the
void ratio under unsaturated conditions is calculated as

e ¼ e
es
� es ¼ hðfÞes ð18Þ

where h(f) (Eq. (16)) represents the effect of the bonding force ex-
erted by inter-particle water menisci under unsaturated conditions.
Similar treatment was presented by Gallipoli et al. [25], though our
formulation of the bonding factor is different from theirs.

The elastic change in void ratio (dee) is expressed as a function
of the change of mean average skeleton stress (dp0),

dee ¼ �j
dp0

p0
ð19Þ

where j is the slope of the elastic swelling line in the e–lnp0 plane
and is assumed to be the same under saturated and unsaturated
conditions. Here, we neglect elastic strains induced by changes of
the bonding factor (i.e. changes of saturation) under constant aver-
age skeleton stress. This assumption is best suited to describe the
behavior of silt or low plasticity clays. For highly expansive soils,
however, the development of elastic strains due to changes of the
bonding factor (or saturation) requires further examination.

Fig. 5 shows a three-dimensional view of the normal compres-
sion surface defined by Eq. (18) in the lnp0 � e � f space. Consider
an elastic drying path under constant average skeleton stress from
A to B0 followed by an elastic loading path from B0 to B at constant
bonding factor. The plane identified by the paths A ? B0 and B0 ? B
is an elastic wall where only reversible volumetric strains can oc-
cur. On the other hand, irreversible volumetric strains occur when
the soil state moves on the normal compression surface. Thus, the
intersection of the elastic wall with the three-dimensional normal
compression surface of Fig. 5 defines the current yield curve.Given
that no elastic strains are generated by a variation of the bonding
factor, the elastic change of void ratio between points B and A
(both belonging to the normal compression surface) is entirely
due to the change of mean average skeleton stress from B0 to B:
f ðp0; f;p0cð0ÞÞ ¼ ðhðfÞk� jÞ ln p0 � ðk� jÞ ln p0cð0Þ � NðhðfÞ � 1Þ ¼ 0

ð22Þ

where p0c(0) is the mean yield average skeleton stress under satu-
rated conditions. The yield curve of Eq. (22) provides a good fit to
the initial yield stresses measured during loading at constant suc-
tion in two different experimental campaigns [43,46] (Fig. 6).

During a plastic stress path, the irreversible change of void ratio
is obtained by subtracting the elastic change from the total change,

Dep ¼ De� Dee ¼ ½esðp02Þhðf2Þ � esðp01Þhðf1Þ� � Dee ð23Þ

where p01, f1 and p02, f2 are the average skeleton stress and bonding
factors corresponding to the starting and end points of a stress path,
respectively. The superscripts e and p refer to elastic and plastic
components, respectively.

4.2. Constitutive model for triaxial stress states

This section extends the above constitutive model from isotro-
pic stress states to triaxial stress states by adopting a framework
similar to that of the Modified Cam-clay model [47].

4.2.1. Yield function
Following Alonso et al. [11], the extension to triaxial stress

states is achieved by combining the above model for isotropic
stress states with the yield surface of Modified Cam-clay [47] :

f ¼ q2 �M2p0½p0cðf;p0cð0ÞÞ � p0� ¼ 0 ð24Þ

where q is the deviator stress, M is the slope of the critical state line
in the q–lnp0 plane and p0c(f, p0c(0)) is the yield value of the average
skeleton stress at a specific value of f defined by Eq. (22) as:

p0cðf; p0cð0ÞÞ ¼ exp
ðk� jÞ ln p0cð0Þ þ NðhðfÞ � 1Þ

hðfÞk� j

� �
ð25Þ

Fig. 7 shows that the intersections of the triaxial yield surface with
the p0–f plane and the p0–q plane coincide with the isotropic yield
curve and the Modified Cam-clay yield ellipse, respectively.

4.2.2. Flow rule
A non-associated flow rule is chosen

g ¼ gq2 �M2p0½p0cðf; p0cð0ÞÞ � p0� ¼ 0 ð26Þ

where g is a constant determined by imposing zero lateral strains
under K0 conditions [11], which results in g = [M(M � 9)(M � 3)k]/
[9(6 �M)(k � j)] [48].



