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An integrated dynamic model was used to evaluate the influence of climatic, soil, pastoral, economic and mana-
gerial factors on sheet erosion in rangelands of SW Spain (dehesas). This was achieved by means of a variance-
based sensitivity analysis. Topsoil erodibility, climate change and a combined factor related to soil water storage
capacity and the pasture production functionwere the factors which influencedwater erosion themost. Of them,
climate change is the main source of uncertainty, though in this study it caused a reduction in the mean and the
variance of long-term erosion rates. The economic andmanagerial factors showed scant influence on soil erosion,
meaning that it is unlikely to find such influence in the study area for the time being. This is because the low prof-
itability of the livestock business maintains stocking rates at low levels. However, the potential impact of live-
stock, through which economic and managerial factors affect soil erosion, proved to be greater in absolute
value than the impact of climate change. Therefore, if changes in some economic or managerial factors led to
higher stocking rates in the future, significant increases in erosion rates would be expected.
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Table 1
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1. Introduction

Parameters of the model.

Name Definition Range Units

Climate/weather
roppm Surrogate for the capacity of rain to cause

runoff, mean
1–4 cm·cm−1

roppv Surrogate for the capacity of rain to cause
runoff, CV

0.3–1.5 –

scen Climate scenario 0–8 –
somoi Initial soil moisture (=9.7) Not

analysed
cm

Soil
bdpt Topsoil bulk density above which pasture

does not grow
1.7–1.8 gr·cm−3

fcvo Field capacity (volumetric) 0.2–0.42 [0, 1]
sdhp Remaining soil depth at which porosity is

reduced by half
5·10−4 - 5 cm

sodpi Initial remaining soil depth (=23.4) Not
analysed

cm

tseri Initial topsoil erodibility 1·10−6 -
5·10−6

yr·cm−1

tspoi Initial topsoil porosity 0.37–0.59 [0, 1]
wpvo Wilting point (volumetric) 0.05–0.09 [0, 1]
wthr Weathering rate of the parent rock 1·10−3 -

5·10−3
cm·yr−1

Pasture
appt Annual precipitation for pasture yield to

be ptyhi
203–826 mm·yr−1

pppt Minimum annual precipitation for pasture
growth

0–477 mm·yr−1

ptec Pasture energy content 0.4–0.9 FU·kg−1

ptyhi Initial pasture yield per hectare 75–1916 kg·ha−1·yr−1

pyfc Minimum pasture biomass for full ground
cover in a hectare

385–674 kg·ha−1·yr−1

rcpc Parameter relating runoff coefficient to
pasture cover

2.5–4.5 –

srhc Stocking rate causing a 50% area of
temporary bare soil

3.53–6.55 AU·ha−1

Economic
ocos Costs per female other than the cost of

supplemental feed
240–3800 €·AU−1·yr−1

prmtm Price of meat, mean 1.7–2.6 €·kg−1

prmtv Price of meat, CV 0.064–0.11 [0, 1]
prsfm Price of supplemental feed, mean 0.22–0.36 €·kg−1

prsfv Price of supplemental feed, CV 0.09–0.16 d.u.
sinf Secondary income per breeding female 0–330 €·AU−1·yr−1

subh Total subsidies per hectare 51–1450 €·ha−1·yr−1

Managerial
bdfmi Initial number of breeding females 0.25–2.99 AU·ha−1

bfpt % increase in breading females if EGMF
increased by 10%

3.3–7.28 %

bfsr Ratio of breeding females to stocking rate 0.95–0.98 [0, 1]
dtgm Average length of the delay to form EGMF 1–11 yr
mtpf Meat production per breeding female 110–925 kg·AU−1·yr−1

rgmf Reference gross margin per breeding
female

150–1000 €·AU−1·yr−1

sfdfi Initial supplemental feed per breeding
female

6–2940 kg·AU−1·yr−1

sfec Supplemental feed energy content 0.28–1.02 FU·kg−1

tpcf Target pasture consumption per breeding
female

150–450 kg·AU−1·yr−1

Other
seed Random seed 0–3 –
Δ Time step (=0.00390625) Not

analysed
yr
Dehesas is the name given to a common landscape created by the
clearing of forests in central and SW Spain. The poor soils and adverse
rainfall conditions of these areas hardly allow for crops to grow, so
their principal uses are livestock rearing (sheep, cattle, pigs and goats)
and forestry (cork, wood and charcoal). These landscapes cover approx-
imately 90,000 km2 in the south-west of the Iberian Peninsula (Gea-
Izquierdo et al., 2006).

Dehesas are mostly in private ownership (Plieninger et al., 2003).
Traditional uses have formed a landscape pattern of wooded pasture-
lands and scrublands of variable tree densities. The main tree species
are holm oaks (Quercus ilex rotundifolia) and cork oaks (Q. suber).
There are public concerns about the sustainability of this system,
which is highly valuable from a socioeconomic and environmental
point of view (Pulido and Picardo (Coords.), 2010). Thus, for example,
the Spanish National Action Programme to combat Desertification
(MAGRAMA, 2008) includes dehesas on the list of socio-ecological sys-
tems threatened by land degradation.

Among the diverse threats to dehesas, soil degradation plays amajor
role. A survey carried out on a large number of farms in the region of Ex-
tremadura (SWSpain) indicated that approximately 23% of the area suf-
fers from a high risk of soil degradation, while approximately 60% is
prone to degradation processes (Schnabel et al., 2006; Lavado et al.,
2009). Soil erosion, which is a primary sign of soil degradation, is ob-
served as sheet erosion on hillsides and as gullying at the bottom of
small upland valleys (Schnabel, 1997; Schnabel et al., 1999).

Clearly, it is in the interest of the conservation of dehesas to gain in-
sight into the factors that could cause significant changes in erosion
rates in the future. This was the motivation behind the assessment
that is reported here.

A factor of special interest is climate change. It can affect erosion
rates directly, through changes in the erosive power of rainfall, or indi-
rectly, through changes in plant biomass and vegetation cover. The eval-
uation of the potential impact of climate change on erosion has been the
purpose of various modelling studies to date. Examples are Pruski and
Nearing (2002a), Pruski and Nearing (2002b), Nearing et al. (2004),
Mullan (2013), Garbrecht et al. (2014) or Routschek et al. (2014). The
models utilised in these works are detailed process-based models. Spe-
cifically, the first five used the WEPP model (Flanagan and Nearing,
1995) and the last one used EROSION 3D (Schmidt, 1990). In the pres-
ent study, the expected impacts of nine climate scenarios provided by
the Spanish Meteorological Agency on sheet erosion were evaluated.

Other factors of particular interest are the economic andmanagerial
ones. It is commonly believed that overgrazing causes erosion, because
grazing reduces biomass, which protects soil against erosion, and tram-
pling reduces soil porosity, thereby creating patches of bare soil and in-
creasing runoff (Mulholland and Fullen, 1991; Aubault et al., 2015).
Thus, since economic and managerial factors are drivers of grazing in-
tensity, at least in commercial rangelands, they are seen as human-
induced factors in soil erosion. However, there are authors who bring
into question the role of overgrazing as a cause of soil erosion, both in
reference to Mediterranean rangelands (Perevolotsky and Seligman,
1998) and in general terms (Rowntree et al., 2004). It was thought
that the intended assessment might shed some light on this
controversy.

