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Abstract—In molecular communication (MC) systems, the
expected number of molecules observed at the receiver over time
after the instantaneous release of molecules by the transmitter
is referred to as the channel impulse response (CIR). Knowledge
of the CIR is needed for the design of detection and equalization
schemes. In this paper, we present a training-based CIR estima-
tion framework for MC systems which aims at estimating the
CIR based on theobserved number of molecules at the receiver
due to emission of asequence of known numbers of molecules
by the transmitter. In particular, we derive maximum likeli hood
(ML) and least sum of square errors (LSSE) estimators. We also
study the Cramer Rao (CR) lower bound and training sequence
design for the considered system. Simulation results confirm the
analysis and compare the performance of the proposed estimation
techniques with the CR lower bound.

I. I NTRODUCTION

Recent advances in biology, nanotechnology, and
medicine have enabled the possibility of communication in
nano/micrometer scale environments [1]. Thereby, employing
molecules as information carriers, molecular communication
(MC) has quickly emerged as a bio-inspired approach for
man-made communication systems in such environments. In
fact, calcium signaling among neighboring cells, the use of
neurotransmitters for communication across the synaptic cleft
of neurons, and the exchange of autoinducers as signaling
molecules in bacteria for quorum sensing are among the
many examples of MC in nature [1].

A. Motivation

The design of any communication system crucially depends
on the characteristics of the channel under consideration.In
MC systems, the impact of the channel on the number of
observed molecules can be captured by the channel impulse
response (CIR) which is defined as theexpected number
of molecules counted at the receiver at timet after the
instantaneous release of a known number of molecules by
the transmitter at timet = 0. The CIR, denoted bȳc(t),
can be used as the basis for the design of equalization and
detection schemes for MC systems [2]–[4]. For diffusion-
based MC, the released molecules move randomly according
to Brownian motion which is caused by thermal vibration
and collisions with other molecules in the fluid environment.
Thereby, the average concentration of the molecules at a given
coordinatea = [ax, ay, az] and at timet after release by the
transmitter, denoted bȳC(a, t), is governed by Fick’s second
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law of diffusion [3]. Finding C̄(a, t) analytically involves
solving partial differential equations and depends on initial
and boundary conditions. Therefore, one possible approach
for determining the CIR, which is widely employed in the
literature [4], is to first derive a sufficiently accurate analytical
expression forC̄(a, t) for the considered MC channel from
Fick’s second law, and to subsequently integrate it over the
receiver volume,V rec, i.e.,

c̄(t) =

∫∫∫

a∈V rec

C̄(a, t)daxdaydaz. (1)

However, this approach may not be applicable in many prac-
tical scenarios as discussed in the following.

• The CIR can be obtained based on (1) only for the
special case of a fullytransparent receiver where it is
assumed that the molecules move through the receiver as
if it was not present in the environment. The assumption
of a fully transparent receiver is a valid approximation
only for some particular scenarios where the interaction
of the receiver with the molecules can be neglected.
However, for general receivers, the relationship between
the concentrationC̄(a, t) and the number of observed
molecules̄c(t) may not be as straightforward.

• Solving the differential equation associated with Fick’s
second law is possible only for simple and idealistic
environments. For example, assuming apoint source
located at the origin of anunbounded environment and
impulsive molecule release,̄C(a, t) is obtained as [4]

C̄(a, t) =
N TX

(4πDt)
3/2

exp

(

−
|a|2

4Dt

) [

molecules

m3

]

,(2)

whereN TX is the number of molecules released by the
transmitter att = 0 andD is the diffusion coefficient of
the signaling molecule. However,̄C(a, t) cannot be ob-
tained in closed form for most practical MC environments
which may involve difficult boundary conditions, non-
instantaneous molecule release, flow, etc. Additionally,
as has been shown in [5], the classical Fick’s diffusion
equation might even not be applicable in complex MC
environments as physicochemical interactions with other
objects in the channel, such as other molecules, cells, and
microvessels, are not accounted for.

