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Mean Shift-Based Defect Detection in
Multicrystalline Solar Wafer Surfaces

Du-Ming Tsai and Jie-Yu Luo

Abstract—This paper presents an automated visual inspection
scheme for multicrystalline solar wafers using the mean-shift tech-
nique. The surface quality of a solar wafer critically determines
the conversion efficiency of the solar cell. A multicrystalline solar
wafer contains random grain structures and results in a heteroge-
neous texture in the sensed image, which makes the defect detection
task extremely difficult.

Mean-shift technique that moves each data point to the mode
of the data based on a kernel density estimator is applied for de-
tecting subtle defects in a complicated background. Since the grain
edges enclosed in a small spatial window in the solar wafer show
more consistent edge directions and a defect region presents a high
variation of edge directions, the entropy of gradient directions in
a small neighborhood window is initially calculated to convert the
gray-level image into an entropy image. The mean-shift smoothing
procedure is then performed on the entropy image to remove noise
and defect-free grain edges. The preserved edge points in the fil-
tered image can then be easily identified as defective ones by a
simple adaptive threshold. Experimental results have shown the
proposed method performs effectively for detecting fingerprint and
contamination defects in solar wafer surfaces.

Index Terms—Defect detection, machine vision, mean shift, mul-
ticrystalline solar wafer, surface inspection.

I. INTRODUCTION

I MAGE analysis techniques have been used extensively for
visual surface inspection to ensure product quality and pro-

duction yield in manufacturing. Surface defect detection algo-
rithms are generally developed for uniform or homogeneously
textured surfaces, where local anomalies that break the visual
homogeneity from their surrounding background are identified
as defects. The surface defect detection task is classified as qual-
itative inspection [1] which involves detecting ill-defined, non-
quantifiable faulty items such as scratches, cracks, stain and
wear. In this paper, we focus on defect detection in a multicrys-
talline solar wafer that contains a heterogeneously textured sur-
face in the image.

Defects on uniform/nontextured surfaces such as glass [2] and
sheet steel [3] can be effectively detected using simple thresh-
olding or edge detection techniques if the defects in these uni-
form images have distinct pixel values with respect to those of
the background. For textured surface inspection, texture anal-
ysis techniques [4] have been widely used to tackle the defect
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detection problem. A set of texture features extracted from the
spatial domain or from the spectral domain are generally used
as discrimination measures, and then a classifier in high dimen-
sional space such as Bayes probability [5], maximum likelihood
[6] or neural networks [7] is applied to distinguish defective re-
gions from the background pattern. The texture features are cal-
culated from a small neighborhood window that slides over the
entire image in a pixel-by-pixel basis. It assumes that the texture
patterns enclosed in the neighborhood window show the same
similarity everywhere in the image, and is only applicable to ho-
mogeneously textured surfaces.

In spatial-domain approaches, the commonly used texture
features are the second-order statistics derived from spatial
gray-level co-occurrence matrices [8]. They have been applied
to wood inspection [9], carpet wear assessment [10], roughness
measurement of machined surfaces [11], and textile defect
detection [12].

In spectral-domain approaches, texture features are popularly
derived from the power spectra using Fourier transforms [13],
[14]. They have been successively applied to fabric defect detec-
tion [15], [16] and patterned wafer inspection [17] in the semi-
conductor industry. In the recent past, multiresolution decom-
position schemes based on wavelet transforms [18], [19] have
been an attractive alternative for texture feature extraction. The
multiresolution wavelet representation allows an image to be de-
composed into a hierarchy of local subimages at different spatial
frequencies [20]. The texture features are then extracted from
the decomposed subimages in different frequency channels and
different resolution levels. They have been applied to the inspec-
tion of LSI wafers [21], fabrics [22]–[24], and homogeneously
textured surfaces [25].

Filtering techniques using the joint spatial/spatial-frequency
Gabor transforms [26]–[28] are also commonly used to design a
filter bank that represents the characteristics of the textured pat-
terns. They have been applied to the inspection of wooden sur-
faces [29], granite [30], steel surfaces [31], and textile fabrics
[32]–[34]. Kumar and Pang [35] used a set of finite impulse re-
sponse filters for defect detection in textiles. The optimal filters
were selected based on discriminant analysis from defect-free
and defective regions in training images. Xie and Mirmehdi [36]
generated a set of texture exemplars by exploring a Gaussian
mixture model from defect-free image patches, and used them
for defect detection on ceramic tiles. The abnormality is mea-
sured by the likelihood of each patch in the inspection image. A
low likelihood indicates a possible defect region.

A homogeneously textured surface generally presents repet-
itive, periodical patterns in the image. Therefore, the self-simi-
larity property can be easily used as a cue for defect detection.
The local feature extraction and filtering techniques described
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Fig. 1. Two sample images of multicrystalline solar wafers. (a) Defect-free
multigrain wafer surface. (b) Defective wafer surface containing a fingerprint
defect.

previously only perform well for defect detection in uniform
and homogeneously textured surfaces. For heterogeneously tex-
tured surfaces, similar patterns will not repeatedly appear in the
image. It makes the discrimination between faultless and defec-
tive regions extremely difficult.