Undertaking a comparative evaluation of the influence of many het-
erogeneous factors on soil erosion in dehesas would require collecting
information about a large amount of variables at different locations
over very long periods of time. Since this is almost unfeasible in practice,
the assessment was carried out by means of a system dynamics model
(Forrester, 1961; Sterman, 2000; Kelly et al., 2013). Themodel was suit-
able for the task because it integrates variables and processes from the
required disciplines and because its parameters constitute the factors
being evaluated (Table 1). In this way, the assessment was provided
via a thorough sensitivity analysis. However, it must be stressed that,
because all model parameters represent meaningful (real) factors, the
sensitivity analysis transcends its standard part of a modelling exercise
and constitutes a method for gaining insight into one important threat
to a valuable socio-ecological system. The originality of this study lies
in its integrated nature, and particularly in its taking economic and
managerial factors into consideration. Indeed, we have found no other
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work evaluating a range of factors affecting soil erosion in rangelands to
be as in-depth as the one assessed here.

This paper is structured as follows. Section 2 is devoted to outline the
model. In Section 3 the procedure followed for the sensitivity analysis is
detailed. The results are presented and discussed in Sections 4 and 5,
and summarized in Section 6.

2. Model overview

Themodel used in this study is an update of that presented in Ibáñez
et al. (2014). In that paper the reader may find a full characterisation of
the model (conceptualisation, appropriateness of the modelling ap-
proach, data availability and validation) and a description of all those
equations that have remained unaltered to date. The changes made
for the present study, along with other details, are justified and de-
scribed in a Supplementary document. The overview given in this
Section is mainly focused on showing the great diversity of factors
whose effects on soil erosion were assessed and on clarifying the causal
relationships involved.

Fig. 1 shows the causal diagramof themodel, and Tables 1 and2 pro-
vide the lists of parameters and equations, respectively. Both tables
should be consultedwhen reading this section. The parameters are clas-
sified into six categories: climate/weather, soil, pasture, economic,man-
agerial and others (Table 1).

2.1. Level of description of the model

The model has an annual time scale and is lumped spatial (Kelly
et al., 2013). The areamodelled is an ideal area of dehesa with homoge-
neous topographical, biophysical and managerial characteristics. This
area is positioned on the top of a hillside, so that it does not receive
flows of material from upper areas. In this study, the area was assumed
to be one hectare for the sake of simplicity.

Because of the annual time scale of themodel, short-term processes,
i.e. those determining soil moisture (Fig. 1), evolve over the time steps
of the model, whose size was fixed at 0.00390625 yr (around 1.43
days). A justification for this number is given in the Supplementary
document.

With the above-mentioned temporal and spatial scales, the model
could only make a high-level description of the dehesa system. This
was convenient because it permitted the building of an integrated dy-
namic model on the basis of a relatively small amount of data, and
with dimensions that made it possible to perform an effective, though
computationally costly, sensitivity analysis, which was the main goal
of this study.
Fig. 1. Causal diagram of themodel. Arrows go from explanatory to response variables. A plus/m
negatively.
A high-level description entails a loss of precision, but in compensa-
tion, and in accordance with Levins (1966), extreme attention was paid
to build a model whichmaximizes generality and realism. This must be
stressed. On the one hand, because on these two features rests the ca-
pacity of the model to provide insight into dehesas, even though it ne-
glects processes that are relevant at a lower-level description. On the
other, because maximizing generality and realism requires building a
robust model, and this was necessary to prevent any simulation in the
sensitivity analysis from crashing. The latter was successfully achieved:
none of the 245,300 simulations crashed, even thoughmost parameters
varied within wide ranges.

2.2. Influence of climate/weather parameters on soil erosion within the
model

Parameters roppm and roppv are, respectively, the mean and coeffi-
cient of variation (CV) of ROPP (Eq. (1); Fig. 1). This is a gamma random
variable which serves as a surrogate for the overall capacity of rainfall to
cause runoff during a time step, i.e. it reflects the variability of factors
such as rainfall intensity during storms, duration of storms or rainfall
distribution. Thus, roppm and roppv are positively related to the mean
and variance of the runoff coefficient over time steps, respectively.
Through this variable both parameters are involved in determining
the rates of infiltration and surface runoff (Eqs. (8), (9) and (10) and
Supplementary document). And the square of surface runoff is a factor
in the equation of erosion rate (Eq. (20)), in line with the erosion
models found in Kirkby (1971), Morgan (1980; 1995), Band (1985) or
Thornes (1990).

The parameter ‘climate scenario’ (scen) is used to specify what the
climate scenario is for a given simulation. There are nine possible pre-
set climate scenarios to be chosen. Table 3 shows statistics on them
and the value of scen for each one. One climate scenario consists of
three time-series data on precipitation, reference evapotranspiration
(ETo) and annual precipitation (Table 2). The size of these time series
matches the number of time steps in 90 years (annual precipitation
takes the same value over the time steps of a given year).

The climate scenarios were derived from nine preliminary datasets
that were taken from the collection of local-scale projections available
in the repository of the Spanish Meteorological Agency (http://
escenarios.aemet.es). Preliminary datasets included daily data on pre-
cipitation and temperature corresponding to the cities of Cáceres and
Badajoz (Extremadura, SW Spain) and covering the period 2011–
2100. One dataset included time series recreating the control period
from 1961 to 1990, so that it formed the basis for our no-change climate
scenario (scen = 0). The other eight included climate-change
inus sign indicates that the two variables involved in the relationship correlate positively/

http://escenarios.aemet.es
http://escenarios.aemet.es


Table 2
Model variables and equationsa.

Precipitation [cm·Δ−1]
PCPT: Its scenario is fixed by the parameter scen (Table 3)
Annual precipitation [mm·yr−1]
ANPP: Its scenario is fixed by the parameter scen (Table 3)
Reference evapotranspiration [cm·Δ−1]
RFET: Its scenario is fixed by the parameter scen (Table 3)
Surrogate for the capacity of rain to cause runoff [cm·cm−1]
ROPP = GAMMA{roppm; roppv} (1)
Price of meat [€·kg−1]
PRMT= b if t = INTEGER{t} then NORMAL{prmtm; prmtv} else PRMT(t− Δ) (2)
Price of supplemental feed [€·kg−1]
PRSF = b if t = INTEGER{t} then NORMAL{prsfm; prsfv} else PRSF(t − Δ) (3)
Soil moisture [cm]
SOMO(t + Δ) = SOMO + Δ × (IFTR − SODR − ACET) (4)
SOMO(0) = somoi (5)
Actual evapotranspiration [cm·yr−1]
ACET = MIN{RFET; IFTR + (SOMO − SMWP)}/Δ (6)
Soil drainage [cm·yr−1]
SODR = MAX{0; SOMO − SMFC} (7)
Minimum runoff coefficient [cm·cm−1]
MROC = MIN{1; ROPP} × EXP{−rcpc × GRCV} (8)
Infiltration [cm·yr−1]
IFTR = MIN{(1 − MROC) × PCPT; SMST − SOMO}/Δ (9)
Surface runoff [cm·yr−1]
SFRO = PCPT/Δ − IFTR (10)
Remaining soil depth [cm]
SODP(t + Δ) = SODP + Δ × (wthrf − ERRT) (11)
SODP(0) = sodpi (12)
Topsoil porosity [d.u.]
TSPO = (2) tspoi × PODF (13)
Soil porosity distribution factor [cm2·cm−2]
PODF = (2) SODP × (α + sodpi)/[sodpi × (α + SODP)] (14)
α = 0.5 × sodpi × sdhp/(0.5 × sodpi − sdhp) (15)
Topsoil bulk density [gr·cm−3]
TSBD = 2.65 × (1 − TSPO) (16)
Soil moisture at saturation [cm]
SMST = d tspoi × (α + sodpi) × [SODP + α × LN{α/(α + SODP)}] / sodpi (17)
Soil moisture at field capacity [cm]
SMFC = fcvo × SMST/tspoi (18)
Soil moisture at wilting point [cm]
SMWP = wpvo × SMST/tspoi (19)
Erosion rate [cm·yr−1]
ERRT = c,e tseri × PODF × SFRO2 (20)
Permanent bare soil area [ha·ha−1]
PBSA = MIN{1; INTEGER{TSBD/bdpt} (21)
Potential area for pasture growth [ha·ha−1]
PPTA = 1 − PBSA (22)
Actual area for pasture growth [ha·ha−1]
APTA = PPTA × srhc/(srhc + BDFM/bfsr) (23)
Pasture yield in a hectare without bare soil (where APTA= 1) [kg·ha−1·yr−1]
PTYH = ptyhi × MAX{0; ANPP – pppt}/(appt − pppt) (24)
Actual pasture yield (in APTA) [kg·ha−1·yr−1]
PTYD = APTA × PTYH (25)
Annual representative ground cover [ha·ha−1]
GRCV = MIN{APTA; (PTYD – PTCF × BDFM/bfsr)/pyfc} (26)
Pasture consumption per breeding female [kg·AU−1·yr−1]
PTCF = MIN{tpcf; bfsr × PTYD/BDFM} (27)
Energy intake per breeding female [FU·AU−1·yr−1]
EINF = sfec × sfdfi + ptec × tpcf (28)
Supplemental feed per breeding female [kg·AU−1·yr−1]
SFDF = (EINF − PTCF × ptec)/sfec (29)
Gross margin per breeding female [€·AU−1·yr−1]
GMGF = PRMT × mtpf + sinf + subh/BDFM – PRSF × SFDF − ocos (30)
Expected gross margin per breading female [€·AU−1·yr−1]
EGMF(t + Δ) = EGMF + Δ × [GMGF − EGMF]/dtgm (31)
EGMF(0) = rgmf (32)
Number of breeding females [AU·ha−1]
BDFM = bdfmi × [MAX{0; EGMF}/rgmf]ρ (33)
ρ = LN{1 + bfpt/100}/LN{1.1} (34)