Fig. 4. Fitting of Eq. (16) to experimental data for different soils and different stress states: (a)–(d) isotropic normal compression, (a) reconstituted kaolin, data from
Sivakumar [42], (b) bentonite/kaolin mixture, data from Sharma [43], (c) speswhite kaolin, data from Raveendiraraj [45], (d) Barcelona clayey silt, data from Barrera [44] (note
that in [44], the labels ‘‘NC’’ and ‘‘OC’’ indicate normal consolidated and overconsolidated soil samples, respectively, and the initial void ratio and water content of the wetting
tests are different); (e)–(g) at critical state, (e) Kiunyu gravel (19.6% 6w 6 21.9%), data from Toll [41], (f) Kiunyu gravel at critical state (24.9% 6 w 6 27.7%), data from Toll
[41], (g) reconstituted kaolin data from Sivakumar [42].
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The incremental plastic volumetric and shear strains can be ob-
tained from

dep
v ¼ K

@g
@p0

ð27Þ

dep
s ¼ K

@g
@q

ð28Þ

where K is the plastic multiplier determined from the consistency

From Eqs. (24)–(30), the incremental plastic volumetric and
shear strains can be derived as

dep
v ¼

hðfÞk� j
1þ e

2qdq

M2p02 þ q2
þ hðfÞk� j

1þ e
M2p02 � q2

M2p02 þ q2

dp0

p0

� ðN � k ln p0cðfÞÞ
1þ e

@hðfÞ
@f

df ð31Þ

2gp0q

Fig. 5. Normal compression state surface and yield curve. NCL: normal compression
line, URL: unloading reloading line. Note that the saturated/unsaturated NCL lines
are on the compression state surface.

Fig. 7. Three-dimensional view of yield surface.
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condition

df ¼ @f
@q

dqþ @f
@p0

dp0 þ @f
@f

dfþ @f
@ep

v
dep

v ¼ 0 ð29Þ

where

@f
@q ¼ 2q
@f
@p0 ¼ M2ð2p0 � p0cðfÞÞ
@f
@f ¼

@f
@p0cðfÞ

@p0cðfÞ
@f

@f
@ep

v
¼ @f

@p0cðfÞ
@p0cðfÞ
@p0cð0Þ

@p0cð0Þ
@ep

v

@f
@p0cðfÞ

¼ �M2p0

@p0cðfÞ
@f ¼

ðN�k ln p0cðfÞÞ
hðfÞk�j

@hðfÞ
@f p0cðfÞ

@p0cðfÞ
@p0cð0Þ

¼ p0cðfÞ
p0cð0Þ

k�j
hðfÞk�j

@p0cð0Þ
@ep

v
¼ 1þe

k�j p0cð0Þ
@hðfÞ
@f ¼ abfb�1

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

ð30Þ
Fig. 6. Comparisons between calculated and observed yield curves during loading at cons
data from Gallipoli et al. [46].
dep
s ¼ M2p02 � q2

dep
v ð32Þ

The elastic volumetric and shear strain, on the other hand, can
be generally expressed by

dee
v ¼

j
1þ e

dp0

p0
¼ dp0

K
ð33Þ

dee
s ¼

dq
3G

ð34Þ

where K = (1 + e)p0/j and G = 2K(1 � 2l)/[3 � (1 + l)] are the elastic
bulk and shear modulus, respectively, and l is Poisson’s ratio.

4.2.3. Hardening rule
The saturated yield average skeleton stress, p0c(0), which de-

pends on the accumulated plastic volumetric strain, controls the
evolution of the yield surface during plastic loading and is there-
fore chosen as the hardening parameter. The hardening rule of
the yield surface is expressed as:
tant suctions: (a) bentonite/kaolin mixture, data from Sharma [43]; (b) Jossigny silt,



dp0cð0Þ
p0cð0Þ

¼ 1þ e
k� j

dep
v ð35Þ

where dep
v is the incremental plastic volumetric strain determined

by Eq. (31).

4.3. Model parameters

0

5. Model validation

In this section, predictions from the proposed model are com-
pared with experimental data [43,51,46,45], to demonstrate the
effectiveness of the model in describing the mechanical behavior
of unsaturated soils, including the prediction of (a) the initial yield
surface measured during suction-controlled oedometer and isotro-
pic compression tests, (b) the irreversible/reversible changes of
void ratio induced by wetting–drying cycles and (c) the influence
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The proposed model has eight parameters: N, k, j, pc(0), a, b, M,
and G. Four parameters (N, k, j, and p0c(0)) can be easily determined
from saturated isotropic compression tests. Since e/es increases
with f, the parameters a and b must be both positive, and their val-
ues can be determined from suction-controlled compression tests.
Drained shear tests at constant suction can be used to determine

the values of M and G (or M and l).