In semiconductor manufacturing, a wafer contains repeated
dies of the same electrical components and layout. The defect
detection algorithms for wafer die inspection utilize the prop-
erty that all dies in the wafer show identical patterns. Die-to-die
comparison [37] between adjacent dies in the wafer is a simple
method to detect the difference. A collection of defect-free dies
are used as the golden template [38], or are used as the training
samples in neural networks [39] for comparison or classifica-
tion. Self-reference methods [40]–[42] that generate the tem-
plate from the inspection wafer itself are also used for wafer die
inspection. The repetitive periods in both horizontal and ver-
tical directions are first evaluated. A synthetic template is then
created from the image itself based on the pixel values in sub-
sequent periods, and is used for comparison with the inspection
image. Shankar and Zhong [43] proposed alternatively a nonref-
erential method based on wavelet decomposition and morpho-
logical operations for wafer die inspection. It requires a spe-
cific design of structuring elements for individual defect types
and assumes that local defects and any parts of the background
are structurally different. Since each multicrystalline solar wafer
has a unique pattern and local defects could be structurally sim-
ilar to crystal grain edges, the currently available defect inspec-
tion algorithms for patterned wafers cannot be extended for de-
fect detection in multigrain solar wafers.

Solar power is an attractive alternative of electrical energy
due to growing environmental concern and oil shortage. Mul-
ticrystalline, instead of monocrystalline, material dominates
the production volume of silicon cells owing to lower man-
ufacturing costs. Fig. 1(a) shows the image of a defect-free
multicrystalline solar wafer surface. It contains multiple grains
of random shapes and sizes and, therefore, results in a hetero-
geneously textured pattern. There are no two solar wafers with
the same grain patterns. Fig. 1(b) displays a defective solar
wafer image that contains a fingerprint defect marked by a
dotted frame in the image. It can be seen from the figure that
the defect is very difficult to identify from the heterogeneous
background. The conventional defect detection methods for
uniform and homogeneous surfaces are not directly extensible
for defect detection in multicrystalline solar wafers that involve
heterogeneous surfaces.

Mean shift is a nonparametric feature space analysis tool that
finds the modes in multiple-dimensional data using kernel den-
sity estimators. The mean-shift algorithm was first introduced
by Fukunaga and Hostetler [44] for nonparametric clustering
of vector-valued data. It is extended to image processing by
Comaniciu and Meer [45]. It has been successfully applied to
edge-preserving smoothing [46], [47], image segmentation [48],
[49], and texture segmentation/ classification [50], [51].

In image processing applications, the mean-shift algo-
rithm shifts each pixel with pixel coordinates and pixel value
as the features to the mode. Since flat regions induce the
modes, it can be expected that a noisy background can be
effectively smoothed while the meaningful edges can be pre-
served. In this study, the defect detection scheme based on
mean-shift smoothing is proposed for multicrystalline solar
wafer inspection.

The fingerprint and contamination embedded in multicrys-
talline solar wafers are the main defect types evaluated in this
study. Detecting defects in the original gray-level image is im-
possible because both defects and the multigrain background
present similar gray-level distributions. Since the grain edges
enclosed in a small spatial window in the multicrystalline sil-
icon wafer show more consistent edge directions and a defec-
tive region presents a high variation of edge directions, the en-
tropy of gradient directions in the spatial window is first calcu-
lated to convert the gray-level image into an entropy image. The
mean-shift smoothing procedure is then performed to remove
noise and defect-free grain edges in the entropy image. The sus-
pected edge points in the filtered image are identified as defec-
tive ones by using a simple adaptive threshold. The goal of the
proposed algorithm is to detect the presence/absence of defects
in a solar wafer image. The detected defects will be presented in
a binary image to visualize the detection results. However, ac-
curate segmentation of defect positions, shapes, and sizes is out
of the scope of this study.

This paper is organized as follows. Section II first overviews
the mean-shift algorithm. The proposed defect detection scheme
for solar wafer images with heterogeneous textures is then pre-
sented. The section ends with the guidelines and automatic pa-
rameter setting for the choice of mean-shift kernel bandwidths.
Section III presents the experimental results on multicrystalline
solar wafers. The effect of changes in parameter values of the
mean-shift procedure is also evaluated in this section. This paper
is concluded in Section IV.

II. DEFECT DETECTION USING MEAN SHIFT

For the sake of completeness, this section starts with the
overview of the mean-shift algorithm proposed by Comaniciu
and Meer [45], followed by the proposed defect detection
scheme for solar wafer surfaces with heterogeneous textures.

A. Mean Shift Algorithm

Given a set of data points , , and ,
the probability density of can be obtained from the kernel
density estimator

(1)
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The kernel is generally given by a uniform function

if
otherwise

(2)

or by a Gaussian function

(3)

In practice, the kernel uses the form

(4)

where is called the profile of the kernel, and is a nor-
malization constant.

Since the dense regions in the feature space correspond to the
local maxima of the probability density function, the gradient
of the density function can be obtained from the estimate of the
density gradient. Hence

(5)

By using the kernel form

the gradient of the density function becomes

(6)

where , and is the
bandwidth to adjust the resolution for the difference between

and . The difference between the weighted mean and the
center of the kernel is called “mean shift,” i.e.,

(7)

The mean-shift vector always points to the direction of max-
imum increment in the density. The mean-shift algorithm moves
iteratively each data point in the feature space by the mean-
shift vector until the mean converges to an estimate of the
local mode of the data set.