• Even if an expression for̄C(a, t) can be obtained for a
particular MC system, e.g. (2), it will be a function of
several channel parameters such as the distance between
the transmitter and the receiver and the diffusion coef-
ficient. However, in practice, these parameters may not
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be known a priori and also have to be estimated [6], [7].
This complicates finding the CIR based onC̄(a, t).

Fortunately, for most communication problems, including
equalization and detection, only theexpected number of
molecules that the receiver observed at the sampling times
is needed [3], [4]. Therefore, knowledge of how the average
concentration is related to the channel parameters is not
required, and hence, the difficulties associated with deriving
C̄(a, t) can be avoided by directly estimating the CIR. Analyt-
ical expressions for the CIR for specific assumptions for the
transmitter, channel, and receiver are available in the literature.
For example, the CIR for an unbounded environment and a
fully absorbing receiver is given in [8]. However, for general
channel environments and receivers, a simple closed-form
expression for the expected number of observed molecules
c̄(t) may not exist. Even if such an expression can be derived,
it is only valid for a particular MC environment and is still
a function of several unknown parameters. Motivated by the
above discussion, our goal in this paper is to develop a
general CIR estimation framework for MC systems which is
not limited to a particular MC channel model or a specific
receiver type and does not require knowledge of the channel
parameters.

B. Related Work

In most existing works on MC, the CIR is assumed to
be perfectly known for receiver design [2]–[4], [9]. In the
following, we review the relevant MC literature that focused on
channel characterization. Estimation of the distance between a
transmitter and a receiver was studied in [6], [7] for diffusive
MC. In [10], an end-to-end mathematical model, including
transmitter, channel, and receiver, was presented, and in [11],
a stochastic channel model was proposed for flow-based and
diffusion-based MC. For active transport MC, a Markov chain
channel model was derived in [12]. Additionally, a unifying
model including the effects of external noise sources and inter-
symbol interference (ISI) was proposed for diffusive MC in
[13]. In [14], the authors analyzed a microfluidic MC channel,
propagation noise, and channel memory. However, the focus of
[6], [7], [10]–[14] is either channel modeling or the estimation
of channel parameters, i.e., the obtained results are not directly
applicable to CIR acquisition.

In contrast to MC, for conventional wireless communica-
tion, there is a rich literature on channel estimation, mainly for
linear channel models and impairment by additive white Gaus-
sian noise (AWGN), see [15], [16], and the references therein.
Channel estimation was also studied for non-linear and/or
non-AWGN channels especially in optical communication.
For example, for a photon-counting receiver, a linear time-
invariant channel model with Poisson noise was considered
in [17] and a non-linear channel model with Poisson noise
was investigated in [18]. However, the MC channel model
considered in this paper is neither linear nor impaired by
AWGN and is also different from that in [18]. Therefore, the
results known from conventional wireless communication are
not directly applicable to MC.

C. Contributions

In contrast to [6]–[14], in this paper, we directly estimate
the CIR based on the channel output, i.e., the number of
molecules observed at the receiver. To the best of the authors’
knowledge, this problem has not been studied in the MC
literature, yet. In particular, we present a training-based CIR
estimation framework which aims at estimating the CIR based
on the detected number of molecules at the receiver due to the
emission of a sequence of known numbers of molecules by the
transmitter. To this end, we first derive the optimal maximum
likelihood (ML) CIR estimator. Subsequently, we obtain the
suboptimal least sum of square errors (LSSE) CIR estimator
which entails a lower computational complexity than the
ML estimator. Additionally, we derive the Cramer Rao (CR)
bound which constitutes a lower bound on the estimation error
variance of any unbiased estimator. We also study training
sequence design for the considered MC system. Simulation
results confirm the analysis and evaluate the performance of
the proposed estimation techniques with respect to the CR
lower bound.