200 kPa (EDO-200). Therefore, according to the terminology previ-
ously introduced, the simulations of EDO-100 in Fig. 8e are ‘‘model
If the soil is over-consolidated (i.e. the soil stress state lies on an
elastic swelling line), the initial void ratio ei is calculated from Eq.
(19) as:

ei ¼ e0 � j ln
p0i

p0cð0Þ
ð36Þ

where e0 = N � klnp0c(0) is the void ratio corresponding to the initial
value of the hardening parameter, p0c(0), and p0i is the initial value of
the mean average skeleton stress.

Note that the degree of saturation appears in the definition of
the constitutive variables and, therefore, knowledge of the water
retention curve is required to make the model closed. In the pres-
ent study, however, experimental rather than calculated values of
degree of saturation have been used in the simulations due to the
fact that the proposed model only describes mechanical behavior.
When the hysteretic water retention curve model [49,50] was
incorporated into the proposed model to predict the coupled hy-
dro-mechanical behavior of unsaturated soils, the results were
not as accurate. Further work should be conducted to investigate
incorporation of the SWRC into the model.

4.4. Model discussion

Eqs. (16) and (17) show that the variation of e with mean aver-
age skeleton stress p0 can be written as:

e ¼ NðfÞ � kðfÞ ln p0 ð37Þ

where N(f) = N(1 + afb), and k(f) = k(1 + afb).

In Eq. (37), the parameters N and k are both functions of the
bonding factor, which indicates that the volumetric compressibil-
ity of the soil depends on the bonding factor. This is different from
the model of Alonso et al. [11], where the volumetric compressibil-
ity of the soil is assumed to depend solely on suction. Recently, in
the constitutive model by Zhou et al. [24], the volumetric com-
pressibility has been related solely to the effective degree of satu-
ration, and the parameter N is assumed to be a constant.

As shown in Eq. (37), the soil compressibility k(f) = k(1 + afb) is
a power function of the bonding factor and therefore depends on
both degree of saturation and void ratio. The parameters a and b
should correlate with basic soil properties, including plasticity in-
dex, effective grain size, etc., though further research on this issue
is required. Because of the particular definition of the bonding fac-
tor (Eq. (14)), the void ratio appears on both sides of Eq. (37). In or-
der to simplify the numerical implementation of the proposed
model, the simulations presented in this paper assume that the
void ratio on the right-hand side of Eq. (37) is known and equal
to the value calculated in the previous substep of the simulation.
This is acceptable as long as the size of each substep is small
enough.
of wetting–drying cycles on subsequent isotropic loading/shearing.
In the following figures, we use the expression ‘‘model results’’ if
the data shown in the figure has been already used for the model
calibration. Otherwise, we use the expression ‘‘model predictions’’.
Although the relationship of Eq. (16) was not validated during dry-
ing paths, the results presented in the following sections suggest
that the same relationship between e/es and f can also be used
for the simulation of drying paths.

5.1. Oedometer tests from MUSE Benchmark B9 [46]

In the MUSE Benchmark B9, constant suction oedometer tests
on compacted samples of Jossigny silt were presented. Model
parameters k, N, j, and pc’(0) were calibrated from the saturated
test EDO-sat while the values of a and b were determined from
oedometer tests at constant suctions of 100 kPa (EDO-100) and
results’’ whereas the simulations of tests EDO-10 and EDO-50 in
Fig. 8a and c are ‘‘model predictions’’. The values of model param-
eters are listed in Table 2. The initial void ratios of the different
tests were predicted from Eq. (36), with ei being 0.819, 0.816 and
0.814 for constant suctions of 10 kPa, 50 kPa and 100 kPa, respec-
tively. The inaccurate prediction by Eq. (36) of the initial void ratio
for the test EDO-100 (with an error of about 7%, see Fig. 8e) might
be due to limitations of the adopted elastic law. One way of
improving the prediction of the initial void ratio, without changing
the elastic law, would be to choose a greater initial value of the
hardening parameter, p0c(0). However, given that the initial value
of the hardening parameter also fixes the position of the initial
yield curve (Fig. 6b), this will have the undesirable consequence
of deteriorating the prediction of the yield stresses.

Samples EDO-10, EDO-50 and EDO-100 were loaded from a ver-
tical net stress rv � ua = 20 to 800 kPa, followed by unloading from
800 to 100 kPa and then reloading to 1200, 1226, and 1080 kPa,
respectively.