In image processing applications, a pixel of an image is a
data point represented by the two-dimensional pixel coordinates

in the spatial domain and the pixel values , such

Fig. 2. Gradient images of a defective solar wafer. (a) Defective solar wafer
image. (b) Gradient image of (a). (c) Binarization result of (b) with a tight gra-
dient threshold. (d) Binarization result of (b) with a loose gradient threshold.

as gray-level or RGB color features, in the range domain. The
kernel is defined as the product of the spatial profile
and the range profile

(8)

where is the spatial bandwidth for feature vector and
is the range bandwidth for feature vector . A common profile

is usually used for and in both domains.

B. Proposed Multicrystalline Solar Wafer Inspection Scheme

A multicrystalline solar wafer shows random multi-grain tex-
tures in the image. The grain patterns are different from wafer
to wafer. No two wafers have the same patterned surfaces. The
conventional mean-shift filtering that works on the gray-level
image cannot remove all the grains and preserve only anoma-
lies in the smoothed image since the multigrain background and
the defects show no gray-level difference. The mean-shift seg-
mentation can only best divide each grain in the solar wafer into
individual region, and does not provide any direct cue for defect
detection.

There are various types of defects found on multicrystalline
solar wafers such as cracks, holes, oil stains, and fingerprints.
Different defect types may need different detection strategies
for the inspection. In this study, we especially aim at the de-
fects of fingerprints and contamination. By closely observing
the solar wafer images in Fig. 1, one can find that the edges be-
tween crystal grains are clear and sharp. The grain edges in a
small spatial window show only a few direction changes. How-
ever, the intrusion objects on the silicon wafer generally do not
present sharp edges. A fingerprint or a contamination defect
involves many smaller disjointed regions and present blurred
edges. Fig. 2(a) demonstrates a sample solar wafer that contains
a fingerprint on the upper-right portion of the image. The finger-
print does not show clear edges and consistent edge directions.
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Since the gray levels in the original wafer image do not provide
sufficient information for the discrimination between defective
and defect-free regions, the entropy of gradient directions of all
edge points in a small neighborhood window is first calculated
to convert the gray-level image into an entropy image. A de-
fect-free region presents more consistent edge directions and re-
sults in a small entropy value. A defective region shows a high
variation of edge directions and yields a large entropy value.
The mean-shift filtering is then proceeded in the entropy image
to remove noise and smooth defect-free grain edges. A simple
adaptive threshold can then be applied to distinguish defective
edge points from the background points in the filtered entropy
image.

1) Conversion of Direction Entropy: Let be an edge
point, which is detected by the Canny edge detector [52] in this
study. Fig. 2(b) shows the gradient image of the defective solar
wafer in Fig. 2(a). Fig. 2(c) and (d) display the detected edges
as binary images for Fig. 2(b) with a small gradient threshold
(a gradient magnitude of 10) and a large gradient threshold (a
gradient magnitude of 40), respectively. The results show that
the defect region cannot be simply identified from the gradient
image.

The gradient direction for an edge point with its orig-
inal gray-level is given by

(9)

where ;
. The gradient angle is further extended in

the range between 0 and 360 by considering the signs of
and .

Denote by the probability of gradient angle in interval
in a small neighborhood window. In this study, the histogram

of gradient angles is divided into 100 intervals and the neighbor-
hood window is of size 19 19 pixels. The entropy of gradient
directions for each edge point in a small neighborhood
window is defined as

(10)

The entropy of a non-edge point is set to zero. Now
the original gray-level image is converted to an entropy
image .

Fig. 3(a) shows the solar wafer image containing a fingerprint
defect, in which square A marks a defect-free region and square
B marks a portion of the fingerprint. Fig. 3(b) and (c) present,
respectively, the histograms of gradient angles for squares A and
B. Due to the horizontal grain edges in square A, the gradient
histogram of square A is more concentrated at 90 , whereas the
gradient angles are more uniformly distributed in all directions
for square B. These result in an entropy of 3.56 for the defect-
free region of square A, and 4.09 for the defective region of
square B. Fig. 3(d) and (e) further depict the gradient angles
of squares A and B in 3D perspective. A simple thresholding
cannot be directly applied to the entropy image to distinguish
the difference between defect-free and defective regions.

2) Mean-Shift Filtering for Grain Edge Removal: In order
to remove the noisy points generated from the grain edges in

Fig. 3. Distributions of gradient angles in defect-free and defective regions
of a solar wafer: (a) solar wafer image, where dotted frame A is defect-free
and dotted frame B contains a portion of the fingerprint; (b), (c) histograms of
gradient angles for defect-free region A and defective region B, respectively;
(d), (e) plots of gradient angles in 3D perspective for regions A and B,
respectively.

the entropy image, the mean-shift filtering is performed on the
entropy image. The mean-shift process assigns a background
value (i.e., the mode) to the normal grain edges, while pre-
serving the entropy values of defective edges. A simple adaptive
threshold based on the mean and standard deviation of entropy
values in the whole filtered image is then used for identifying
the defective points from the background in the image. In this
study, the simple uniform kernel is used in the mean-shift pro-
cedure. The Gaussian kernel generates similar detection results.
The proposed mean-shift scheme for defect detection in solar
wafer surfaces with heterogeneous textures is expressed in de-
tail as follows.

Algorithm:

Input: image of size to be inspected
spatial bandwidth
range (entropy) bandwidth

termination threshold of the mean-shift iterations
Step 1. Convert the gray-level image into the entropy

image , for and
using (9) and (10).