Notations: We use the following notations throughout this
paper: Ex{·} denotes expectation with respect to random
variable (RV)x and[x]+ = max{0, x}. Bold capital and small
letters are used to denote matrices and vectors, respectively.
1 and 0 are vectors whose elements are all ones and zeros,
respectively,AT denotes the transpose ofA, ‖a‖ represents
the norm of vectora, [A]mn denotes the element in them-th
row andn-th column of matrixA, tr{A} is the trace of matrix
A, diag{a} denotes a diagonal matrix with the elements of
vector a on its main diagonal,vdiag{A} is a vector which
contains the diagonal entries of matrixA, eig{A} is the
set of eigen-values of matrixA, A � 0 denotes a positive
semidefinite matrixA, anda ≥ 0 means that all the elements
of vectora are non-negative. Additionally,Poiss(λ) denotes
a Poisson RV with meanλ, andBin(n, p) denotes a binomial
RV for n trials and success probabilityp.

II. PROBLEM FORMULATION

In this section, we first present the considered MC channel
model, and subsequently, formulate the CIR estimation prob-
lem.

A. System Model

We consider an MC system consisting of a transmitter, a
channel, and a receiver. At the beginning of each symbol
interval, the transmitter releases eitherN TX or zero molecules,
i.e., ON-OFF keying is performed. In this paper, we assume
that the transmitter emits only one type of molecule. The
released molecules propagate through the medium between the
transmitter and the receiver. We assume that the movements
of individual molecules are independent from each other. The
receiver counts the number of observed molecules in each
symbol interval. We note that this is a rather general model for
the MC receiver which includes well-known receivers such as
the transparent receiver [4] and the absorbing receiver [8].

Due to the memory of the MC channel, inter-symbol
interference (ISI) occurs [13], [14]. In particular, ISI-free
communication is only possible if the symbol intervals are
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chosen sufficiently large such that the CIR fully decays to
zero within one symbol interval which severely limits the
transmission rate and results in an inefficient MC system
design. Therefore, taking into account the effect of ISI, we
assume the following input-output relation for the MC system

r[k] =

L
∑

l=1

cl[k] + cn[k], (3)

wherer[k] is the number of molecules detected at the receiver
in symbol intervalk, L is the number of memory taps of
the channel, andcl[k] is the number of molecules observed
at the receiver in symbol intervalk due to the release of
s[k−l+1]N Tx molecules by the transmitter in symbol interval
k − l + 1, wheres[k] ∈ {0, 1} holds. Thereby,cl[k] can be
well approximated by a Poisson RV with meanc̄ls[k− l+1],
i.e., cl[k] ∼ Poiss (c̄ls[k − l + 1]), see [2], [3]. Moreover,
cn[k] is the number of external noise molecules detected by
the receiver in symbol intervalk but not released by the
transmitter. Noise molecules may originate from interfering
sources which employ the same type of molecule as the
considered MC system. Hence,cn[k] can also be modeled as
a Poisson RV, i.e.,cn[k] ∼ Poiss (c̄n), wherec̄n = E {cn[k]}.

Remark 1: From a probabilistic point of view, we can
assume that each molecule released by the transmitter in
symbol intervalk− l+1 is observed at the receiver in symbol
interval k with a certain probability, denoted bypl. Thereby,
the probability thatn molecules are observed at the receiver
in symbol intervalk due to the emission ofN Tx molecules
in symbol intervalk − l + 1 follows a binomial distribution,
i.e., n ∼ Bin(N Tx, pl). Moreover, assumingN Tx → ∞ while
N Txpl , c̄l is fixed, the binomial distributionBin(N Tx, pl)
converges to the Poisson distributionPoiss(c̄l) [19]. This
is a valid assumption in MC since the number of released
molecules is often very large to ensure that a sufficient number
of molecules reaches the receiver. The same reasoning applies
to the noise molecules.

Unlike the conventional linear input-output model for chan-
nels with memory in wireless communication systems [15],
[16], the channel model in (3) is not linear sinces[k − l+ 1]
does not affect the observationr[k] directly but via Poisson
RV cl[k]. However, theexpectation of the received signal is
linearly dependent on the transmitted signal, i.e.,

r̄[k] = E {r[k]} =

L
∑

l=1

c̄ls[k − l + 1] + c̄n. (4)

We note that for a givens[k], in general, the actual number
of molecules observed at the receiver,r[k], will differ from
the expected number of observed molecules,r̄[k], due to the
intrinsic noisiness of diffusion.

