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CFD predictions of laminar mixed convection of Al,03—water nanofluids by single-phase and three
different two-phase models (volume of fluid, mixture, Eulerian) are compared. The elliptical, coupled,
steady-state, three-dimensional governing partial differential equations for laminar mixed convection in
a horizontal tube with uniform heat flux are solved numerically using the finite volume approach. It is
found that single-phase and two-phase models predict almost identical hydrodynamic fields but very
; different thermal ones. The predictions by the three two-phase models are essentially the same. For the
Nanofluids . . . .. .
. . problem under consideration the two-phase models give closer predictions of the convective heat
Mixed convection . . :
CFD transfer coefficient to the experimental data than the single-phase model; nevertheless, the two-phase
models over-predict the enhancement of the convective heat transfer coefficient resulting from the
increase of the alumina volume fraction. The results are calculated for two Reynolds numbers (1050 and
1600) and three nanoparticle volume concentrations (<2%). Although single-phase and two-phase
models have been used before to analyze mixed convection of nanofluids, this is the first systematic
comparison of their predictions for a laminar mixed convection flow which includes the hydrodynamic
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characteristics and the effect of temperature dependent properties.
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1. Introduction

The low conductivity of liquids such as water, ethylene glycol,
and engine oil which are used as heat transfer fluids in many
industrial and residential applications constitutes an important
drawback which limits the performance of engineering equipments
such as heat exchangers and electronic devices. There has been
a serious effort to overcome this problem since Maxwell [1]
investigated the possibility of increasing the thermal performance
of ordinary fluids by adding solid particles. Maxwell’s study showed
that the conductivity of liquid—solid mixtures improves with
increasing particle volume fraction. This was the first step of an
innovative approach aiming to improve the conductivity of liquids
by adding small particles into the fluids. At first, millimetre or
micrometer size particles were used which have a high risk of
sedimentation and can cause erosion as well as high pressure loss.
Later, technological progress led to the fabrication of nanosized
particles which mix homogeneously with the base fluid, remain in
suspension for long periods, and have a high thermal conductivity
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even for very small particle volume fractions. Compared with other
techniques for heat transfer enhancement, these nanofluids (a
name first proposed by Choi [2]) show considerable potential as
replacements of conventional heat transfer fluids.

For heat transfer in ducts, buoyancy forces have a significant
effect on the hydrodynamic and thermal fields, particularly for
laminar flow in horizontal ducts. They generate secondary flows
which lead to Nusselt numbers and friction coefficients very
different from those corresponding to forced convection. In the case
of conventional heat transfer fluids, these phenomena have been
studied extensively [3—8]. In the case of nanofluids, some numerical
studies of laminar mixed convection inside horizontal and inclined
tubes considered the nanofluids as single-phase homogeneous
mixtures [9,10], while others have used the two-phase approach
[11,12]. However, none of them includes a systematic comparison of
two phase and single phase mixed convection predictions.

Lotfi et al. [13] have compared the single-phase with the
Mixture and Eulerian two-phase models for the forced convection
flow of Al,03—Water nanofluid with temperature independent
properties. Specifically, they have compared the Nusselt number
predictions for a 1% value concentration of nanoparticles with
several correlations and one set of experimental values. They have
also considered the effect of volume concentration on the wall
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Nomenclature v Radial Velocity Component
w Axial Velocity Component
G Specific Heat z Axial Direction
Crum. Nanoparticles Random Motion Velocity
D Tube Diameter Greek Letters
Do Diffusion Coefficient 6 Thermal Expansion Coefficient
dr Liquid Layer Thickness 0 Angular Direction
ds Particle Diameter 10) Volume Fraction
g Gravitational Acceleration w Dynamic Viscosity
H Entropy 9 Kinematic Viscosity
h Convective Heat Transfer Coefficient D Density
K Conductivity T Stress—Strain Tensor
kp Boltzmann’s Constant
L Tube Length Subscripts
l Mean Free Path eff Effective
P Pressure f Base Fluid
q Heat Flux in Inlet
R Tube Radius m Mixture
r Radial Direction nf Nanofluid
T Temperature s Solid Particle
u Angular Velocity Component w Wall
74 Velocity
temperature. They concluded that the Mixture model is more - Viscosity [16]:
precise than the other two models.
The present study was therefore undertaken to examine ( B )
whether the conclusions of Lotfi et al. [13] are also valid in the case ur = A10 T-C (2)

of mixed convection. For this purpose, the single phase (homoge-
neous mixture) and three different two-phase models (Volume of
fluid, Mixture and Eulerian) are used to analyze laminar mixed
convection flow of a water—Al;03 nanofluid in a horizontal tube
with uniform heat flux applied at the nanofluid—solid interface. All
the fluid properties are considered to be temperature dependent.
The numerical predictions of the convective heat transfer coeffi-
cient are compared with published experimental data [14] in order
to evaluate the accuracy of each of these four models. Their
predictions of the velocity and temperature fields for three nano-
particle concentrations are then compared in order to analyze their
similarities and differences.