Step 2. Perform the mean-shift filtering on the entropy image
pixel by pixel, for and

. For each pixel , find the
converged location . Replace the entropy value

with . It iterates as follows.
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Step 2a. Assign the kernel center.
Let

where , and ;
is the current iteration number with an initial value of

one; is the current center of the kernel.
Step 2b. Compute the kernel weight of pixel
within the spatial window defined by

if
otherwise

for all .
Step 2c. Update the weighted mean

where .
Step 2d. Calculate the mean shift

where

If , then let and repeat steps –
until it is converged.
Otherwise, let , ,

Step 3. Identify defect points in the filtered image by a simple
adaptive threshold. The entropy threshold is given by
the statistical control limit, and is defined as

where and are the mean and standard deviation
of the whole filtered entropy image, and is a control
constant. If , then pixel

is a defective point. Otherwise, it is classified as
a defect-free point.

Fig. 4(a1) and (b1) show the gray-level images of
a defect-free wafer and a defective one, respectively.
Fig. 4(a2) and (b2) are the corresponding entropy images
of Fig. 4(a1) and (b1), where the brightness is proportional to
the entropy magnitude. Fig. 4(a3) and (b3) are the smoothed
entropy images after mean-shift filtering. The filtering results

Fig. 4. Solar wafer surface inspection using the proposed defect detec-
tion scheme: (a1) defect-free solar wafer image; (b1) defective solar wafer
image; (a2), (b2) entropy images ���� �� of (a1) and (b1), respectively;
(a3), (b3) respective smoothed results of (a2) and (b2) after mean-shift filtering;
(a4), (b4) corresponding binarization results of (a3) and (b3) with threshold
� � � � � .

show that the entropy values in the normal grain regions are
effectively smoothed, and the entropy values in the fingerprint
region is distinctly highlighted. The threshold results are shown
as binary images in Fig. 4(a4) and (b4). The fingerprint region
is well identified, and no defect points are declared in the
defect-free solar wafer.

C. Choice of Mean-Shift Parameter Values

The most difficult task in the use of mean-shift filtering
is the choice of parameter values for spatial bandwidth ,
range bandwidth and the termination threshold . The
spatial bandwidth determines the spatial window for the
neighboring pixels to consider. It is relatively easy to choose
based on the geometric requirement. In the entropy image
of a solar wafer, the noisy background cannot be sufficiently
smoothed if the selected spatial window is too small. A small

value is computationally more efficient. The computation
load increases as the value increases.
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The termination threshold of the mean-shift process is
based on the mean-shift magnitude in the feature space in two
consecutive iterations. That is

where and are related to the spatial bandwidth and
is associated with the range (entropy) bandwidth . The termi-
nation threshold is therefore adaptively expressed as a function
of and . Once the spatial bandwidth and the range band-
width are determined, it is given by

(11)

where is a percentage constant between 0% and 100%.
Among the three parameters , , and , the most critical

one is the range bandwidth for defect detection applications.
Rather than trial-and-error, a more systematic approach is re-
quired for automatic selection of a proper range bandwidth for
specific surfaces. In defect detection applications, an value
larger than the maximum difference of feature values will cause
no false positive points in a defect-free surface. Therefore, the
number of noisy points will decrease as the range bandwidth in-
creases. However, an excessively large value reduces the dis-
crimination power to identify the defect points. In this study, the
range bandwidth is automatically learned from a set of de-
fect-free test samples. The objective is to find a minimum range
bandwidth under the constraints that all defect-free test images
generate no noisy points. Let , , be a set of
defect-free test images. The optimization model for range band-
width selection is formulated as

(12)

where is the entropy of gradient directions for pixel
in test image .

Generally, the possible values of are limited in a very
small range. An exhaustive search with a given resolution can be
easily carried out to find the optimal value of . In this study,
the range bandwidth is associated with the entropy. A small res-
olution of 0.1 is used to find the best value. The selected
value from the optimization model achieves a best discrimina-
tion power for defect detection, while maintaining the stability
for defect-free samples.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results on a number
of heterogeneous solar wafer surfaces. The proposed algo-
rithms are implemented on a Pentium Core2 Duo, 3.0 GHz
personal computer using the C++ language. The test images
are 256 256 pixels wide with 8-bit gray levels. The spatial
resolution of the image is 0.09 mm per pixel. The mean com-
putation time is 2.0 s for a 256 256 solar wafer image. In
order to demonstrate the effectiveness of the proposed methods,
no smoothing preprocessing is applied to the input gray-level
images and no morphological postprocessing is used to remove

Fig. 5. Effect of changes in spatial bandwidth � on solar wafer sur-
faces: (a1) defect-free solar wafer image; (b1) defective solar wafer image;
(a2)–(a4) detection results with � � ��, 20 and 25 for the defect-free image in
(a1); (b2)–(b4) detection results with the respective � values for the defective
image in (b1). (a2) � � �� (a3) � � �� (a4) � � �� (b2) � � �� (b3)
� � �� (b4) � � ��.

noise and connect blobs in the resulting binary images. In
Sections III-A–III-E, the effects of changes in parameter values
of , , , and neighborhood window size are separately
evaluated.

A. Effect of Changes in Spatial Bandwidth

The spatial bandwidth determines the number of neigh-
boring pixels used in the kernel. A small spatial bandwidth
causes a fast convergence of the mean-shift process. The early
termination of mean-shift filtering with a small value may
not sufficiently smooth the background and results in noisy
points. A very large value may oversmooth the entropy
image and reduce the detected size of a defect.