a The symbol (t),meaning at time t, is omitted exceptwhen variables refer to t+Δ, t–Δ
and t = 0.

b INTEGER returns the largest integer smaller than or equal to its argument.
c Note that PODF = 1 when SODP= sodpi.
d Definite integral of TSPO between 0 and SODP, with the boundary condition

SODP(0) = 0.
e Substituting Eq. (13) into Eq. (16) and solving for PODF gives PODF= (2.65− TSBD) /

(2.65 − TSBD(0)).

Table 3
Statistics on the climate scenarios evaluated in this work. The scenario to be used in a sim-
ulation is fixed through the parameter scen. DP = Average daily precipitation; RDY =
Average number of rainy days per year; PRD = Average precipitation per rainy day;
AAP=Average annual precipitation; DP95 and DP99=95th and 99th percentiles of daily
precipitation, respectively; DET = Average daily ETo.

Scenario scen DP RDY PRD AAP DP95 DP99 DET

No-change 0 1.41 91.37 5.63 514.68 9.3 23.9 2.7
CGCM2_FIC_A2 1 1.1 77.13 5.21 401.98 7 18.5 2.9
CGCM2_FIC_B2 2 1.17 79.32 5.39 427.83 7.5 19.5 2.81
CGCM2_INM_A2 3 1.42 156.52 3.3 517.19 8 14 2.87
CGCM2_INM_B2 4 1.48 159.61 3.37 538.39 8.5 14 2.78
ECHM4_FIC_A2 5 0.88 61.99 5.18 321.19 6 17.5 3.29
ECHM4_FIC_B2 6 0.91 64.67 5.14 332.23 6 17.5 3.22
ECHM4_INM_A2 7 0.75 112.41 2.42 272.25 4.5 10.5 3.44
ECHM4_INM_B2 8 0.84 120.66 2.54 306.77 5 11 3.35
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projections corresponding to two Coupled Atmosphere–Ocean General
Circulation Models (CGCM2 and ECHAM4), two downscaling methods
(AnalogINM and AnalogFIC) and two emissions scenarios (A2 and B2).
They formed the basis for the eight climate-change scenarios used in
the study (scen = 1 to 8). See the Supplementary document for details
on the preliminary datasets and how they were adapted to serve as in-
puts to the model.

Table 3 shows that the climate-change scenarios considered in this
work predict higher evapotranspiration rates and rainfall decreases,
both in intensity per rainy day and in the frequency of extreme events.
On the one hand, higher evapotranspiration rates and lower rainfall
amounts imply a drier soil, and thus less runoff. On the other, a drier
soil entails less pasture biomass, and thus more runoff. Hence the im-
pacts of the climate scenarios on erosion were unclear before carrying
out this study.

The parameter ‘initial soil moisture’ (somoi) can hardly affect ero-
sion in the long term, so it was not included in the sensitivity analysis.

2.3. Influence of soil parameters on soil erosion within the model

The parameter ‘initial topsoil erodibility’ (tseri) has a direct positive
influence on erosion rate because it is a constant factor in its equation
(Eq. (20)). As soil is lost by erosion, topsoil porosity gets lower (topsoil
bulk density gets higher) so that topsoil erodibility decreases from its
initial value. If soil runs out, porosity becomes zero (bulk density be-
comes 2.65 g·cm−3) and topsoil erodibility falls to zero. In thisway ero-
sion drives a negative feedback loop in the long term involving soil
depth (Fig. 1). The specific course of the decline in topsoil erodibility is
determined by the factor PODF (Eq. (20)). The parameter ‘remaining
soil depth at which porosity is reduced by half’ (sdhp) specifies the
shape of PODF, i.e. the distribution of porosity over the soil profile
(Eq. (13)–(15)), and thus whether the decline in topsoil erodibility
will happen rather abruptly when only a relatively small amount of
soil is left (sdph low) or be more evenly distributed over time (sdph
high).

Soil moisture at saturation, i.e. soil water storage capacity, equals the
total pore space in the soil at a given time step (Eq. (17)). The difference
between such a volume and the level of soil moisture determines the
potential rate of infiltration at the time step (Eq. (9)). Therefore, as
soil is lost through erosion and soil water storage capacity diminishes,
surface runoff and thus erosion rates increase on average. Hence, in
this case, erosion drives a self-accelerating positive feedback loop in
the long term (Fig. 1). Its consequences will be deferred if parameters
‘initial topsoil porosity’ (tspoi) or ‘initial remainig soil depth’ (sodpi)
take high values, or if the parameter sdhp (see above) takes a low
value. This is because of the sign of their relationships with soil water
storage capacity: positive for the first two and negative for the third one.

The parameter ‘field capacity’ (fcvo) is involved in determining soil
drainage (Eqs. (7) and (18)) and the parameter ‘wilting point’ (wpvo)
in determining actual evapotranspiration (Eqs. (6) and (19)). Through
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these variables they influence soil moisture over time (Eqs. (4)–(5))
and thus infiltration rates, surface runoff and, eventually, erosion rates.

As already explained, topsoil bulk density (Eq. (16)) increases as
erosion removes layers of soil. If topsoil bulk density exceeded the
value of the parameter ‘topsoil bulk density above which pasture does
not grow’ (bdpt) the whole area modelled would become permanent
bare soil (Eq. (21) and Supplementary document). If this were the
case, the potential area for pasture growth would drop to zero
(Eq. (22)). This would cause erosion rates to rise on average, since
ground cover limits surface runoff (Eq. (8)). In this way, erosion might
drive a second self-accelerating positive feedback loop in the long
term (Fig. 1).

The parameter ‘weathering rate of the parent rock’ (wthr) is the rate
of soil formation (Eq. (11)). It does not affect erosion rate but counter-
balances it to a certain extent.

Finally, the parameter ‘initial remaining soil depth’ (sodpi)
(Eq. (12)) was excluded from the sensitivity analysis to allow the
amounts of soil lost in all the simulations to be compared in absolute
terms. It was fixed at 23.4 cm, the average soil depth over the available
field data.