Before point A, the response was elastic (Fig. 8a, c and e). Then
the initial yield curve C0 was attained and substantial irreversible
changes in void ratio occurred, producing an expansion of the yield
curve from C0 to C1 (corresponding to point B). The initial yield
surface calculated from Eq. (22) agrees well with the observed
yield stress (see also Fig. 6b). Soil deformation was elastic during
the unloading–reloading stage (BCC0). During plastic loading from
C0 to D, the samples experienced hardening of the yield surface
to the final position C2. All the experimental data are reasonably
well represented by the proposed model.

Fig. 8b, d and e show abrupt changes in stress path (p0–f) at sev-
eral points (denoted by Pt1). In order to explain this behavior, the
variation of degree of saturation was also plotted. In Fig. 8b, the
slope of the stress path at point Pt1 changes suddenly due to the
corresponding abrupt change in degree of saturation. In the cases
of constant suctions of 50 kPa and 100 kPa, these abrupt changes
of stress path correspond to local maxima in the p0–f plane. This
is because, before the maxima point (Pt1), the void ratio decreases
while the degree of saturation increases. The decrease of e results
in an increase of f while the increase of Sr results in a decrease of



f, with the former effect being the dominant one. Then, at point Pt1

(with p0 = 166.1 kPa for constant s = 50 kPa and with p’ = 890.0 kPa
for constant s = 100 kPa), the effect of increasing Sr becomes dom-

inant and f reaches a local maxima in the p0–f plane. Note that in
Fig. 8d, the point Pt1 is just inside the elastic zone whereas the
point Pt1 in Fig. 8b and f is on the yield surface.

Fig. 8. Comparison between model predictions/results and experimental data during oedometer loading (data from [46]): (a) and (b) at constant suction of 10 kPa, EDO-10;
(c) and (d) at constant suction of 50 kPa, EDO-50; (e) and (f) at constant suction of 100 kPa, EDO-100; (left side) (a, c, e): void ratio–mean net stress; (right side) (b, d, f): stress
path and variation of degree of saturation.
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Fig. 8 also indicates that the stress path during elastic unloading
BC does not coincide with the stress path during the subsequent
elastic reloading CC’, though the corresponding curves overlap per-
fectly in the e–pnet plane. This is again a consequence of the slight
different variation of degree of saturation during elastic unloading
and subsequent elastic reloading.

5.2. Experiments by Sharma [43]

5.2.2. Wetting–drying cycles at constant net stresses
Fig. 10a shows a comparison between predicted and observed

behavior during a wetting–drying cycle at a constant mean net
stress of 50 kPa. During wetting, suction decreased and Sr in-
creased, causing a reduction of the average skeleton stress
(Fig. 10b). Before point A, the stress path lay within the initial
yield surface, and the behavior is elastic. Plastic collapse happens
during the wetting stage AC. However, the wetting-induced irre-
versible change in void ratio during path AB is much smaller than

Table 2
Soil parameters for Jossigny silt
(MUSE Benchmark B9) [46].

Parameter Value

k 0.122
N 1.325
j 5.628 � 10�3

a 1.604 � 103

b 2.818
p0c(0) 65.93 kPa
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Laboratory tests by Sharma [43] demonstrated several impor-
tant features of the mechanical behavior of a compacted mixture
of bentonite/kaolin, including yielding at constant suction during
isotropic loading, irreversible change of void ratio induced by wet-
ting/drying, and the influence of wetting–drying cycles on subse-
quent isotropic loading. The tests involved a combination of
isotropic loading at constant suction and wetting–drying at con-
stant mean net stress. The model parameter values derived from
these tests are listed in Table 3. The j value is taken from Sharma
[43], while the values of N, k, and p0c(0) are the same as those re-
ported in Gallipoli et al. [25]. The suction-controlled tests No. 7
(s = 300 kPa), No. 11 (s = 100 kPa) and No. 13 (s = 200 kPa) were
used to determine the values of a and b. Since the data of Test
No. 7 and No. 11 were also used for comparison purposes, the com-
puted curves in Fig. 9a and e represent ‘‘model results’’ while all
other curves are ‘‘model predictions’’. The initial void ratio was
predicted by Eq. (36) based on the initial value of the hardening
parameter p0c(0).