Fig. 5(a1) and (b1) show a defect-free and a defective solar
wafer image, respectively. Given that (determined
by the automatic selection model), for the
termination threshold and for the control limit,
Fig. 5(a2)–(a4) and (b2)–(b4) present the detection results with
varying spatial bandwidth values of , 20, and 25.
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Fig. 6. Effect of changes in range bandwidth � on solar wafer sur-
faces: (a1) defect-free solar wafer image; (b1) defective solar wafer image;
(a2)–(a4) detection results with � � ���, 4.0 and 4.1 for the defect-free
image in (a1); (b2)–(b4) detection results with the respective � values for the
defective image in (b1). (a2) � � ��� (a3) � � ��� (a4) � � ��� (b2)
� � ��� (b3) � � ��� (b4) � � ���.

The proposed inspection schemes are not sensitive to the
changes in spatial bandwidth. The fingerprint defect is reliably
detected, regardless of the values in the experiment. A small
spatial bandwidth generates some minor noisy points for the
defect-free test images, as seen in Fig. 5(a2) with .

B. Effect of Changes in Range Bandwidth

In this paper, we have proposed an automatic selection model
to determine the best range bandwidth for defect detection. In
this section, the effect of varying range bandwidth in the neigh-
borhood of on the detection results is evaluated. The spatial
bandwidth is set to 20 based on the experimental results in
Section III-A. All remaining parameters and
are the same as those in the previous experiment.

Fig. 6(a1) and (b1) show the same defect-free and de-
fective solar wafer images as those in Fig. 5(a1) and (b1).
The range bandwidth of entropy varies with , 4.0
and 4.1, where is the best range bandwidth given
by the automatic selection model. The detection results in
Fig. 6(a2)–(a4) and (b2)–(b4) show that the fingerprint defect

Fig. 7. Effect of changes in termination threshold � on solar wafer surfaces:
(a1) defect-free solar wafer image; (b1) defective image; (a2)–(a4) detection
results with � � ��, 0.1% and 0.01% for the defect-free image in (a1);
(b2)–(b4) detection results with the respective � values for the defective image
in (b1). (a2) � � �� (a3) � � ���� (a4) � � ����� (b2) � � �� (b3)
� � ���� (b4) � � �����.

can be reliably detected with various values. A small range
bandwidth generates a few isolated noisy points, as seen in
Fig. 6(a2). A large range bandwidth reduces the actual size
of the defect, as observed in Fig. 6(b4). The experimental
results reveal that the range bandwidth is a critical factor for
the success of defect detection, and the proposed automatic
selection model can indeed choose a best value for solar
wafer inspection.

C. Effect of Changes in Termination Threshold

Mean shift is an iterative algorithm. One has to specify a ter-
mination criterion and check for the convergence of each pixel
in the image. In this study, the termination threshold is adap-
tively given by a constant fraction of , i.e., ,
with . In this experiment, all the param-
eter values (spatial bandwidth , range bandwidth and con-
trol constant ) are chosen based on the best values found in
Sections III-A and III-B.

Fig. 7 displays the detection results of the solar wafer images
with , 0.1% and 0.01%. The resulting binary images
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Fig. 8. Effect of changes in windows size for the computation of direction en-
tropy: (a) fingerprint image for the test; (b)–(d) detected fingerprint regions with
window sizes of 15� 15, 19� 19 and 23� 23, respectively; (e)–(g) defect re-
gions detected manually (solid-white lines for the ground truth region) and al-
gorithmically (dotted-black lines). (b) 15� 15 (c) 19� 19 (d) 23� 23.

indicate that the proposed mean-shift defect detection scheme
are not sensitive to the changes of value for the termination
threshold . The values in the range between 1% and 0.01%
all generate similar detection results for solar wafer surfaces.
The proposed termination threshold as a small percentage of

can effectively determine the required convergence for
defect-free and defective pixels in the inspection image. A tight

value (e.g., ) generally results in less noise, but
induces more mean-shift iterations. A value of 0.1% has gen-
erally performed well for various test surfaces, and is recom-
mended for the mean shift-based defect detection scheme.

D. Effect of Changes in Window Sizes for Entropy Feature

In order to evaluate the effect of changes in the neighborhood
window for the computation of direction entropy, the fingerprint
image in Fig. 8(a) is used as the test sample, and the detection
results with window sizes 15 15, 19 19, and 23 23 are pre-
sented in Fig. 8(b)–(d), respectively. All three window sizes can
detect the fingerprint. A small neighborhood window tends to
reduce the detected defect size, whereas a large neighborhood
window enlarges the defect size and may generate noise. The
effect of changes in window size is also analyzed with receiver
operating characteristic curves in Section III-E.

To further verify the detected defect size with respect to the
ground truth region, Fig. 8(e)–(g) shows the defect regions de-
tected algorithmically and manually, where the solid-white lines
are the ground-truth regions and the dotted-black lines are the

detected regions. When the fingerprint is clear in the wafer sur-
face, it can be well identified and the detected contour is consis-
tent with the manually marked region. For the fingerprint lying
between multiple grains regions, the print is light and is hardly
visible. The proposed method thus misdetects this portion of the
fingerprint.