2.4. Influence of pasture parameters on soil erosion within the model

The parameter ‘stocking rate causing a 50% area of temporary bare
soil’ (srhc) reflects the capacity of pasture species to resist livestock
trampling. The larger its value, the smaller the area of temporary bare
soil caused by a given stocking rate in one year, or, conversely, the larger
the area for pasture growth (Eq. (23) and Supplementary document).

Pasture yield (in the area for pasture growth) linearly depends on
annual precipitation as long as it exceeds aminimum threshold amount
(Sullivan and Rohde, 2002) (Eqs. (24)–(25)). This pasture production
function is expressed in terms of meaningful parameters that depends
on pasture characteristics, namely ‘initial pasture yield per hectare’
(ptyhi), ‘annual precipitation for pasture yield to be ptyhi’ (appt) and
‘minimum annual precipitation for pasture growth’ (pppt).

The amount of pasture being left at the end of the dry period of a
given year, when ground cover is at its minimum, is used as the ‘annual
representative ground cover’ (GRCV) (Eq. (26) and Supplementary doc-
ument). Therefore, this variable depends on the area of bare soil (and
thus on bdpt and shrc), on pasture yield (and thus on ptyhi, appt and
pppt) and on the parameters affecting livestock consumption of pas-
ture, which will be explained later. Following Elwell and Stocking
(1976), GRCV limits surface runoff, and thus erosion rates, by means
of an exponential function involving parameter rcpc (‘Parameter relat-
ing runoff coefficient to pasture cover’) (Eq. (8)). The larger its value,
the more the soil is protected from erosion by a given level of ground
cover.

The parameter ‘minimum pasture biomass for full ground cover in a
hectare’ (pyfc) allows for the converting of amounts of pasture biomass
into ground cover. The larger its value, the larger the amount of biomass
needed for ground cover to be 1 (100%) in a whole hectare.

The parameter ‘pasture energy content’ (ptec) will be explained in
the next Section.

2.5. Influence of economic, managerial and other parameters on soil erosion
within the model

In brief, all the economic and managerial (EM) parameters, except
‘target pasture consumption per breeding female’ (tpcf), influence soil
erosion by means of the stocking rate and ground cover. Indeed, such
parameters ultimately govern the evolution of stocking rate over time
which, as already explained, affects ground cover through pasture con-
sumption and the formation of temporary bare soil. Parameter tpcf,
which depends on farming practices, i.e. on the amount of time that an-
imals are allowed to graze, also affects ground cover, but not through
stocking rate (Eqs. (26)–(27)).
Going into some detail, since the model represents a commercial
rangeland, stocking rate depends on expected profitability, which is
measured by the expected annual gross margin per breeding female
(Eq. (30) to (34); see Ibáñez et al. (2014) for details on how farmer's ex-
pectations are modelled and how they relate to stocking rate). There-
fore, it is by means of the annual gross margin per breeding female
(GMGF) (Eq. (30)) that most of the EM parameters drive the stocking
rate.

Thus, all the economic parameters and the parameter ‘meat produc-
tion per breeding female’ (mtpf) affect GMGF directly. The latter has
been classified asmanagerial because it depends on a farmer's decisions
regarding the breeds of livestock and slaughter weights. Parameters
‘initial supplemental feed per breeding female’ (sfdfi), ‘supplemental
feed energy content’ (sfec) and tpcf (see above), which also depend
on a farmer's decisions, and the parameter ‘pasture energy content’
(ptec), which is a pasture parameter whose explanation was deferred,
affect GMGF by determining the target energy intake and the amount
of supplemental feed supplied per animal (Eqs. (28)–(29)).

In years when pasture is scarce, so that livestock cannot attain the
target pasture consumption, animal production is maintained by in-
creasing supplemental feed, and thus by reducing GMGF. In this way,
the stocking rate can be involved in a self-regulating negative feedback
loop (Fig. 1). However, the speed atwhich such a regulation ismade de-
pends on the farmer's behaviour, specifically on how fast he/she per-
ceives changes in profit conditions and how reactive his/her stocking
strategy is (Anderies et al., 2002; Higgins et al., 2007). Thesemanagerial
factors are represented, respectively, by parameters ‘average length of
the delay to form expectations about gross margins’ (dtgm) and ‘per-
centage increase in breading females if the expected gross margin per
breeding female increased by10%’ (bfpt). Note that a conservative farm-
er following a constant stocking strategy has a high value of dtgm and a
low value of bfpt. For this farmer, the mentioned self-regulating feed-
back loop hardly applies.

Within the group of other parameters, the parameter ‘random seed’
(seed) serves to change the values generated for the three stochastic
variables of themodel. These are ROPP (Section 2.2) and the average an-
nual prices of meat and supplemental feed, which are randomly sam-
pled from normal distributions each year (Eqs. (2)–(3)). The means
(prmtm and prsfm) and CVs (prmtv and prsfv) of such distributions
are in the group of economic parameters.

3. Sensitivity analysis

There are many available sensitivity analysis (SA) methods. Saltelli
et al. (2008) and Gan et al. (2014) provide comprehensive surveys of
them. These methods can be classified into two broad categories: local
and global. A local SA evaluates the changes in an output Y by varying
an input Xi while keeping constant the other inputs. Therefore, a local
SA is only informative at a single nominal point in the parameter
space, unless the model is linear or additive. On the contrary, a global
SA estimates the effect of Xi on Y by varying all inputs at the same
time. An SA of this kind leads to robust estimates, since it is based on in-
formation gathered from a number of points scattered over the whole
parameter space, and is model-free, since it does not rely on the as-
sumptions of linearity and additivity. As a drawback, a global SA is com-
putationally more expensive than a local SA, meaning that it requires a
much greater number of model simulations.

Variance-based methods are the most common global SA. They are
based on a decomposition of the variance of the output, V(Y), into
terms corresponding to the different inputs and their interactions
(Sobol, 2001; Cariboni et al., 2007; Saltelli et al., 2008; Saltelli and
Annoni, 2010; Glen and Isaacs, 2012; Gan et al., 2014). A first order sen-
sitivity index is defined as:

Si = V(E[Y/Xi]) / V(Y).
where Xi is the i-th input (i= 1, 2,..., k). Si measures the expected re-

duction in V(Y) if Xi were fixed; hence a large value is evidence of an
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important input. First order sensitivity indices are the appropriate mea-
sures when the aim of an SA is factor prioritization, as it is in this case..

The contributions to V(Y) of the interactions between factors are
captured by higher-order sensitivity indices. However, the number of
interactions increases exponentially with the number of factors so,
when this is large, only the first order sensitivity indices are usually es-
timated. For example, in the present case where k = 34 (Table 1), only
the second order effects amount to 1122.

The total sensitivity index is defined as:
STi = E(V[Y/X~i]) / V(Y).
where X~i denotes all factors except Xi. STi measures the expected

portion of V(Y) that would remain if all factors but Xi were fixed.
Thus, the total sensitivity index measures the total contribution to
V(Y) due to Xi, including its first-order effect plus all higher-order ef-
fects due to interactions. Hence a very small value of STi is evidence of
a non-influential factor that could be fixed at any value within its
range of variation without influencing the output Y. Total sensitivity in-
dices are the appropriate measures when the aim of an SA is factor fix-
ing or model simplification.

Due to their computational cost, variance-based methods may be
unfeasible for models with many parameters or taking a long time to
run. Themodel used in this study only takes 2–3 s per run but 34 param-
eters is a rather large number to perform a variance-based method. For
example, Cariboni et al. (2007) and Saltelli et al. (2008) advise that k
should be less than 20. Therefore, a preliminary parameter screening
was carried out with the aim of detecting non-influential factors that
could be omitted from a variance-based analysis. The Elementary Effect
(EE) method (Morris, 1991) was followed for this initial screening. This
method is effective in caseswhere the number of parametersmoderate-
ly exceeds that allowing the use of a variance-based technique
(Campolongo et al., 2007; Cariboni et al., 2007; Saltelli et al., 2008).