B. CIR Estimation Problem

Let s = [s[1], s[2], . . . , s[K]]T be a training sequence of
lengthK. Here, we assume continuous transmission. There-
fore, in order to ensure that the received signal is only affected
by the training sequences and not by the transmissions in
previous symbol intervals, we only employr[k], k ≥ L, for
CIR estimation. Thereby, theK−L+1 samples used for CIR

estimation are given by

r[L] = Poiss (c̄1s[L]) + Poiss (c̄2s[L− 1]) + · · ·

+Poiss (c̄Ls[1]) + Poiss (c̄n) (5a)

r[L + 1] = Poiss (c̄1s[L+ 1]) + Poiss (c̄2s[L]) + · · ·

+Poiss (c̄Ls[2]) + Poiss (c̄n) (5b)
...

...

r[K] = Poiss (c̄1s[K]) + Poiss (c̄2s[K − 1]) + · · ·

+Poiss (c̄Ls[K − L+ 1]) + Poiss (c̄n) . (5c)

For convenience of notation, we definer = [r[L], r[L +
1], . . . , r[K]]T and c̄ = [c̄1, c̄2, . . . , c̄L, c̄n]

T , and fr(r|c̄, s)
is the probability density distribution (PDF) of observation
r conditioned on a given channel̄c and a given training
sequences. We assume that the CIR1, c̄, remains unchanged
for a sufficiently large block of symbol intervals during which
CIR estimation and data transmission are performed. However,
the CIR may change from one block to the next due to e.g.
a change in the distance between transmitter and receiver.
To summarize, in each block, the stochastic model in (3) is
characterized bȳc and our goal in this paper is to estimatec̄
based on the vector of random observationsr.

III. CIR ESTIMATION

In this section, we derive the ML and LSSE estimators as
well as the CR lower bound for CIR estimation in MC.

A. ML CIR Estimation

The ML CIR estimator chooses the CIR which maximizes
the likelihood of observation vectorr [19]. In particular, the
ML estimator is given by

ˆ̄cML = argmax
c̄≥0

fr(r|c̄, s). (6)

We assume that the observations in different symbol intervals
are independent, i.e.,r[k] is independent ofr[k′] for k 6= k′.
This assumption is valid in practice if the time interval between
two consecutive samples is sufficiently large, see [3] for a
detailed discussion. Moreover, from (3), we observe thatr[k]
is a sum of Poisson RVs. Hence,r[k] is also a Poisson RV with
its mean equal to the sum of the means of the summands, i.e.,
r[k] ∼ Poiss(r̄[k]) with r̄[k] = c̄n+

∑L
l=1 c̄ls[k−l+1] = c̄

T
sk

and sk = [s[k], s[k − 1], . . . , s[k − L + 1], 1]T . Therefore,
fr(r|c̄, s) is given by

fr(r|c̄, s) =
K
∏

k=L

(

c̄
T
sk

)r[k]
exp

(

−c̄
T
sk

)

r[k]!
. (7)

Maximizing fr(r|c̄, s) is equivalent to maximizing
ln(fr(r|c̄, s)) since ln(·) is a monotonically increasing
function. Hence, the ML estimate can be rewritten as

ˆ̄cML = argmax
c̄≥0

g(c̄) where (8)

g(c̄) ,
K
∑

k=L

[

− c̄
T
sk + r[k]ln

(

c̄
T
sk

)

]

.

1With a slight abuse of notation, in the following, we refer tovector c̄ as
the CIR although̄c also contains the mean of the noisec̄n.
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To present the solution of the above optimization problem
rigorously, we first define some auxiliary variables. LetA =
{A1,A2, . . . ,AN} denote a set which contains all possible
N = 2L+1 − 1 subsets of setF = {1, 2, · · · , L, n} except
the empty set. Here,An, n = 1, 2, . . . , N , denotes then-
th subset ofA. Moreover, letc̄An and s

An

k denote reduced-
dimension versions of̄c and sk, respectively, which contain
only the elements of̄c and sk whose indices are in setAn,
respectively.