5.2.1. Isotropic loading at constant suction
Fig. 9 presents comparisons between model simulations and

experimental data. The corresponding stress paths and yield sur-
faces are also shown. The initial yield curves were attained at point
A corresponding to mean average skeleton stress values of 105,
168, and 229 kPa for suctions of 100, 200 and 300 kPa, respectively.
These yield stresses are well predicted by the simulated yield curve
(Fig. 6a). After point A, irreversible changes of void ratio occurred,
and the yield curve expanded from C0 to C1 at the end of loading
(point B). During the unloading path (BC), all samples experienced
elastic deformation. For the test at a constant suction of 200 kPa,
the yield curve was further expanded from C1 to C2 during the sec-
ond loading. In general, model simulations agree well with exper-
imental data.

Table 3
Soil parameter values for bentonite/
kaolin [43].

Parameter Value

k 0.144
N 1.759
j 0.040
a 13.872

b 1.059
p0c(0) 17.0 kPa
during the path BC. This is because the stress path AB intersects
the current yield curve at a gentler angle than path BC. It is worth
mentioning that, during path BC, the mean net stress and suction
were kept unchanged, and a marked increase of degree of satura-
tion (likely to be due to lack of equalization during path AB) in-
duced considerable irreversible compression, which is
reasonably captured by the model. When suction reversed (CD),
irreversible changes in void ratio occurred over the entire drying
path, even if suction did not exceed the maximum value previ-
ously applied. This is an important feature of the mechanical
behavior of unsaturated soils [17] that is often not captured by
previous models.

As reported by Sharma [43] and Gallipoli et al. [25], the incom-
plete equalization of suction during the wetting–drying cycle may
be an explanation for the discrepancy between experimental data
and model predictions.

Fig. 10c shows a comparison between experimental data and
predicted soil behavior during wetting–drying cycles at a constant
mean net stress of 20 kPa. Unlike Fig. 10a, only elastic swelling
took place here during the first and second wetting, while irrevers-
ible changes of void ratio occurred during the drying stage AB,
bringing the yield curve from C0 to C1.

Fig. 10e shows model predictions and experimental data during
wetting–drying cycles at a constant mean net stress of 10 kPa. The
sample response was elastic during the two wetting stages,
whereas irreversible changes of void ratio occurred during the first
and second drying stages (AB and DE) (Fig. 10f). The first drying
stage AB resulted in the hardening of the yield curve from C0 to
C1. The stress path remained inside the elastic domain throughout
the second wetting, with no expansion of yield curve, and the sam-
ple approached nearly saturated conditions (Sr = 0.94) at the end of
the second wetting stage (C0). Finally, the second drying path ex-
panded the yield locus from C1 to C2.

Fig. 10b, d and f show the variation of the bonding factor and
degree of saturation with average skeleton stress. The abrupt
changes in direction of the stress path at points Pt1, Pt2, and Pt3

are due to the corresponding sudden changes in the slope of the
saturation curve, which is induced by the lack of equalization dur-
ing the experiment.

A large elastic swelling was observed during wetting stage of
CC0 (Fig. 10f), where the bonding factor decreased rapidly while
net stress and suction remained unchanged. Unlike the stage BC
in Fig. 10a that the sample underwent irreversible compression
volumetric deformation under relatively high stress condition
(50 kPa), at the stage C’C in Fig. 10e, an increase of degree of
saturation with a low stress condition (10 kPa) can cause the
reversible swelling volumetric deformation, and it cannot be
reproduced by the proposed model, indicating that the relation-
ship (Eq. (19)) is not adequate for the expansive soil. The inad-
equate relationship for swelling volumetric deformation may
also induce a discrepancy between model results and experi-
mental data in the drying path AB (Fig. 10e). As shown in
Fig. 10e, a concave upward trend was predicted, while the
experimental data shows a concave downward trend. Neverthe-
less, the predicted results capture the main features of experi-
mental data.



5.2.3. Influence of wetting–drying cycles on subsequent isotropic
loading

Fig. 11 compares observed and predicted behavior during iso-
tropic loading of two samples at a constant suction of 300 kPa.
One sample was subjected to a wetting–drying cycle prior to load-
ing (suction: 300 kPa ? 20 kPa and 20 kPa ? 300 kPa) while the
other one did not. As shown in Fig. 11c, in the case of the former
sample, the stress state lays after the wetting–drying cycle on
the yield curve and irreversible change therefore occurred immedi-

(Fig. 11c) corresponds to a change in the trend of variation of de-
gree of saturation, which is again due to lack of equalization during
the experiment.

5.3. Experiment by Sivakumar [51]

Experimental data from Sivakumar [51] were used to evaluate
the proposed model under a variety of triaxial stress paths. The
tests were conducted on compacted kaolin under constant suction.