Suppose initially that all inputs Xi (i = 1,..., k) are uniformly distrib-
uted over [0, 1]. This range of variation is discretised in p levels so that
each Xi can only take values from {0, 1/(p− 1), 2/(p− 1),..., 1}. The el-
ementary effect of Xi on output Y is defined as:.

EEi = Y(X1, ..., Xi + δ, ..., Xk) - Y(X1, ..., Xi, ..., Xk) / δ.
where δ is a predeterminedmultiple of 1/(p− 1), normally p/2(p−

1) if p is even. In brief, Morris's method exploits a total of r(k + 1) sim-
ulations to obtain a sample of r values of every EEi and then calculate its
sample mean μi and standard deviation σi. The former evaluates the
overall influence of Xi on Y and the latter, the extent to which Xi is in-
volved in interactions and/or has non-linear effects. Campolongo et al.
(2007) explain that μi is vulnerable to Type II errors, i.e. failing to detect
an influential factor, and they propose replacing it with the sample
mean of the absolute values of EEi, called μi⁎, which solves the problem.
In addition, these authors show that μi⁎ is a good proxy for the total sen-
sitivity index STi. For this reason, μi⁎ was used to detect non-influential
parameters in the model..

The sampling of the r values of EEi requires generating r random
starting points in the input space ω (a k-dimensional p-level grid),
and then deriving r trajectories from them. The details can be seen in
Morris (1991). This author proposes obtaining each starting point by
simple random sampling. In this study, Latin Hypercube Sampling
(LHS) was preferred since it allows the sample points to be spread
more evenly over ω. Campolongo et al. (2007) propose a sampling
method that also ensures a good scanning of ω, but it requires many
computations. Moreover, these authors show the advantage of their
method over random sampling but not over LHS.

Although no theoretical assumption of independence between fac-
tors is made in the EE method, sampling independently the r points in
ωwhen the factors are not independent, i.e. without taking into account
their joint distribution, leads to the calculation of some elementary ef-
fects at points that are unlikely in reality. However, this does not seem
to be a major problem if the method is exclusively aimed at detecting
non-influential factors, as it is in this study. Indeed, a factor is non-
influential if it proves to be so after evaluating likely and unlikely points
in ω. Therefore, the question of the independence between factors was
neglected in the preliminary screening.

The output Y in this analysis was the remaining soil depth after a
lapse of 90 years, hereafter SODP90. Also, p equalled 4, as recommended
by Saltelli et al. (2008), and r equalled 50, which is the maximum of its
typical range (Campolongo et al., 2007). The parameter scen was ex-
cluded. Estimating the sensitivity of soil erosion to possible future cli-
mate scenarios is one of the concerns of this work so scen would
never be omitted from the variance-based procedure. Instead, the EE
method was applied to each climate scenario so 15,300 simulations
were run in total (1700 simulations per value of scen).

Parameter values were assumed to be uniformly distributed over
their ranges of variation. Thus, any value initially sampled within [0,
1], Xi[0,1], was transformed into a value of the factor Xi, with range of var-
iation [mi, Mi], by making:

Xi = mi + (Mi − mi) × Xi[0,1].
Ranges of variation, which are shown in Table 1, reflect the uncer-

tainty about the factors existing in the study area (see the Supplemen-
tary document for details).

Table 4 shows the results of the application of the EEmethod. Initial-
ly, the criterion for omitting a parameter from the variance-based pro-
cedure was it having an average value of μi⁎ (last column) less than 1%
of the largest one, which was 2.5271 (parameter tseri). However, it
was decided to retain parameter srhc (stocking rate causing a 50%
area of temporary bare soil) because its average value of μi⁎ (0.0241)
was very close to the limit. The seven omitted parameters (in bold in
Table 4) were fixed at the values used in the original model (see
Ibáñez et al., 2014, for the sources of data).

27 parameters remained, which is still a rather large number for a
variance-based method, in accordance with Cariboni et al. (2007) and
Saltelli et al. (2008). The next step in the SA was to check whether this
reduced set of parameters included correlated factors. When this is
the case, the estimation of sensitivity indices requires the following of
special procedures (Saltelli and Tarantola, 2002; Jacques et al., 2006;
Saltelli et al., 2008; Da Veiga et al., 2009).

Although the necessary data to quantify correlations was lacking, it
is likely that there are only two groups of correlated factors in the set
of 27 parameters. The first one includes the six parameters related to
soil water storage capacity and the pasture production function (tspoi,
fcvo, wpvo, appt, pppt and ptyhi). The existence of correlations within
this group has been widely reported (e.g. Greenwood and McKenzie,
2001; Whalley et al., 2008; Glab, 2013). The second group includes the
two parameters characterising the farmer's responsivenesswhen facing
economic changes (dtgm and bfpt) (Section 2.5). Although we do not
know of any study addressing this issue, it can be assumed that these
parameters would be negatively correlated in both conservative and re-
sponsive farmers.

Given that the correlated factors of themodel could be split into un-
correlated groups of factors, it was possible to follow the simple proce-
dure proposed by Jacques et al. (2006) that consists in estimating
combined sensitivity indices for these groups, thereby neglecting the es-
timation of the impact of every single factor within them. For this pur-
pose, two multidimensional factors were defined: the soil-water-
storage-capacity-pasture-production factor (wspt), which condenses
the first group of parameters, and the farmer-behaviour factor (frbh),
which condenses the secondone. As a result, there remained k=21 fac-
tors (19 one-dimensional and 2 multidimensional) that could be con-
sidered uncorrelated.

Glen and Isaacs (2012) compare 12 pairs of estimators of Si and STi
for accuracy and precision using the G function (Sobol, 2001) as a
model. Half of the estimators require N(k + 2) model simulations and
the other half require N(2 k + 2), where N is the sample size. The pair
of estimators labelled as B3 by these authors was used to estimate Si
and STi in this study. Such pair of estimators is one of the two pairs
that reached the best performance among those requiring N(k + 2)
model simulations. See Glen and Isaacs (2012) for details. Output Y



Table 4
μ⁎ values obtained in the Elementary Effects method for each value of the parameter scen (climate scenario). In bold, the 7 parameters omitted from the variance-based procedure.