2. Description and modeling of the problem

Laminar mixed convection of a nanofluid consisting of water
and Al,O3 nanoparticles (ds = 42 nm) in a long horizontal tube
(D = 0.0045 m, L = 0.97 m) with uniform heat flux at the solid—
liquid interface is considered (Fig. 1). The physical properties of the
base fluid are considered to be temperature dependent while those
of the solid particles are constant. Material property correlations
and the differential equations for the three two-phase models and
the single-phase model are presented in the following sections.

2.1. Water properties

The following equations for water properties are used in all four
models under consideration.

- Density [15]:

pf = 2446 — 20.674T + 0.11576T% — 3.12895 x 10~T3
+4.0505 x 1077T* — 2.0546 x 10-107> (1)

where, A = 2.414 x 10>, B = 247.8, and C = 140.

- Specific heat [15]

8.29041 — 0.012557T
) (3)

1- (1.52373 x 10*3>T

(= exp(

2.2. Single-phase model

This model treats the nanofluid as a homogeneous fluid with
effective properties and uses the differential equations expressing
conservation of mass, momentum, and energy. To obtain accurate
results with the single-phase model, it is very important to use the
most appropriate correlations for the effective nanofluid properties.

top

bottom

Symmetry Plane

Fig. 1. Cross section of the horizontal tube and coordinate system.
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Up to now, however, there are no universal correlations that can
accurately predict nanofluid properties for any combination of
independent variables (nature of particles, diameter of particles, etc.).
Many different correlations available in the literature lead to
contradictory results [17] and it is not clear which one is best for
a given situation. Nevertheless, all sources indicate that the nanofluid
properties depend on the volume fraction of particles as well as on
the corresponding properties of the base fluid and the solid particles.
Since the properties of the base fluid are temperature dependent,
those of the nanofluid are also temperature dependent. Conse-
quently, in this study all the nanofluid properties are expressed as
functions of the volume fraction and the temperature as follows:

- Density [18]
Pop = (1= @)ps + @ps (4)
- Viscosity [19]

o = (1 40.025¢ + 0.015¢2)uf (5)
- Conductivity [20]

d
Kop = Kr(1— ) + vKsp + Cdd—inReSZPr(p (6)

where v = 0.01 (a constant taking into account the Kapitza resis-
tance per unit area), Cq = 18 x 10~° (a constant) and:

Res — (@%d) (7)

For the present calculation a constant value equal to 0.1 m/s has
been used for the random motion velocity Cg . as recommended by
Jang and Choi [20].

- Specific heat [18]

(1= 0)(pCp)+9(pCp),

oot (8)

(Cp) nf =

The differential equations for this model (conservation of mass,
momentum and energy) are:

v-(pV) =0 9)

pV-VV = —VP+V-(uvV) + pg (10)
— —

pv-(VH) = -V-.q—1:VV (11)

All the nanofluids properties are temperature dependent. Since
the density is temperature dependent the buoyancy induced
secondary flows are included in the calculations.

2.3. Two-phase models

There are two general approaches for modeling the flow of solid-
liquid mixtures. For low solid volume fractions, the most suitable
approach is the Lagrangian—Eulerian which analyzes the base fluid
by the Eulerian assumption and the particle phase by the Lagrangian
one. For higher solid volume fractions, the appropriate approach is
the Eulerian—Eulerian. For nanofluids, the number of particles in the
computational domain, even for a very small particle volume

fraction, is extremely large due to the very small size of the particles.
This makes it impossible to solve the nanofluid flow problems by the
Lagrangian—Eulerian approach due to limitations of the software
abilities, memory and CPU requirements, etc. Therefore, the Euler-
ian—Eulerian approach is used in the present study. In fact, there are
different Eulerian—Eulerian models. The most popular ones are the
VOF (volume of fluid), mixture, and Eulerian.