Lemma 1: The ML estimator of the CIR for the considered
MC channel is given by Algorithm 1 where the following non-
linear system of equations is solved2 for differentAn

K
∑

k=L

[

r[k]

(c̄An)T sAn

k

− 1

]

s
An

k = 0. (9)

Proof: The problem in (8) is a convex optimization
problem in variablēc becauseg(c̄) is a concave function in̄c
and the feasible set̄c ≥ 0 is linear inc̄. In particular,ln

(

c̄
T
sk

)

is concave sincēcT sk is affine and the log-function is concave
[20, Chapter 3]. Therefore,g(c̄) is a sum of weighted concave
termsr[k]ln

(

c̄
T
sk

)

and affine terms̄cT sk which in turn yields
a concave function [20, Chapter 3]. For the constrained convex
problem in (8), the optimal solution falls into one of the
following two categories:

Stationary Point: In this case, the optimal solution is found
by taking the derivative ofg(c̄) with respect tōc and setting
c̄
F = c̄ and s

F
k = sk which leads to (9) forAn = F .

Note that this stationary point is the global optimal solution
of the unconstrained version of the problem in (8), i.e., when
constraint̄c ≥ 0 is dropped. Therefore, if̄cF is in the feasible
set, i.e.,c̄F ≥ 0 holds, it is also the optimal solution of the
constrained problem in (8) and hence, we obtainˆ̄cML = c̄

F .
Boundary Point: In this case, for the optimal solution, some

of the elements of̄c are zero. Since it is not a priori known
which elements are zero, we have to consider all possible
cases. To do so, we use auxiliary variablesc̄

An andsAn

k where
setAn specifies the indices of the non-zero elements ofc̄. For
a givenAn, we formulate a new problem by substitutingc̄An

andsAn

k for c̄ andsk in (8), respectively. The solution of the
new problem is now a stationary point not a boundary point
since a boundary point implies that some of the elements of
c̄
An are zero which yields a contradiction because we assumed

that c̄An includes the non-zero elements ofc̄. The stationary
point of the new problem can be found by taking the derivative
of g(c̄An) with respect toc̄An which leads to (9). Here, if
c̄
An ≥ 0 does not hold, we discard̄cAn , otherwise, it is a

candidate for the optimal solution. Therefore, we construct
the candidate ML CIR estimate, denoted byˆ̄cCAN, such that
the elements of̄̂cCAN whose indices are inAn are equal to the
values of the corresponding elements inc̄

An and the remaining
elements are equal to zero. The resultingˆ̄cCAN is saved in the
candidate setC. Finally, the ML estimate,̄̂cML, is given by that
ˆ̄cCAN in setC which maximizesg(c̄).

The above results are concisely summarized in Algorithm 1
which concludes the proof.

Remark 2: Let us assume a priori that allL taps and the

2The system of nonlinear equations in (9) can be solved using standard
mathematical software packages such as Mathematica.

Algorithm 1 ML/LSSECIR Estimatê̄cML/ˆ̄cLSSE

initialize An = F and solve(9)/(12) to find c̄
F

if c̄
F ≥ 0 then

Set ˆ̄cML = c̄
F /ˆ̄cLSSE = c̄

F

else
for ∀An 6= F do

Solve(9)/(12) to find c̄
An

if c̄
An ≥ 0 holds then

Set the values of the elements ofˆ̄cCAN, whose indices
are inAn, equal to the values of the corresponding
elements in̄cAn and the remaining elements equal
to zero;
Saveˆ̄cCAN in the candidate setC

else
Discardc̄An

end if
end for
Chooseˆ̄cML/ˆ̄cLSSE equal to that̂̄cCAN in the candidate set
C which maximizesg(c̄)/minimizes‖ǫ‖2

end if

noise mean are non-zero, i.e.,c̄ > 0. Thereby, the consistency
property of ML estimation [19, Chapter 4] implies that under
some regularity conditions, notably that the likelihood isa
continuous function of̄c and that̄c is not on the boundary of
the parameter set̄c ≥ 0, we obtainE