scen 0 1 2 3 4 5 6 7 8 Mean

seed 0.0789 0.0412 0.0647 0.0222 0.026 0.0367 0.0505 0.0513 0.028 0.0444
roppm 0.7231 0.5514 0.6514 0.3597 0.4554 0.6141 0.6864 0.3254 0.4566 0.5359
roppv 1.0006 0.9075 0.7559 0.5997 0.6504 0.8354 0.8528 0.3976 0.5025 0.7225
bdpt 0.0507 0.0192 0.0029 0.0021 0.0064 0.0013 0.0031 0.001 0.0025 0.0099
fcvo 0.0595 0.0306 0.032 0.0509 0.0554 0.0043 0.0069 0.0052 0.0062 0.0279
sdhp 0.3022 0.1356 0.1426 0.1162 0.135 0.0644 0.0674 0.0329 0.039 0.115
tseri 4.2248 2.9496 3.3461 2.6285 2.6304 2.2256 2.4087 1.0941 1.2358 2.5271
tspoi 0.3007 0.2479 0.2659 0.229 0.2344 0.0705 0.068 0.0441 0.0564 0.1685
wpvo 0.0578 0.0412 0.0382 0.0331 0.0425 0.0102 0.0127 0.0107 0.0087 0.0283
wthr 0.3714 0.3684 0.3629 0.3595 0.3625 0.3673 0.3674 0.3583 0.366 0.3649
appt 1.2235 0.504 0.9551 0.8542 0.4561 0.5465 0.5764 0.2687 0.2458 0.6256
pppt 1.257 1.395 0.9622 0.8536 0.8015 1.7956 1.7838 0.8891 0.6055 1.1493
ptec 0.0028 0.0014 0.0011 0.0035 0.0095 0.001 0.0005 0.003 0.0022 0.0028
ptyhi 1.7288 0.4279 0.9052 0.5638 0.7168 1.0875 0.5865 0.4827 0.4377 0.7708
pyfc 0.1397 0.0629 0.0337 0.049 0.0372 0.0833 0.1137 0.0352 0.0593 0.0682
rcpc 0.6296 0.1403 0.1328 0.1492 0.1184 0.1877 0.1464 0.0875 0.0632 0.1839
srhc 0.0676 0.0176 0.0249 0.0336 0.0235 0.0253 0.0098 0.0037 0.0109 0.0241
bdfmi 0.7715 0.2729 0.1706 0.2231 0.2219 0.1152 0.153 0.0788 0.155 0.2402
bfpt 0.0835 0.0445 0.0248 0.0566 0.0658 0.0325 0.0192 0.0136 0.0103 0.039
bfsr 0.006 0.0013 0.008 0.0032 0.0118 0.0118 0.0329 0.0034 0.0023 0.009
dtgm 0.1846 0.1322 0.0625 0.0141 0.0457 0.0733 0.0564 0.0678 0.0422 0.0754
mtpf 0.5902 0.2833 0.1479 0.3409 0.1538 0.2718 0.2174 0.086 0.1405 0.248
rgmf 0.1012 0.0437 0.1125 0.1258 0.127 0.1562 0.0523 0.043 0.0419 0.0893
sfdfi 0.0751 0.0851 0.0629 0.132 0.066 0.1332 0.0785 0.0187 0.0841 0.0817
sfec 0.0772 0.0021 0.0073 0.0601 0.0027 0.0068 0.0364 0.009 0.0011 0.0225
tpcf 0.1086 0.1031 0.1742 0.0365 0.0594 0.0443 0.0388 0.1223 0.05 0.0819
ocos 0.854 0.5212 0.4831 0.3964 0.4019 0.3298 0.3757 0.211 0.1781 0.4168
prmtm 0.0884 0.0136 0.0424 0.0598 0.0379 0.0603 0.0927 0.0598 0.0231 0.0531
prmtv 0.0126 0.0086 0.0013 0.0015 0.0051 0.0022 0.0031 0.0027 0.0131 0.0056
prsfm 0.0104 0.0214 0.0055 0.0109 0.0801 0.0213 0.0243 0.0121 0.0098 0.0217
prsfv 0.0003 0.004 0.0036 0.0034 0.007 0.0006 0.0283 0.0172 0.0003 0.0072
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again was the variable SODP90. LHS was applied and N was fixed at
10,000, hence a total of 230,000 simulations were run. The estimates
of Si and STi can be seen in Table 5 along with other statistics (see
below).
4. The three leading parameters affecting sheet erosion in dehesas

The boxplot of the 230,000 values of SODP90 obtained for the
variance-based SA (VBSA) can be seen at the rightmost part of Fig. 2.
Table 5
Results of the variance-based sensitivity analysis. Si and STi=Estimates; SBCI=Size of the
95% CI; LCBD=95% Lower confidence bound of the difference between couples of consec-
utive indices; LCBI =95% Lower confidence bound of STi. All CIs were calculated with the
bootstrap percentile method (1000 resamples).

Si [SBCI] LCBD STi [SBCI] LCBI LCBD

tseri 0.248 [0.033] 0.006 wspt 0.391 [0.059] 0.361 −0.003
wspt 0.217 [0.039] −0.023 scen 0.361 [0.061] 0.329 −0.020
scen 0.214 [0.036] 0.169 tseri 0.347 [0.078] 0.307 0.231
ocos 0.024 [0.018] −0.008 ocos 0.089 [0.095] 0.041 0.031
roppv 0.021 [0.012] 0.004 roppv 0.041 [0.098] −0.008 −0.006
roppm 0.011 [0.009] 0.000 mtpf 0.034 [0.098] −0.015 −0.006
wthr 0.006 [0.005] −0.005 bdfmi 0.028 [0.094] −0.020 −0.010
mtpf 0.005 [0.010] −0.007 roppm 0.026 [0.097] −0.023 −0.004
bdfmi 0.005 [0.011] −0.005 subh 0.021 [0.097] −0.028 0.002
subh 0.004 [0.008] −0.004 sfdfi 0.011 [0.098] −0.038 −0.004
rcpc 0.003 [0.005] −0.003 tpcf 0.009 [0.098] −0.041 −0.005
sfdfi 0.002 [0.006] −0.004 rgmf 0.008 [0.097] −0.040 −0.004
rgmf 0.002 [0.006] −0.004 rcpc 0.007 [0.099] −0.043 −0.004
tpcf 0.001 [0.005] −0.003 frbh 0.007 [0.097] −0.042 −0.004
frbh 0.001 [0.005] −0.003 wthr 0.007 [0.099] −0.043 −0.002
pyfc 0.001 [0.003] −0.002 prmtm 0.005 [0.097] −0.044 0.000
prmtm 0.001 [0.005] −0.002 sinf 0.002 [0.098] −0.047 −0.002
sinf 0.000 [0.003] −0.001 pyfc 0.002 [0.098] −0.048 −0.002
srhc 0.000 [0.002] −0.001 sdhp 0.002 [0.097] −0.048 −0.001
seed −0.001 [0.002] −0.001 seed 0.001 [0.097] −0.049 −0.002
sdhp −0.001 [0.003] – srhc 0.001 [0.097] −0.048 −0.003
Given that the initial soil depth was the same in all simulations
(23.4 cm), we will alternatively refer to the accumulated loss of soil
over 90 years (in cm), namely ACLS90 = 23.4 – SODP90. Thus, ACLS90
ranged between −0.38 cm (a 1.6% gain of soil depth) and 9.93 cm (a
42.4% loss) over the VBSA simulations. The median was 1.23 cm (a
5.26% loss) and the sample mean 1.52 cm (a 6.5% loss). Hence ACLS90
showed a right-skewed distribution (and SODP90 a left-skewed one).
It is noted that soil horizon A, the most productive one, has an average
depth of 10 cm in the available field data.

As already explained, the purpose of the VBSAwas decomposing the
variance of SODP90 or ACLS90 (which is the same) into terms corre-
sponding to the different factors and their interactions. The estimates
of Si (Table 5) show that only three factors account for 68% of such a var-
iance. They are topsoil erodibility (tseri; 24.8%), the multidimensional
Fig. 2. Boxplot of the remaining soil depth after 90 years (SODP90) vs. climate scenario
(scen) resulting from the 230,000 simulations of the variance-based SA. The boxplot at
the rightmost part of the figure corresponds to the marginal distribution of SODP90. The
initial soil depth was 23.4 cm in all simulations.



Fig. 3. Three instances of the influence of an economic or managerial factor (Xi) on the re-
maining soil depth after 90 years (SODP90) when all factors except Xi are fixed (X~i).
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soil-water-storage-capacity-pasture-production factor (wspt; 21.7%)
and climate scenario (scen; 21.4%). The percentage of the fourth param-
eter in order of importance decreases substantially (ocos; 2.4%). If STi
values are considered, the same group of three leading parameters is
prominent, though they seem to be arranged differently. Also, it turns
out that STi N Si in all cases, so factors are involved in interactions. This
was expected, since the model is nonlinear and nonadditive.