2.3.1. VOF

The VOF model solves a single set of momentum equations for
all the phases and tracks their volume fraction all over the domain
of study by solving a continuity equation for the secondary phases.
The total summation of the volume fractions for all the phases is
equal to unity. Therefore, the magnitude of the primary phase
volume fraction will be calculated. In this method, all of the phys-
ical properties are calculated by taking a weighted average of
different phases based on their volume fraction throughout each
control volume. The single set of momentum equation is solved to
find the velocity components, which are shared by all the phases. In
the same manner, a shared temperature is calculated from a single
energy equation. Specifically, mass conservation is expressed as
v (wqpq7q> -0 (12)

where ZZ:l‘Pq =1 and all properties are calculated like
N =301 ¢qNg.

The conservation of momentum and energy equations are
identical to Egs. (10) and (11).

2.3.2. Mixture

The mixture model solves the continuity, momentum and
energy equations for the mixture as well as a volume fraction
equation for the secondary phases. It then uses a correlation to
calculate the relative velocity between the phases. The relevant
equations are:

- Conservation of mass
V-(pmVm) =0 (13)

- Conservation of momentum

PmVm-VVin = —VPn + V- (4 VV i) + pg
n — —
+ V- < > ok Vark Vdr,l<> (14)
k=1
where the mixture velocity, density and viscosity are respectively
- 37 v
Vi = k=1%PkPkVk (15)
Pm
n
Pm = D PPk (16)
k=1
n
Hm = Z Pl (17)
k=1

The drift velocity of k™ phase is

Vark = Vi—Vm (18)
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- Conservation of energy

n — —
V'(Z(Pkpkkak> =-Vqm—Tn:VVn (19)

k=1
- Volume Fraction

v (<pppp7m) = -V (<pppp7dr,p) (20)

The slip velocity (relative velocity) is defined as the velocity of
a secondary phase (p) relative to the velocity of the primary phase
N:
N

Vo = Vp— Vs (21)

The drift velocity is related to the relative velocity as:

Virp = Vs — Z (”kff"v (22)

The relative velocity is determined from Eq. (23) proposed by
Manninen et al. [21] while Eq. (24) by Schiller and Naumann [22] is
used to calculate the drag function (fgrag).

— Tpdg (pp - peﬁ) —
V= a 23
o 181t fdrag Pp (23)
1+ 0.15Re%87  Re, < 1000
— P P =
Jarag { 0.0183Re, Re, > 1000 24

—

where Rep = (Vindp)/vey and @ = g — (V-9 V.

2.3.3. Eulerian

In the Eulerian model there are different kinds of coupling
between phases. The pressure is shared by all the phases, while
separate continuity, momentum, and energy equations are
employed for different phases including primary and secondary
phases. The volume of each phase is calculated by integrating its
volume fraction throughout the domain, while the summation of
all the volume fractions is equal to unity. The relevant equations
are:

- Conservation of mass

(<pqpq ) =0 (25)
where, Vq = [pq4dV,and ZZ:1 ®q = 1,and q indicates the phase.

- Conservation of Momentum (g™ phase)

V- ((pqpq77> = — @qVP + ¢4V- (,quV) + (pqqu

+ Z Rpq + Fiig (26)
p=1

where, Y754 Rpg = Sp—1 Spq(Vp — V) stands for the interac-
tion forces between the phases, Spg = (9q0ppef)/Tp,
T = (ppdg)/(ISMq) and f indicates the drag friction, which is
calculated according to Schiller and Naumann [22] as:

CpRe
f= 24

(27)

Re Re < 1000 (28)

24(1 + 0.15Re°-687)
G — {
0.44 Re > 1000

pq| Vp— VQ|dP
Kq

Re = (29)
The lift force is computed from the Drew and Lahey [23]

equation:

— V) x (v x Vy) (30)

Fiifrg = —0.5p,04(Vp

- Conservation of energy

n g
V- (9gpgVaHa) = —V-(KqV-Ty) = 7q: Vg + Zl Q3D
p:

where, apq = h(Vp - Vq) is the heat exchange coefficient and
h = (6I<q¢q¢pNup)/(d§). Nup is calculated from the Ranz and
Marshal [24] model:

Nu, = 2+ 0.6Re**Pr)3?? (32)

where, Prq = (Cpquq)/Kq.
2.4. Boundary conditions

The governing equations for all four approaches have been
solved using the following boundary conditions:

— At the tube inlet (z = 0):

W:Vinvu:VZOaT:Tin

— At the fluid—solid interface (r = D/2):
w=u=v=0, Keff(aT> = Qw

— At the tube outlet (z = 0.97) all the normal diffusion fluxes are
set equal to zero and a mass balance correction is applied.