E. More Testing Results

The efficacy of the proposed defect detection methods with
the best parameter values found in the previous experiments
is demonstrated with more solar wafer images. Fig. 9 shows a
set of 8 multicrystalline solar wafers, where (a1)–(d1) are de-
fect-free images, and (e1)–(f1) contain fingerprint defects and
(g1)–(h1) present contamination defects. The detection result of
Fig. 9(a1)–(h1) are shown as binary images in Fig. 9(a2)–(h2),
respectively. The hardly identifiable defects in all defective test
images are well segmented. The resulting binary images of de-
fect-free test images are uniformly white and no defects are de-
clared. The proposed method can be well applied to defect de-
tection in solar wafer surfaces, where defects present high gra-
dient direction variation with respect to the crystal grain edges.

In order to further verify the detection performance of the pro-
posed method, a total of 130 test samples are evaluated. The
test set contains 10 fingerprint samples, 20 contamination sam-
ples of various sizes, and 100 defect-free wafer images with
random grain patterns. In the experiment, an image under test
is declared as defective if there are any black pixels in the re-
sulting binary image. Only the one with all white pixels in the
entire binary image is claimed to be defect-free. Morpholog-
ical operations could be carried out to eliminate noisy points in
the binary image. However, the postprocessing operations are
not applied in the experiment to show the robustness of the pro-
posed algorithm. With the same parameter setting of ,

, and , all the 30 defective im-
ages are correctly detected and the false negative rate is 0. Only
one of the 100 defect-free images is falsely identified and the
corresponding false positive rate is 1%. The receiver operating
characteristic (ROC) curves of the proposed method for the 130
test samples are also evaluated. The proposed algorithm aims at
the detection of presence/absence of defects in an image and,
thus, the ROC curve is analyzed at the image level. Since the
parameters and are insensitive to the detection results, we
present only the ROC curves for varying range bandwidth
of 3.9, 4.0, and 4.1 in Fig. 10(a). For a given range bandwidth
value, the ROC curve is constructed by varying the control con-
stant from a very small number (with a true positive rate of
1) to a very large number (with a false positive rate of zero). The
ROC curve rises swiftly upward with and indicates a
very good performance of the proposed method.

Fig. 10(b) further shows the ROC curves of the proposed
method for the 130 test images with varying window sizes of
15 15, 19 19, and 23 23. In the 30 defective images, the
defect sizes range from 543 pixels (0.8% of the whole image
area) to 13502 pixels (20% of the image). The window size of
19 19 gives the best performance. All the defects of varying
sizes can be detected with this setting. A larger window size of
23 23 tends to have better performance than a smaller window
size of 15 15.



TSAI AND LUO: MEAN SHIFT-BASED DEFECT DETECTION IN MULTICRYSTALLINE SOLAR WAFER SURFACES 133

Fig. 9. Detection results of multicrystalline solar wafers: (a1)–(d1) four defect-free wafer images; (e1)–(f1) fingerprint images; (g1)–(h1) contamination images;
(a2)–(h2) respective binarization results for wafer images in (a1)–(h1).

Fig. 10. ROC curves of the proposed method with (a) varying range bandwidth
� and (b) varying window size for entropy computation.

IV. CONCLUSION

This paper has presented a mean shift-based machine vision
method for detecting fingerprint and contamination defects in
multicrystalline solar wafers. The defect types involve random
gradient directions, whereas the normal grain edges generally
present more consistent gradient directions in a small spatial

window. The entropy of gradient directions is then used as the
range feature. The pixel coordinates along with the entropy form
the feature space of the image. The mean-shift smoothing can
effectively remove noise and residuals of crystal grain edges and
preserve only the defective pixels in the filtered image. A simple
adaptive threshold can thus be used to segment the defective
region in the filtered entropy image.

Currently, the mean computation time of the proposed
method is 2.0 s for a 256 256 solar wafer image with a pure
software implementation. A hard-wired implementation of the
algorithm may be required for online inspection in manufac-
turing. The computation of the proposed algorithm mainly
depends on the number of recursive mean-shift operations. The
effective adjustment of spatial and range bandwidths under a
given small number of mean-shift iterations should be further
studied so that the computational load can be significantly
reduced.

Experimental results have shown that the proposed defect de-
tection scheme can perform well for identifying fingerprint and
contamination in multicrystalline solar wafers. However, it is
currently limited to the defect types that involve high gradient
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direction variation. It cannot be directly extended to other de-
fect types such as cracks that show only line-shaped figures
and present a low variation in gradient directions. Different dis-
crimination features may be needed for different types of de-
fects to construct the vector-valued feature image. The proposed
mean-shift process can then be applied to smooth the feature
values in the background and retain the feature values of local
anomalies. It is worthy of further investigation.

REFERENCES

[1] T. S. Newman and A. K. Jain, “A survey of automated visual in-
spection,” Computer Vision and Image Understanding, vol. 61, pp.
231–262, Mar. 1995.

[2] J. Wilder, “Finding and evaluating defects in glass,” in Machine Vision
for Inspection and Measurement, H. Freeman, Ed. New York: Aca-
demic Press, 1989, pp. 237–237.

[3] J. Olsson and S. Gruber, “Web process inspection using neural clas-
sification of scattering light,” in Proc. IEEE Int. Conf. Ind. Electron.,
Control, Instrum. Autom., San Diego, CA, 1992, pp. 1443–1448.

[4] X. Xie, “A review of recent advances in surface defect detection using
texture analysis techniques,” Electron. Lett. Computer Vision and
Image Analysis, vol. 7, pp. 1–22, 2008.

[5] D. Brzakovic, H. Beck, and N. Sufi, “An approach to defect detection
in materials characterized by complex textures,” Pattern Recogn., vol.
23, pp. 99–107, 1990.