The bootstrap percentilemethod (1000 resamples) (e.g. Hersterberg
et al., 2003) was used to estimate CIs for the sensitivity indices and to
check whether their places in the rankings were statistically significant.
Table 5 shows the sizes of such intervals in brackets. Theywere less than
18% of the respective estimates of Si, and less than 23% of those of STi, for
the three leading parameters.

The 95% lower confidence bounds of the differences between cou-
ples of consecutive indices (LCBD) were also obtained, again using the
bootstrap percentile method; they can be seen in Table 5. These statis-
tics allow for checking in which cases the place of a factor in a ranking
is statistically significant. For example, the first place of tseri in the Si
ranking is statistically significant because the corresponding LCBD
value (CI of the difference between the Si values of tseri and wspt) is
positive (0.006). However, the positions of wspt and scen in the same
ranking remain uncertain since the corresponding LCBD value is nega-
tive (−0.023). Thus, now it can be seen that despite the three leading
parameters are sorted differently in both rankings, their relative posi-
tions are uncertain in most cases. Nevertheless, the top position of the
whole group of leading parameters is statistically significant in both
rankings.

Finally, Table 5 includes the 95% lower confidence bounds of all the
STi values (LCBI). They are positive only for wspt, scen, tseri and ocos,
meaning that only for these factors the hypothesis of no influence on
SODP90 or ACLS90 is rejected. However, the significance of ocos, whose
LCBI value is only 0.04, ismuch less than those of the other three param-
eters, whose LCBI values are 0.36, 0.33 and 0.31, respectively.

Although the values of the sensitivity indices of the leading parame-
ters are relatively similar, the uncertainty about soil erosion added by
each of them is different. Topsoil erodibility (tseri) and soil water stor-
age capacity (one of the components of wspt) can be relatively well
known, so the uncertainty added by them can be reduced considerably
in practice. In turn, the uncertainty about the pasture production func-
tion (the other component of wspt) is chiefly due to that of climate
change. Indeed, if this change was not expected, the pasture production
function might be taken as fixed and could be relatively well known (at
least for the next 90 years). However, climate change affects the pasture
production function. For example, increases in atmospheric carbon di-
oxide concentrations cause changes in plant production and transpira-
tion rates (Rosenzweig and Hillel, 1998). Hence, climate change is the
main source of uncertainty about soil erosion in dehesas.

The sample means of SODP90 obtained for the climate scenarios in
the VBSA simulations are marked with points in the boxplots shown
in Fig. 2. It can be seen that all sample means corresponding to the
climate-change scenarios (scen ≠ 0) were greater than that correspond-
ing to the no-change scenario (scen =0). Besides, all differences of
means in relation to the latter were statistically significant (p-values
b2.2 × 10−16; Welch's t-tests).

The sample means of SODP90 under the nine climate scenarios were
regressed against each of the variables included in Table 3, using only
one explanatory variable per regression to safeguard degrees of free-
dom. The best fit (R2 = 0.86) was achieved when the regressor was
‘95th percentile of daily precipitation’. Its regression coefficient was
negative, as expected (p-value = 0.0003). Therefore, the frequency of
days of extreme rainfall would be the best explanatory variable of the
changes in sheet erosion caused by the climate scenarios. This result
agrees with those found in other related studies that utilised models
specifically intended to assess the direct impacts of changes in rainfall
and temperature on erosion (Pruski and Nearing, 2002a; Pruski and
Nearing, 2002b; Nearing et al., 2004; Garbrecht et al., 2014). When
using ‘average daily ETo’ as regressor, only a slightly worse fit was
achieved (R2 = 0.84). The coefficient was positive in this case (p-
value = 0.0005), again as expected. This indicates that the rise in ETo
predicted by climate-change scenarios also had an important influence
on the reductions in soil erosion they led to.

Fig. 2 reveals that the sample variances of SODP90 under the climate-
change scenarios were less than its sample variance under the no-
change scenario. All differences in relation to the last one were statisti-
cally significant (p-values b2.2 × 10−16; Brown-Forsythe test). There-
fore, the climate change scenarios analysed in this study seem to
reduce uncertainty about sheet erosion in the study area.

5. The influence of economic andmanagerial factors on soil erosion

All the EM factors showed little influence on the variance of SODP90
or ACLS90. The same result was obtained for the two factors related to
the capacity of rain to cause runoff (ROPP).

As already mentioned, the EM factors influence soil erosion by way
of stocking rate and ground cover. However, given that neither of
these variables can be negative, the influence of the EM factors on ero-
sion was restricted in this study, so their sensitivity indices turned out
to be low.

Note that, in this case, the total sensitivity index STi of a factor Xi

measures how large E(V[SODP90/X~i]) is in relation to V(SODP90),
where/X~i denotes “when all factors are fixed except Xi”. Suppose that
Xi is an EM factor and that, among all the other factors being fixed,
some of them (normally other EM factors) take values resulting in a
soil that is permanently denuded of pasture regardless of the value of
Xi. For example, suppose that Xi is the price of meat and that the fixed
factors include high subsidies that make it profitable to rear large live-
stock numbers that denude soil of pasture even when the price of
meat stays at the lower limit of its range of variation. In cases like this,
SODP90 will be relatively small (accumulated soil loss will be large)
and will not vary between simulations in which only the value of Xi is
changed, because in all of them soil is permanently bare regardless of
Xi (and ground cover cannot be negative). Hence, V[SODP90/X~i] will
equal zero (the variance refers to the range of variation of Xi). An in-
stance of this kind of situation is illustrated by curve C1 in Fig. 3.

Other combinations of values of the fixed factors might result in a
soil that is bare only if Xi is within a certain subset of its range of varia-
tion. Here, SODP90 will not vary between simulations in which Xi takes
valueswithin that subsetwhile the rest of parameters are held constant;
hence V[SODP90/X~i] will be rather reduced.

Similarly, there might be cases in which some EM factors other than
Xi are fixed at values which make it unprofitable to rear livestock, re-
gardless of the value of Xi. For example, Xi might be the price of meat
and the fixed factors might include very high costs per breading female
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making the livestock business unprofitable evenwhen the price stays at
the upper limit of its range of variation. In cases like this, the stocking
rate will be null regardless of the value of Xi (it cannot be negative),
so SODP90will be relatively large andwill not vary between simulations
in which only Xi is changed, thereby equalling V[SODP90/X~i] to zero.
Curve C2 in Fig. 3 is not far from representing an example of this kind
of situation. Other combinations of the fixed EM factors might result
in no stocking rate only if Xi is within a subset of its range of variation.
In these cases, V[SODP90/X~i] will be reduced to some degree. Curve
C2 in Fig. 3 is indeed an instance of this situation.

Finally, for some combinations of values of X~i, an EM factor Ximight
show, over the range of variation used in the VBSA, its potential influ-
ence on SODP90, i.e. the largest value of V[SODP90/X~i] for a given com-
bination of values of X~i. An example of this is curve C3 in Fig. 3.

Thus, for each EM factor Xi, the parameter space of X~i in the VBSA
might contain two regions for which V[SODP90/X~i] is either zero or
somewhat reduced. Since STi is directly proportional to the mean of
V[SODP90/X~i] over such a parameter space, if at least one of those re-
gions were large for an EM factor, the value of its total sensitivity
index STi would be significantly diminished. And, given that Si ≤ STi,
the value of its first order sensitivity index would also be diminished.
One of those regions is due to the fact that ground cover cannot be neg-
ative nomatter how unfavourable conditionsmay be for pasture. Let us
call this restriction on the influence of the EM factors on erosion, the GC
(ground-cover) restriction. The other region is due to the fact that stock-
ing rate cannot be negative no matter how unprofitable the livestock
business may be. Let us call this the SR (stocking-rate) restriction.