3. Numerical solution

The differential equations were discretized with the control
volume technique. For the convective and diffusive terms a second
order upwind method was used while the SIMPLEC procedure was
employed for the velocity-pressure coupling. Grid independence
tests were done separately for each of the four approaches to be
sure about the accuracy of results. Many combinations of node
numbers in the axial (140, 180, 280), radial (30, 40, 50, 60) and
circumferential (32, 40, 48, 60) directions were tested. In all cases
the grid is finer close to the wall and the entrance of the tube where
the temperature and velocity gradients are large. Typical results are
shown in Fig. 2 which illustrates the temperature and velocity
profiles calculated with the single phase model at two axial posi-
tions (Z = 0.2, Z = 0.8). They indicate that these particular grid
distributions give essentially identical results. Similar results were
also obtained for all the two phase models. Following these
comparisons the same mesh (180 nodes in the axial direction, 40
nodes in the circumferential direction, and 40 nodes in the radial
direction) was chosen for all of four models.



M. Akbari et al. / International Journal of Thermal Sciences 50 (2011) 1343—1354 1347

a 0.80
0.70
0.60
050
§‘ 0.40 180-40-40
~ — -+ =280-40-40
% 0.30 - = = 180-60-40
020 + /.. 180-40-60
0.10
0.00
-0.0025 -0.001 0.0005 0.002
r(m)
a 308
306
180-40-40
304
— - =280-40-40
302 -
g 180-60-40
= 300 180-40-60
298
296
294
292
-0.0025 -0.001 0.0005 0.002
r(m)

b 0.80

0.70

0.60
050
§ 0.40 180-40-40
= 0'30 — - =280-40-40
= 03 - = = 180-60-40

020 £ [ oot 180-40-60

0.10

0.00

-0.0025 -0.001 0.0005 0.002
r(m)

b 325

320 180-40-40

315 — -+ =280-40-40
= 310 - - - 180-60-40
W 180-40-60
~ 305

300

295

290

-0.0025 -0.001 0.0005 0.002
r(m)

Fig. 2. Model Grid independency test at Z = 0.2 (a) and Z = 0.8 (b).

4. Validation, results and discussion

The previously described geometry and boundary conditions are
the same as those of the experimental study by Wen and Ding [14]
who measured the fluid inlet and outlet bulk temperatures as well
as the wall temperature at five axial positions of the tube, for
different mass flow rates and particle volume fractions of a water—
Al,03 nanofluid. Since, the exact magnitudes of the wall heat flux
and inlet temperature are not mentioned in their paper, they were
calculated using their axial Nusselt number evolution and the Shah
equation [25]. These values were then used to calculate the velocity
and temperature distributions in the nanofluid by solving each of
the previously described four models. In order to compare these
numerical results with the experimental data we then had to
evaluate the local convective heat transfer coefficient, h(Z). This was
done using two different ways of determining the wall temperature
from the numerical results. In the first case, T, was set equal to the
average temperature of all the interfacial nodes. In the second case
it was set equal to the average temperature of the nodes in the top
half of the interface. Fig. 3 illustrates the differences between the
experimental and calculated convective heat transfer coefficients
for the single phase model. It shows that, if the wall temperature is
calculated as the average of all the interfacial nodes, the convection
heat transfer coefficient reaches a constant value after a short
distance from the inlet. But, the experimental data shows
a continuous change along the entire length of the tube which is
similar to the predicted behaviour obtained when the upper half
average temperature is used. Similar results were obtained for
other particle volume fractions and Reynolds numbers. This result
is attributed to the fact that the experimentally determined
temperatures were probably measured near the top of the tube
which is warmer due to the buoyancy induced temperature strat-
ification in the fluid. Therefore, the average temperature of the
upper half of the tube is used to calculate the heat transfer coeffi-
cient presented in the following figures.

Figs. 4 and 5 compare the numerical values of the convective
heat transfer coefficient predicted by the four models under
consideration with the corresponding experimental data for two
Reynolds numbers (Re = 1050, 1600 respectively). They clearly
show that the single-phase model gives considerably lower esti-
mates than the experimental data for all particle volume fractions
and both Reynolds numbers. The predictions of the three two-
phase models are essentially identical and closer to the experi-
mental data for practically all axial positions.