{

ˆ̄cML
}

→ c̄ asK → ∞.
In other words, the ML estimator is asymptotically unbiased.
Therefore, for large values ofK, the ML estimator becomes
sufficiently accurate such that none of the elements ofˆ̄cML is
zero. In this case, Algorithm 1 reduces to directly solving (9)
for An = F .

B. LSSE CIR Estimation

The LSSE CIR estimator chooses thatc̄ which minimizes
the sum of the square errors for the observation vectorr.
Thereby, the error vector is defined asǫ = r−E {r} = r−Sc̄

whereS = [sL, sL+1, . . . , sK ]T . In particular, the LSSE CIR
estimate can be written as

ˆ̄cLSSE = argmin
c̄≥0

‖ǫ‖2 = ‖r− Sc̄‖2. (10)

The square of the norm of the error vector is obtained as

‖ǫ‖2= tr
{

ǫǫT
}

= tr
{

(r− Sc̄)(r− Sc̄)T
}

= tr
{

S
T
Sc̄c̄

T
}

− 2tr
{

r
T
Sc̄

}

+ tr
{

rr
T
}

, (11)

where we used the following properties of the trace:tr {A} =
tr
{

A
T
}

and tr {AB} = tr {BA} [21]. The LSSE estimate
is given in the following lemma where we use the auxiliary
matrix S

An = [sAn

L , sAn

L+1, . . . , s
An

K ]T .
Lemma 2: The LSSE estimator of the CIR for the consid-

ered MC channel is given by Algorithm 1 where for a given
setAn, c̄An is obtained as

c̄
An =

(

(SAn)TSAn

)−1
(SAn)T r. (12)

Proof: The optimization problem in (10) is convex since
‖ǫ‖2 is quadratic in variablēc, S

T
S � 0 holds, and the

feasibility set c̄ ≥ 0 is linear in c̄ [20, Chapter 4]. Hence,
the constrained convex problem in (10) can be solved using a
similar methodology as was used to find the ML estimate in
Lemma 1. This leads to Lemma 2.
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Remark 3: The LSSE estimator employs in fact a linear
filter to computec̄An , i.e., c̄An = F

Anr where F
An =

(

(SAn)TSAn

)−1
(SAn)T . Moreover, since the training se-

quences is fixed, matrixFAn can be calculated offline and
then be used for online CIR estimation. Therefore, the calcu-
lation of ˆ̄cAn for the LSSE estimator in (12) is considerably
less computationally complex than the computation ofˆ̄cAn for
the ML estimator in (9) which requires solving a system of
nonlinear equations.

C. CR Lower Bound

The CR bound is a lower bound on the variance of any unbi-
ased estimator of a deterministic parameter [19]. In particular,
under some regularity conditions, the covariance matrix ofany
unbiased estimate of parameterc̄, denoted byC(ˆ̄c), satisfies

C
(

ˆ̄c
)

− I
−1 (c̄) � 0, (13)

where I (c̄) is the Fisher information matrix of parameter
vector c̄ where the elements ofI (c̄) are given by

[I (c̄)]i,j= −Er|c̄

{

∂2ln{fr(r|c̄, s)}

∂c̄[i]∂c̄[j]

}

. (14)

We note that for a positive semidefinite matrix, the diagonal
elements are non-negative, i.e.,

[

C(ˆ̄c) − I
−1 (c̄)

]

i,i
≥ 0.