In order to assess the extent to which the GC and SR restrictions af-
fected the estimation of the sensitivity indices of the EM factors in this
study, the variable ‘number of breeding females at the end of the
VBSA simulations’, hereafter BDFM90, was used. This was the best avail-
able proxy for the average stocking ratewithwhich each simulationwas
run.

BDFM90 ranged between 0 and 16.28 AU·ha−1 and showed a right-
skewed distribution with a sample mean equal to 0.77 AU·ha−1. Thus,
in 101,082 (44%) of the simulations BDFM90 equalled 0 AU·ha−1

while in only 8598 (3.74%) was it greater than 3 AU·ha−1. This fitted
well with the available data on the number of breeding females per
hectare, which ranged between 0.25 and 15.76 AU·ha−1 (this last
value was rejected as outlier when fixing the range of variation of
bdfmi; Table 1). The sample mean of our observations (which did not
include non-grazed enclosures) was 1.5, and that of BDFM90, once ex-
cluded the zero values, was 1.25.

The high frequency of zeros in BDFM90 is not a surprising result for
dehesas. A zero stocking rate at the end of one simulation indicates
that the combination of (constant) values of the EM factors used in
such a simulation resulted in permanent or very frequent negative
gross margins. In reality, the EM factors may change over time so
there is a specific combination of their average values each year. There-
fore, the percentage of simulations that ended up without livestock in
the VBSA estimates the probability of getting negative annual gross
margins in the study area. This economicweakness of the livestockbusi-
ness in dehesas has been pointed out by numerous experts (Pulido and
Picardo (Coords.), 2010) and is well known by farmers. It is also illus-
trated by the fact that many farms in dehesas include enclosures that
are never grazed and are usually used for forestry and hunting.

What is relevant here is that the high proportion of zeros in BDFM90

indicates that, in all likelihood, the SR restriction had a high incidence in
the estimation of the sensitivity indices of the EM factors. The low pro-
portion of high values of BDFM90 would indicate that the incidence of
the GC restriction was much lower, though this is somewhat less clear.
Nevertheless, there is a valid reason for why the EM factors showed
scant influence on sheet erosion in this study.

A restriction similar to the GC and SR ones affects the influence of the
two factors related to ROPP on erosion (roppm and roppv; Section 2.2).
Indeed, if soil is saturated, runoff coefficient is one whatever the ROPP
may be. And note that themodelled soil is a shallow soil which saturates
easily. Besides, ROPP causes little changes in erosion rates when soil is
well covered by pasture (e.g. in years without a drought). Thus, there
also exist equally as good reasons to explain the low sensitivity indices
shown by the factors related to ROPP.

It is important to note that the sensitivity indices estimated for the
EM factors and factors related to ROPP are not deceptive. Nevertheless,
they have to be interpreted adequately. Sensitivity indices give statisti-
cal accounts of the losses of soil resulting from simulating an ample
range of possible variations on a simplified dehesa (given by different
likely values of the endogenous factors) under a wide range of possible
scenarios (given by different likely values of the exogenous factors). It
turned out that the influence of the EM factors and factors related to
ROPP was null or restricted in a large proportion of such simulations.
Hence, the low values of the sensitivity indices of these factors indicate
that it is unlikely to find them influencing soil erosion in the study area,
not that such factors cannot affect soil erosion.

Indeed, the sensitivity indices of a factor do not necessarily assess its
potential impact. This refers to the expected impact of the factorwhen it
varies over its widest possible range of variation, which does not neces-
sarily coincide with that used in the VBSA. Thus, in the present study,
supposing that the effect of a factor Xi is monotonic, its potential impact
could be estimated by the difference between the means of SODP90 or
ACLS90 calculated at two very extreme possible values of Xi (Fig. 3). If
such a difference of means is calculated at the two extremes of the
range of variation used in the VBSA, and this is not the widest possible
range, the result would not estimate the potential impact of the factor
but would resemble the assessment provided by the sensitivity indices.
For example, if there were a great proportion of situations like those il-
lustrated by curve C1 in Fig. 3, the difference of means would be small,
like the value of the sensitivity indices.

In this study, the ranges of variation of the EM factors reflected the
uncertainty about them existing in the study area, but they did not en-
compass all their possible values. Hence, their potential impacts on
sheet erosion could not be estimated on the basis of the VBSA simula-
tions. However, the potential impact on sheet erosion of stocking rate,
through which the EM factors affect soil erosion, could be estimated
since the VBSA simulations included extreme values of it.

Thus, the sample mean of ACLS90 in those simulations where
BDFM90 equalled 0 AU·ha−1 was 1.42 cm. And the same mean in
those simulations where BDFM90 was greater than 10 AU·ha−1 was
3.09 cm. So the expected potential impact of livestock on ACLS90 is
1.67 cm. This impact is greater in absolute value than the impact evalu-
ated for climate change. Indeed, the sample mean of ACLS90 under the
climate-change scenarios was 1.38 cm, while the same mean under
the no-change climate scenario was 2.62 cm. Hence the expected im-
pact of climate change on ACLS90 is −1.24 cm. The greatest difference
between the sample mean of ACLS90 under a climate-change scenario
and that under the no-change scenariowas−2.03 cm (scen=7; Fig. 2).

To sumup, if an initially non-grazed enclosure became grazedwith a
stocking rate greater than 10 AU·ha−1, a high impact on erosion is to be
expected, even greater in absolute value than the expected impact of cli-
mate change, which has proved to be one of the most important factors
in sheet erosion in dehesas. However, it is unlikely to find the combina-
tion of EM factors leading to the aforementioned increment of stocking
rate in the study area, at least for the time being, while climate change is
underway.

As a last remark, it must be said that the high importance showed by
the soil-water-storage-capacity-pasture-production factor (wspt) in
the VBSA was due to the fact that the stocking rate was low in many
simulations. The importance of such a factor would not be that high if
the stocking rate had ranged between higher limits, simply because
the amount of pasture biomass would have been smaller, on average.
To check this point, a VBSA was carried out on a simplified version of
the model representing a perfectly constant stocking strategy. To ac-
complish this, the variable ‘number of breeding females’ (BDFM) was
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substituted for the parameter bdfmi, thereby detaching the stocking
rate from any explanatory variable. This model contained 13 parame-
ters, since most of the EM factors were removed, and the VBSA was
based on 30,000 simulations (N= 2000). The parameter bdfmi was as-
sumed to be uniformly distributed in the range of 0.25 to 15.76.

In this VBSA, parameters scen (Si = 0.39) and tseri (Si = 0.34)
remained at the top of the Si ranking. The Si value of the third parameter
in order of importance (roppv) fell to 0.056. Parameter bdfmi showed
scant relevance (Si = 0.029). In all likelihood, this was caused by the
GC restriction since bdfmi was greater than 5 AU·ha−1 in 69% of the
simulations and greater than 10 AU·ha−1 in 37% of them. As expected,
the Si value of wspt fell to 0.008. This ability of the stocking rate to re-
duce the (beneficial) influence of pasture in sheet erosion provides fur-
ther evidence that thepotential impact of livestockon erosion is high for
dehesas.

6. Conclusions

In this modelling study, topsoil erodibility, climate change and a
combined factor related to soil water storage capacity and the pasture
production function proved to be the most important factors affecting
sheet erosion in dehesas. Economic andmanagerial factors demonstrat-
ed scant influence, but this simply means that it is unlikely to find them
influencing soil erosion in the study area for the time being. The low
profitability of the livestock business is maintaining stocking rates at
low values in general, so therefore they are not affecting ground cover
substantially. However, this study has shown that the potential impact
of livestock, the means of influence of economic andmanagerial factors
on soil erosion, is greater in absolute value than the impact of climate
change. Therefore, concerns about the sustainability of dehesas should
rise, if stocking rates were to rise in the future because of generalized
changes in some economic or managerial factors.
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