Figs. 4 and 5 also show that the convective heat transfer coef-
ficient increases when the particle volume fraction increases.
However, the enhancement predicted by the single-phase and two-
phase approaches is different and none of them is equal to the
corresponding experimental result. For both of the Reynolds
numbers the two-phase approach gives closer results to the
experimental data; however the possibility of improving the
predictions of the single phase model by using different set of
correlations for the nanofluid properties can be studied.

The numerical results in Figs. 4 and 5 indicate an average
enhancement of the convective heat transfer coefficient by almost
11% when the Reynolds number increases from 1050 to 1600. This

2400 o ©  Experiment O Upper-Half Average
2200 A Circumferential Average
2000
= 1800
";g 1600 o
= 1400 o
= 1200
1000 B A N
800 o O
600
0 0.2 0.4 0.6 0.8 1
Z(m)

Fig. 3. Convective heat transfer coefficient predicted by the single-phase model with
two different determinations of the wall temperature (Re = 1600, ¢ = 0.006).



1348 M. Akbari et al. / International Journal of Thermal Sciences 50 (2011) 1343—1354

< Experiment O Eulerian A Mixture
1800 < X VOF X Single
1600
B’
1400
S
= 1200 %
= 1000 &
800 X B 5
X X X
600
0 02 04 0.6 0.8 1
Z(m)
2000 o © Experiment O Eulerian A Mixture
1800 X VOF X Single
B’
1600
:s( 1400
= 1200 X &
1000 8 ® ®
800 X o
X X X
600
0 02 0.4 0.6 08 1
Z(m)
2200 o © Experiment O Eulerian A Mixture
2000 ® X VOF X Single
1800
2 1600
g ®
S 1400
= 1200 X B’ ® ®
1000 © o
800 X % « i
600
0 02 04z 06 038 1

Fig. 4. Comparison of calculated convective heat transfer coefficient with experi-
mental data for Re = 1050 (a: ¢ = 0.006, b: ¢ = 0.01, c: ¢ = 0.016).
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Fig. 5. Comparison of calculated convective heat transfer coefficient with experi-
mental data for Re = 1600 (a: ¢ = 0.006, b: ¢ = 0.01, c: ¢ = 0.016).

value is the same for single-phase and two-phase models and
approximately half of the corresponding value derived from the
experimental data.

The effect of nanoparticle volume fraction on the average heat
transfer coefficient is illustrated in Fig. 6. It is obvious from these
results that the predictions of the single-phase model reflect
neither the qualitative nor the quantitative behaviour of the
experimental values. The experimental data shows an average
enhancement of about 20% and 24% respectively for Re = 1050 and
Re = 1600 as the result of a 1% increase in alumina particles volume
fraction. For the lower Reynolds number, this is about 11.6 times
larger than the corresponding numerical result from the single-
phase model and 1.7 times smaller than the two-phase models
result, and for the higher Reynolds number about 11.3 times larger
than the corresponding numerical result from the single-phase
model and 1.5 times smaller than the two-phase models result. On
the other hand, the predictions of the two-phase models (all three
give essentially identical results as those of the Eulerian model
shown in Fig. 6) are in fairly good agreement with the experimental
data despite the fact that they indicate a higher enhancement as ¢
increases.

These comparisons of experimental and calculated heat transfer
coefficients show some of the differences between results obtained
by the models under consideration. Further comparisons of other
significant calculated variables are provided in the following
paragraphs.

Fig. 7 illustrates the secondary flow velocity vectors and
temperature contours in two planes (Z = 0.4 m and Z = 0.8 m) for
Re = 1050 and ¢ = 0.01. The temperature contours predicted by all
the models are qualitatively similar. They evolve from a quasi-
elliptical form at Z = 0.4 m to a kidney form at Z = 0.8 m. However,
the maximum values predicted by the single-phase model are
significantly higher. On the other hand, the velocity vectors define
two symmetrical counter-rotating vortices. They are generated by
the density differences between the warm fluid in contact with the
wall and the cool fluid situated just below the axis of the tube. The
magnitude of the velocity vectors predicted by the single-phase
and VOF models is slightly greater than for the corresponding
predictions by the Mixture and Eulerian models.