Fig. 9. Comparison between model predictions/results and experimental data during isotropic loading (data from [43]): (a) and (b) at constant suction of 100 kPa, Test No. 11;
(c) and (d) at constant suction of 200 kPa, Test No. 9; (e) and (f) at constant suction of 300 kPa, Test No. 7; (left side) (a, c, e): void ratio–mean net stress; (right side) (b, d, f):
stress path.
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ately during subsequent loading. Instead, in the case of the sample
that was not subjected to the wetting–drying cycle, loading started
from inside the yield curve and yielding was only attained after
loading progressed. The simulated deformations are generally in
agreement with observations, indicating that the proposed model
is able to capture the history of suction variation. Note that the
abrupt change in the slope of the stress path at point Pt1
The samples had a clay content of about 80%, with liquid and plas-
tic limits of 70% and 36%, respectively. The values of the model
parameters for this soil are listed in Table 4. In particular, the val-
ues of parameters k, N, j, pc’(0) and l were determined from satu-
rated test data while the values of parameters a and b were
determined from isotropic compression tests at constant suctions
of 100, 200 and 300 kPa.



Samples were first isotropically compressed and subsequently
sheared to critical state. The void ratios at the start of shearing
were predicted by Eq. (36) based on the initial value of the harden-

ing parameter p0c(0). The simulated stress paths can be categorized
into three groups: (1) constant mean net stress (pnet = 200 kPa), (2)
constant radial net stress (Dq/Dpnet = 3), and (3) curved stress path.

Fig. 10. Comparison between model predictions and experimental data for wetting–drying cycle (data from [43]): (a) and (b) at constant net stress of 50 kPa, Test No. 2; (c)
and (d) at constant net stress of 20 kPa, Test No. 5; (e) and (f) at constant net stress of 10 kPa, Test No. 1; (left side) (a, c, e) void ratio–suction; (right side) (b, d, f) stress path
and variation of degree of saturation.
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In order to quantify the curved stress path, a mathematical func-
tion (pnet/a1)2 + (q/b1)2 = 1, with a1 = 200 kPa, b1 = 279 kPa, was fit-
ted to the test stress path of Sivakumar [51]. The tests in the first
group were conducted at constant suctions of 100 and 200 kPa;
the tests in the second group at suctions of 100, 200, and
300 kPa; the tests in the third group were conducted at a suction
of 200 kPa only.

Fig. 12 shows comparisons between experimental data and
model predictions in terms of axial strains, volumetric strains,

behavior is reasonably reproduced by the proposed model. At the
end of the simulation, the observed and predicted values of devia-
tor stress (listed in Table 5) show that the maximum prediction er-
ror is 7.8%. The changes in void ratio are plotted in Fig. 12b, d and f,
indicating good agreement between predicted and observed
results.

With the exception of the shearing test under constant radial
net stress at a suction of 300 kPa, all other tests in Fig. 12 involve
stress paths that remain on the yield surface during the whole

Fig. 11. Comparison between model predictions/results and experimental data for isotropic loading (with/without previous wetting–drying cycle at constant mean net stress
of 10 kPa) (data from [43]): (a) change of void ratio during wetting–drying cycle; (b) change of void ratio during loading; (c) stress paths and variation of degree of saturation.
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and void ratio for the three different test groups. Consistent with
the theories of critical state soil mechanics, observed axial strains
increased monotonically whereas the deviator stress q and the vol-
umetric strain ev increased initially and then reached nearly the
ultimate values at the end of shearing. The observed shearing

Table 4
Soil parameter values for shearing tests on kaolin [51].

Parameter Value

M 0.858
N 1.835
k 0.142
j 0.034

a 11.080
b 1.066
p0c(0) 63.0 kPa
l 0.35
shearing processes. In the case of the test under constant radial
net stress at a suction of 300 kPa (Fig. 12g), the mechanical re-
sponse is elastic before point A and elasto-plastic after point A.
Fig. 12 also shows that, during the initial stages of shearing, the
model tends to slightly under-predict shear strains, mostly due
to the particular choice of non-associative flow rule.

5.4. Experiments by Raveendiraraj [45]

Experimental data for speswhite kaolin published by Raveen-
diraraj [45] were used to further verify the proposed model for dif-
ferent stress paths, including isotropic loading, wetting–drying
cycles, shearing, and combinations thereof. The values of model
parameters k, N, j, pc’(0) were determined from saturated tests

[45], and the value of G was calibrated from shearing tests at con-
stant radial net stress of 75 kPa and suctions of 200 and 300 kPa.