[6] F. S. Cohen, “Maximum likelihood unsupervised textured image seg-
mentation,” CVGIP: Graphical Models Image Process, vol. 54, pp.
239–251, 1992.

[7] M. M. Van Hulle and T. Tollenaere, “A modular artificial neural net-
works for texture processing,” Neural Networks, vol. 6, pp. 7–32, 1993.

[8] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Texture features for
image classification,” IEEE Trans. Syst., Man, Cybernetics, vol. 3, pp.
610–621, 1973.

[9] R. W. Conners, C. W. McMillin, K. Lin, and R. E. Vasquez-Espinosa,
“Identifying and locating surface detects in wood,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. PAMI-5, pp. 573–583, 1983.

[10] L. H. Siew and R. M. Hogdson, “Texture measures for carpet wear
assessment,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 10, pp.
92–105, 1988.

[11] K. V. Ramana and B. Ramamoorthy, “Statistical methods to compare
the texture features of machined surfaces,” Pattern Recogn., vol. 29,
pp. 1447–1459, 1996.

[12] A. Bodnarova, J. Williams, M. Bennamoun, and K. Kubik, “Optimal
textural features for flaw detection in textile materials,” in Proc. IEEE
TENCON’97 Conf., Brisbane, Queensland, 1997, pp. 13–18.

[13] S. S. Liu and M. E. Jernigan, “Texture analysis and discrimination in
additive noise, computer vision,” Graphics, Image Process, vol. 49, pp.
52–67, 1990.

[14] R. Azencott, J. P. Wang, and L. Younes, “Texture classification using
windowed Fourier filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
19, no. 2, pp. 148–153, Feb. 1997.

[15] J. Escofet, M. S. Millan, H. Abril, and E. Torrecilla, “Inspection
of fabric resistance to abrasion by Fourier analysis,” in Proc. SPIE,
Brugge, Belgium, 1998, vol. 3490, pp. 207–210.

[16] C.-H. Chan and K.-H. Pang, “Fabric defect detection by Fourier anal-
ysis,” IEEE Trans. Ind. Appl., vol. 36, no. 5, pp. 1267–1276, Sep./Oct.
2000.

[17] T. Ohshige, H. Tanaka, Y. Miyazaki, T. Kanda, H. Ichimura, N.
Kosaka, and T. Tomoda, “Defect inspection system for patterned
wafers based on the spatial-frequency filtering,” in Proc. IEEE/CHMT
Eur. Int. Electronic Manuf. Technol. Symp., New York, 1991, pp.
192–196.

[18] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
11, no. 7, pp. 674–693, Jul. 1989.

[19] T. Chen and C. C. J. Kuo, “Texture analysis and classification with
tree-structured wavelet transform,” IEEE Trans. Image Processing, vol.
2, no. 4, pp. 429–441, Oct. 1993.

[20] C. H. Chen and G. G. Lee, “On digital mammogram segmentation and
microcalcification detection using multiresolution wavelet analysis,”
Graphical Models Image Process, vol. 59, pp. 349–364, 1997.

[21] K. Maruo, T. Shibata, T. Yamaguchi, M. Ichikawa, and T. Ohmi, “Au-
tomatic defect pattern detection on LSI wafers using image processing
techniques,” IEICE Trans. Electronics, vol. E82-C, pp. 1003–1012,
1999.

[22] H. Sari-Sarraf and J. Goddard, “Vision systems for on-loom fabric
inspection,” IEEE Trans. Industry Applications, vol. 35, no. 6, pp.
1252–1259, Nov./Dec. 1999.

[23] J. Scharcanski, “Stochastic texture analysis for monitoring stochastic
processes in industry,” Pattern Recogn. Lett., vol. 26, pp. 1701–1709,
2005.

[24] X. Yang, G. Pang, and N. Yung, “Robust fabric defect detection and
classification using multiple adaptive wavelets,” IEE Proc. Vision,
Image Processing, vol. 152, pp. 715–723, 2005.

[25] G. Lambert and F. Bock, “Wavelet methods for texture defect detec-
tion,” in Proc. IEEE Int. Conf. Image Process., Washington, DC, 1997,
vol. 3, pp. 201–204.

[26] J. G. Daugman, “Uncertainty relation for resolution in space, spatial-
frequency, and orientation optimized by two-dimensional visual cor-
tical filters,” J. Opt. Soc. Amer., vol. 2, pp. 1160–1169, 1985.

[27] M. Clark and A. C. Bovik, “Texture segmentation using Gabor modu-
lation/demodulation,” Pattern Recogn. Lett., vol. 6, pp. 261–267, 1987.

[28] D. A. Clausi and M. E. Jernigan, “Designing Gabor filters for optimal
texture separability,” Pattern Recogn., vol. 33, pp. 1835–1849, 2000.

[29] W. Polzleitner and G. Schwingskakl, “Quality classification of wooden
surfaces using Gabor filters and genetic feature optimization,” in Proc.
SPIE, Boston, MA, 1999, vol. 3837, pp. 220–231.

[30] G. Paschos, “Fast color texture recognition using chromaticity mo-
ments,” Pattern Recogn. Lett., vol. 21, pp. 837–841, 2000.

[31] K. Wiltschi, A. Pinz, and T. Lindeberg, “Automatic assessment scheme
for steel quality inspection,” Mach. Vision Appl., vol. 12, pp. 113–128,
2000.