In contrast to the temperature which increases in the axial
direction, the corresponding secondary flow velocities are more
important at Z = 0.4 m than at Z = 0.8 m. Furthermore, the
difference between the highest upward velocity and the highest
downward velocity along the horizontal diameter is more impor-
tant at Z = 0.4 m than at Z = 0.8 m for all models. Similarly, the
difference between the highest and lowest temperatures along this
same diameter is more important at Z = 0.4 m than at Z = 0.8 m for
all models. This is consistent with the results by Ouzzane and
Galanis [26] and Orfi et al. [27], who have shown that the buoyancy
induced secondary flow is less important in the fully developed
region.

In Fig. 8 (higher Reynolds number) the velocity vectors and
temperature contours show the same qualitative behaviour as in
Fig. 7. However, in contrast to the results of Fig. 7, the secondary
flow velocity vectors at Z = 0.4 m are weaker than at Z = 0.8 m.
A survey of the results for Re = 1600 indicates that the most
important secondary velocity vectors occur at a position further
downstream than Z = 0.4 m. This is again consistent with the
results by Ouzzane and Galanis [26] and Orfi et al. [27] and can be
explained by the fact that the hydrodynamic and thermal devel-
opment lengths increase with the Reynolds number.

Fig. 9 illustrates the axial velocity profiles along the vertical
diameter close to the inlet (Z = 0.2 m) and outlet (Z = 0.8 m) of the
tube for a given Reynolds number and volume fraction. The
predictions of the two-phase models are essentially identical. Near
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Fig. 7. Secondary flow velocity vectors and temperature contours for Re = 1050, ¢ = 0.01.
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Fig. 8. Secondary flow velocity vectors and temperature contours for Re = 1600, ¢ = 0.01.
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Fig. 9. Axial velocity profiles for Re = 1050 and ¢ = 0.016 (a: Z= 0.2 m, b: Z= 0.8 m).
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Fig. 10. Temperature profiles for Re = 1050 and ¢ = 0.016 (a: Z= 0.2 m, b: Z = 0.8 m).

the tube’s inlet they are also quite close to the profile predicted by
the single-phase model. On the other hand, near the outlet the
profiles predicted by the single-phase and two-phase models are
somewhat different. The main differences between these velocity
profiles are the magnitude and position of the maximum axial
velocity. In general, the maximum values predicted by the two-
phase models are slightly higher. The difference in the position of
this maximum velocity is due to the buoyancy induced secondary
movement which was discussed earlier.

Fig. 10 shows the temperature profiles along the vertical
diameter for the same conditions as in Fig. 9. All the models
indicate that fluid in the top half of the tube is warmer than in
the bottom half since warm fluid has a lower density and rises
under the influence of buoyancy. This is particularly evident near
the outlet of the tube (Fig. 10b). We note that the predictions
of all the two-phase models are again essentially the same but,
contrary to the results depicted in Fig. 9, the differences from the
profiles predicted by the one-phase model are important. Thus,
at a given axial position, the difference between the minimum
and maximum fluid temperature is considerably higher in the
case of the one-phase model. The same is true for the difference
between the wall temperature at the bottom (r = —0.025 m) and
top (r = —0.025 m) of the tube.

The results of calculations with one-phase and two-phase
models shown in Figs. 9 and 10 (as well as those for other axial
positions not shown here) clearly indicate that their predictions of
the axial velocity are quite similar while those of the temperature
distribution are very different.

a 0.80 Single
— -+ =VOF
0.60 - = = Mixture
=t/ \ === Eulerian
~
%)
N
é 0.40
=
0.20
0.00
-0.00225 -0.00075 0.00075 0.00225
r(m)

Figs. 11 and 12 show the axial velocity and temperature
profiles along the vertical diameter for a higher Reynolds
numbers than in Figs. 9 and 10. The differences between
predictions by the single-phase and two-phase models decrease
as the Reynolds number increases but they remain significant in
the case of temperature profiles (Fig. 12). In addition, the increase
of the Reynolds number is accompanied by a decrease of the
asymmetry of the velocity and temperature profiles. This effect
of the Reynolds number is due to the fact that its increase is
accompanied by a decrease of the influence of natural convection
and a weakening of the buoyancy induced secondary flow which
leads to the accumulation of warm lighter fluid in the upper half
of the cross section.