Parameters a and b were calibrated from the suction-controlled



Fig. 12. Comparison between experimental data and model predictions during shearing (data from [51]): (a) and (b) constant mean net stress condition; (c) and (d) constant
radial net stress condition; (e) and (f) curved stress path; (g) stress path of shearing test at constant suction of 300 kPa under constant radial net stress; (left side) (a, c, e)
deviator stress–axial strain; (right side) (b, d, f) void ratio–deviator stress.
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isotropic tests A12 (s = 1 kPa), A6 (s = 50 kPa), A1 (s = 150 kPa), A11
(s = 300 kPa), and A3 (s = 350 kPa), as listed in Table 6. The compar-
isons between simulations and experiments presented in this sec-
tion refer to tests B4 and B6 (Fig. 13) that were not used during
model calibration. The corresponding simulations are therefore
classified as ‘‘model predictions’’. Note that, in this case, the initial
predicted values of void ratio were taken to coincide with the ini-
tial experimental values.

Fig. 12 (continued)

Table 5
Experimental and predicted values of deviator stress at the end of shearing [51].

Test conditions Suction (kPa) Deviator stress, q (kPa)

Experiment Model Error (%)

Constant mean net stress 100 251 243 0.3
200 315 309 0.2

Constant radial net stress 100 312 288 7.7
200 379 368 3.0
300 490 452 7.8

Curved stress path 200 234 229 2.1

Table 6
Soil parameters for shearing tests [45].

Parameter Value

M 0.720
N 1.520
k 0.130
j 0.020
a 6.143
b 0.812
p0c(0) 15.0 kPa
G 3.0 � 103 MPa

Fig. 13. Stress paths of tests B4 and B6 (from [45]).
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5.4.1. Isotropic loading with shearing
Fig. 14 compares experimental and predicted results for Test B4

involving isotropic loading (AB) and shearing (BH) under a con-
stant suction of 300 kPa. The predictions from the Barcelona Basic
Model (BBM) [11] and the Wheeler Model (WM) [17] (taken from
Raveendiraraj [45]) are also presented in Fig. 14 for comparison
purposes. All models seem able to capture the overall trend of

the observed mechanical behavior.

During isotropic loading (AB), the void ratio reduced slightly stress–strain curves in the q–pnet and ev–es planes approached zero
as the samples attained critical state at the end of shearing. The
variations of predicted volumetric strain with the axial strain are
plotted together with the predicted stress–strain curve in Fig. 14.
The predicted deviator stress q and ev do not exactly reach their
ultimate values even at the end of simulations. The reason is that
the ultimate q value is sensitive to the end point of the simulation.
In the corresponding laboratory tests, the critical state is unstable
and difficult to control. Nevertheless, our prediction is close to the
(Fig. 14b). The sample experienced elastic compression until the
initial yield stress A0 (pnet = 59.28 kPa). After that, an irreversible
change in void ratio occurred (A0B). During isotropic loading (AB),
the predicted void ratio from BBM is smaller than the experimental
data, while the predictions from both WM and the proposed model
agree better with the experiments. During shearing (BH), the pre-
diction of void ratio from the proposed model agrees better with
the experiments than the other two models, although all models
predict smaller values of void ratio than the experiments.

After reaching A0, plastic straining started to occur and contin-
ued during the entire shearing stage (BH) until the slope of the
measurements for the Test B4 within the range of measured q val-
ues. With respect to the shearing strain, our prediction results are
close to the observations.



5.4.2. Isotropic loading with shearing and wetting–drying cycles
Fig. 13 shows the stress path of Test B6 involving shearing under

a constant suction of 300 kPa and wetting–drying cycles at constant
net stress. The sample was first isotropically loaded to point B and
then sheared to point C (corresponding to pnet = 101 kPa, q = 78 kPa
and s = 300 kPa). After that, it experienced two wetting–drying
cycles, with suction varying between 300 and 100 kPa (CD, DE, EF,
and FG) while deviator stress and mean net stress remained
unchanged.

After the wetting–drying cycles, the sample was further sheared
until it approached critical state. As shown in Fig. 15a, during the
entire shearing stage GH, the curve predicted by BBM lies above
the experimental one; conversely, the curve predicted by WM lies
below the experimental one at the beginning of shearing, but then
tends to converge towards the experimental data during the later
stage of shearing (q > 205 kPa). The predictions by the proposed
model agree well with the observations, and the predicted volu-
metric strain approaches the ultimate critical state value at the

Fig. 14. Comparisons between experimental data and model predictions for Test B4 (data from [45]): (a) deviator stress–shear strain; (b) void ratio–mean net stress.
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Fig. 15a and b compare observed and predicted shear strains
during shearing and the wetting–drying cycles. Fig. 15a shows
that, during the first shearing stage (BC), the predictions from all
three models agree very well with experimental data.