[32] A. Bodnarova, M. Bennamoun, and S. J. Latham, “Constrained min-
imization approach to optimize Gabor filters for detecting flaws in
woven textiles,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing, Istanbul, Turkey, 2000, vol. 6, pp. 3606–3609.

[33] A. Kumar and G. Pang, “Defect detection in textured materials using
Gabor filters,” IEEE Trans. Ind. Appl., vol. 38, no. 2, pp. 425–440,
Mar./Apr. 2002.

[34] A. Bodnarova, M. Bennamoun, and S. Latham, “Optimal Gabor fil-
ters for textile flaw detection,” Pattern Recog., vol. 35, pp. 2973–2991,
2002.

[35] A. Kumar and G. Pang, “Defect detection in textured materials using
optimized filters,” IEEE Trans. Syst., Man, Cyber.-Part B: Cybern., vol.
32, no. 5, pp. 553–570, Oct. 2002.

[36] X. Xie and M. Mirmehdi, “TEXEMS: Texture exemplars for defect de-
tection on random textured surfaces,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 8, pp. 1454–1464, Aug. 2007.

[37] P. T. Bourgeat, F. Meriaudeau, K. W. Tobin, Jr, and P. Gorria, “Pat-
terned wafer segmentation,” in Proc. SPIE, 2003, vol. 5132, pp. 36–44.

[38] N. G. Shankar and Z. W. Zhong, “Defect detection on semiconductor
wafer surfaces,” Microelectron. Eng., vol. 77, pp. 337–346, 2005.

[39] C.-T. Su, T. Yang, and C.-M. Ke, “A neural network approach for semi-
conductor wafer post-sawing inspection,” IEEE Trans. Semiconductor
Manuf., vol. 15, no. 2, pp. 260–266, May 2002.

[40] B. H. Khalaj, H. K. Aghajan, and T. Kailath, “Patterned wafer inspec-
tion by high resolution spectral estimation techniques,” Mach. Vision
Appl., vol. 7, pp. 178–185, 1994.

[41] P. Xie and S.-U. Guan, “A golden-template self-generating method for
patterned wafer inspection,” Mach. Vision Appl., vol. 12, pp. 149–156,
2000.

[42] S.-U. Guan, P. Xie, and H. Li, “A golden-block-based self-refining
scheme for repetitive patterned wafer inspections,” Mach. Vision Appl.,
vol. 13, pp. 314–321, 2003.

[43] N. G. Shankar and Z. W. Zhong, “Improved segmentation of semicon-
ductor defects using area sieves,” Mach. Vision Appl., vol. 17, pp. 1–7,
2006.

[44] K. Fukunaga and L. D. Hostetler, “The estimation of the gradient of a
density function, with applications in pattern recognition,” IEEE Trans.
Inform. Theory, vol. 21, no. 1, pp. 32–40, Jan. 1975.

[45] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
24, no. 5, pp. 603–619, May 2002.

[46] G. Hu, Q. Peng, and A. R. Forrest, “Mean shift denoising of point-
sampled surfaces,” Visual Computer, vol. 22, pp. 147–157, 2006.

[47] W. Liu, Y. Duan, K. Shao, and L. Zhang, “Image smoothing based on
the mean shift algorithm,” in Proc. IEEE Int. Conf. Control Autom.,
Guangzhou, China, 2007, pp. 1349–1353.



TSAI AND LUO: MEAN SHIFT-BASED DEFECT DETECTION IN MULTICRYSTALLINE SOLAR WAFER SURFACES 135

[48] J. Wang, B. Thiesson, Y. Xu, and M. Cohen, “Image and video seg-
mentation by anisotropic kernel mean shift,” Lecture Notes in Com-
puter Science, vol. 3022, pp. 238–249, 2004.

[49] W. Tao, H. Jin, and Y. Zhang, “Color image segmentation based on
mean shift and normalized cuts,” IEEE Trans. Syst., Man Cybern., vol.
37, no. 5, pp. 1382–1389, Oct. 2007.

[50] B. Georgescu, I. Shimshoni, and P. Meer, “Mean shift based clustering
in high dimensions: A texture classification example,” in Proc. IEEE
Int. Conf. Comput. Vision, Nice, France, 2003, vol. 1, pp. 456–463.

[51] M. F. A. Fauzi and P. H. Lewis, “Automatic texture segmentation for
content-based image retrieval application,” Pattern Anal. Appl., vol. 9,
pp. 307–323, 2006.

[52] J. F. Canny, “A computational approach to edge detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI–8, no. 6, pp. 679–698,
NOV. 1986.

Du-Ming Tsai received the B.S. degree in industrial
engineering from Tunghai University, Taichung,
Taiwan, in 1981, and the M.S. and Ph.D. degrees in
industrial engineering from Iowa State University,
Ames, in 1984 and 1987, respectively.

From 1988 to 1990, he was a Principal Engineer at
the Digital Equipment Corporation, Taiwan branch,
where his work focused on process and automation
research and development. Currently, he is a Pro-
fessor of Industrial Engineering and Management
at the Yuan-Ze University, Tao-Yuan, Taiwan. His

research interests include automated visual inspection, object recognition, and
texture analysis.

Jie-Yu Luo received the B.S. degree in industrial
engineering and management from Aletheia Univer-
sity, Taipei, Taiwan, in 2007 and the M.S. degrees
in industrial engineering and management from the
Yuan-Ze University, Tao-Yuan, Taiwan, in 2009.

He is currently an Engineer with Chroma Ate Inc.,
Taiwan.