A careful examination of Figs. 9—12 indicates that wherever
a particular model predicts higher temperatures it also predicts
higher velocities. Thus, close to the walls, where temperatures
predicted by the single-phase model are higher, the velocities
predicted by the two-phase models are smaller. On the other hand,
in the region where the two-phase models predict higher
temperatures the velocities predicted by the one-phase model are
smaller.

For lower volume fractions the differences between predictions
by the one-phase and two-phase models are smaller than those
shown in Figs. 9—12. However, they are still significant for temper-
ature profiles, even for very low volume fractions (¢ = 0.006).

Fig. 13 shows the predicted axial evolution of the centerline
velocity. It is seen that the predictions of different two-phase
models are almost identical while those of the single-phase model
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- = = Mixture
0.60 .
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~
<
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0.20
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r(m)

Fig. 11. Axial velocity profiles for Re = 1600 and ¢ = 0.016 (a: Z = 0.2 m, b: Z = 0.8 m).
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Fig. 12. Temperature profiles for Re = 1600 and ¢ = 0.016 (a: Z = 0.2 m, b: Z = 0.8 m).

are always lower than the two-phase estimates. The difference
between single- and two-phase results increases for higher particle
volume fractions. The magnitude of this velocity initially increases
due to the growth of the boundary layer, reaches a maximum and
then decreases slightly towards a minimum before attaining an
essentially constant value in the hydrodynamically developed
region. This behaviour is characteristic of all mixed convection
flows [9,26,27] and is due to the buoyancy induced secondary flow.
As noted earlier (Figs. 9 and 11) this secondary flow pushes
downwards the maximum axial velocity which is slightly greater
than that depicted in Fig. 13. The difference between the maximum
and minimum centerline velocity is greater for Re = 1050 since in
this case the effect of natural convection is more important than for
Re = 1600. For this reason the secondary flow starts to develop
earlier for the lower Reynolds number and as a consequence the
corresponding minimum and maximum centerline velocities occur
closer to the tube inlet in this case. The final increase of the

(9 = 0.0006, Re = 1050)
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centerline velocity towards its asymptotic value is due to the
weakening of the secondary flow in the downstream region of the
tube where the fluid temperature becomes more uniform as illus-
trated and discussed earlier (Figs. 7 and 8).

Fig. 14 shows the axial evolution of the centerline temperature
as predicted by the different models. Similarly to the corresponding
velocity results (Fig. 13), the single phase predictions are always
lower than the two phase estimations, while those of different two
phase models are almost the same. The difference increases for
bigger particle volume fraction. The effect of the wall heat flux
reaches the tube centerline earlier in the case of the lower Reynolds
number. This is due to the secondary flow which close to the tube
entrance is stronger for lower Reynolds number.

Fig. 15 compares the calculated skin friction coefficients for
a given particle volume fraction and two Reynolds numbers. The
lowest results are calculated by the Eulerian two-phase model. The
results for the single-phase and the other two-phase models are
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Fig. 13. Axial evolution of centerline velocity.
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Fig. 14. Axial evolution of centerline temperature.
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Fig. 15. Axial evolution of the skin friction coefficient for ¢ = 0.016 (a: Re = 1050, b: Re = 1600).

quite close although the single-phase model gives somewhat lower
estimates. All models show that the skin friction coefficient
increases when the Reynolds number increases with approximately
the same rate.

5. Conclusions

Laminar mixed convection of Al,O3—Water nanofluid inside
a horizontal tube was considered. The flow field was predicted
numerically using the single-phase and three different two-phase
models (VOF, Mixture, and Eulerian). The validity of the calculated
results was established by comparing them with existing experi-
mental data for two different Reynolds numbers. The following
results were obtained:

e The predictions by the three two-phase models are essentially
the same. Therefore, the less expensive model (VOF) is to be
preferred for this problem.

e For the problem under consideration the two-phase models
give closer predictions of the convective heat transfer coeffi-
cient to the experimental data than the single-phase model.

o Nevertheless, the two-phase models over-predict the enhance-
ment of the convective heat transfer coefficient resulting from
the increase of the alumina volume fraction.

¢ Single-phase and two-phase models predict almost identical
hydrodynamic fields but very different thermal ones.

It is recommended that these models be compared to other
experimental data for different flow conditions to reach a more
complete understanding of their ability to predict the nanofluids
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thermal and hydrodynamic behaviour. It is also recommended that
the effect of using, different combinations of nanofluids property
models on the numerical results be evaluated.
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