The variation of shear strain (es) with suction during the wet-
ting–drying cycles is plotted in Fig. 15b. The experimental values
of shear strain increased gradually (with suction decreasing) dur-
ing the first wetting stage CD, and remained approximately un-
changed during the subsequent wetting/drying stages (DE, EF,
and FG). This is because, at the beginning of wetting, the stress
state (corresponding to point C) laid on the yield surface and plas-
tic collapse therefore occurred during the first wetting. During the
subsequent wetting/drying stages, the stress path remained inside
the yield surface, with no plastic strains occurring. Furthermore,
Fig. 15b and d show that the variation of es during the wetting/dry-
ing stages DE, EF and FG is completely reversible, whereas the var-
iation of e is not. This is because during the three elastic loading
paths (DE, EF and FG), the elastic shear strain only depends on
the deviator stress (see Eq. (34)) which remains unchanged,
whereas the void ratio is governed by the mean average skeleton
stress p0 which depends on degree of saturation and therefore
changes in a non-reversible way during the wetting/drying cycles
(as shown in Fig. 15e). Overall, with respect to the variation of
shear strain with suction, Fig. 15b shows that all models predict
with similar accuracy the soil behavior during the wetting–drying
cycles but, during the first wetting stage, the proposed model
yields slightly better predictions than BBM and WM. As stated by
Alonso et al. [11], Eichenberger et al. [52] and Hu et al. [53], the
stress path CD is close to the conditions experienced by the soil
during rainfall-induced slope failures. Thus the satisfactory predic-
tion of the soil response during this stress path increases the po-
tential of the proposed model for practical applications to
geotechnical problems associated with rainfall effects.
end of the simulation. Similar to Test B4, the predicted deviator
stress q and ev do not exactly reach their ultimate values even at
the end of simulations. Nevertheless, the proposed model is able
to capture the shearing behavior of unsaturated soils with complex
loading stages; even the predicted curve is slightly lower than the
observed one at the range of measured q values.

Fig. 15c shows that the void ratio decreased slightly during iso-
tropic loading (AB), with irreversible changes occurring after the
yield point A0. A modest reduction of void ratio occurred during
the first shearing stage (BC) followed by a larger decrease caused
by plastic collapse during the first wetting stage (CD) as shown
in Fig. 15d. Void ratio decreased only slightly during the subse-
quent wetting/drying cycles (DE, EF, and FG). All models capture
relatively well the overall trend of the void ratio evolution. How-
ever, the present model provides better predictions than other
models, especially during stages BC and CD. As shown in
Fig. 15d, the values of void ratio predicted by BBM and WM are
lower than the corresponding experimental values over the entire
wetting–drying stages, resulting also in lower values of void ratio
during subsequent shearing. Recall that the present model uses
experimental values of degree of saturation for simulating the
mechanical response of the soil while the WM predicts degree of
saturation together with mechanical behavior. This might have gi-
ven an advantage to the former model compared to the latter one.

Comparison of tests B6 and B4 indicates that the wetting–dry-
ing cycles have a significant effect on the stress–strain relationship.
During the first wetting stage, plastic collapse produces additional
plastic shear strains and irreversible changes in void ratio. The
stress–strain curve and the variation of void ratio of tests B6 and
B4 tend however to coincide towards the end of shearing revealing
that, as the yield curve continues to expand, the influence of wet-
ting–drying cycles becomes less significant as also stated by
Wheeler et al. [17] for isotropic stress states.



6. Conclusions

A physically based constitutive model for unsaturated soils has
been proposed. The bonding factor f (representing the magnitude
of the inter-particle bonding due to water menisci) and the average
skeleton stress are employed as constitutive variables. These vari-
ables allow consideration of the effects of the average pore fluid
pressure (resulting from pore air and bulk water) and of the in-
ter-particle bonding generated by water menisci. A relationship

posed model, only one surface is used to characterize the yield
condition of the soil, which also means that a smaller number of
model parameters is necessary. Comparisons between simulated
and experimental data suggest that the proposed model is able
to predict reasonably well a variety of important features of the
mechanical behavior of unsaturated soils.
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