Therefore, for an unbiased estimator, i.e.,E

{

ˆ̄c
}

= c̄ holds,
with the estimation error vector defined ase = c̄− ˆ̄c, the CR
bound provides the following lower bound on the sum of the
expected square errors

Er|c̄

{

‖e‖2
}

≥ tr
{

I
−1 (c̄)

}

= tr







[

K
∑

k=L

sks
T
k

c̄T sk

]−1






. (15)

Remark 4: We note that the ML and LSSE estimators in
Algorithm 1 are biased in general. Hence, the error variances
of the ML and LSSE estimates may fall below the CR bound.
However, asK → ∞, the ML and LSSE estimators become
asymptotically unbiased, cf. Remark 2, and the CR bound
becomes a valid lower bound. The asymptotic unbiasedness
of the proposed estimators is also numerically verified in
Section V, cf. Fig. 1.

IV. T RAINING SEQUENCEDESIGN

In the following, we present two different training sequence
designs for CIR estimation in MC systems.

A. LSSE-Based Training Sequence Design

We first consider a training sequence design which min-
imizes anupper bound on the average estimation error for
the LSSE estimator. First, we note that for training sequence
design, the estimation error has to be averaged over bothr

andc̄ since both are unknown, and hence, have to be modeled
as RVs. Again, we assume a priori that allL taps and the
noise mean are non-zero. Therefore, neglecting the information
that c̄ ≥ 0 has to hold in (10) yields an upper bound on the
estimation error for the LSSE estimator. This upper bound is
adopted here for the problem of sequence design since the
solution of (10) after dropping constraintc̄ ≥ 0 lends itself to
an elegant closed-form solution for the estimated CIR given

by ˆ̄cLSSEup =
(

S
T
S
)−1

Sr, which can be used as the basis for
either a computer-based search or even a systematic approach
to find good training sequences. Moreover, this upper bound
is tight asK → ∞ since ˆ̄cLSSE > 0 holds and we obtain
ˆ̄cLSSE = ˆ̄cLSSEup . In Fig. 3, we show numerically that even for
short sequence lengths, this upper bound is not loose.

Defining the estimation error aseLSSEup = c̄ − ˆ̄cLSSEup , the
expected square error norm is obtained as

Er,c̄

{

‖eLSSEup ‖2
}

= Er,c̄

{

tr

{

(

c̄−
(

S
T
S
)−1

S
T
r

)(

c̄−
(

S
T
S
)−1

S
T
r

)T
}}

= Er,c̄

{

tr
{

(

S
T
S
)−1

S
T
rr

T
S
(

S
T
S
)−1

}

−2tr
{

c̄r
T
S
(

S
T
S
)−1

}

+ tr
{

c̄c̄
T
}

}

. (16)

Next, we calculate the expectation over(r, c̄) in (16) in
two steps, first with respect tor conditioned onc̄ and then
with respect toc̄. To this end, we useEX {tr {AXB}} =
tr {AEX {X}B}, which is valid for general matricesA, B,
andX, andEx

{

xx
T
}

= λλ
T +diag{λ}, which is valid for

multivariate Poisson random vectorsx with covariance matrix
C(x) = diag{λ}. Hence,E

{

‖eLSSEup ‖2
}

can be calculated as

Ec̄Er|c̄

{

‖eLSSEup ‖2
}

= Ec̄

{

tr
{

(

S
T
S
)−1

S
T
(

Sc̄c̄
T
S
T
)

S
(

S
T
S
)−1

}

−2tr
{

c̄c̄
T
S
T
S
(

S
T
S
)−1

}

+ tr
{

c̄c̄
T
}

+tr
{

(

S
T
S
)−1

S
T diag {Sc̄}S

(

S
T
S
)−1

}

}

= Ec̄

{

tr
{

S
(

S
T
S
)−2

S
Tdiag {Sc̄}

}}

= tr
{

S
Tvdiag

{

S
(

S
T
S
)−2

S
T
}

µT
c̄

}

, (17)

whereµ
c̄
= Ec̄{c̄}.

Remark 5: The evaluation of the expression in (17) can be
numerically challenging due to the required inversion of matrix
S
T
S, especially when one of the eigen-values ofS

T
S is close

to zero. One way to cope with this problem is to eliminate all
sequences resulting in close-to-zero eigen-values for matrix
S
T
S during the search. Formally, we can adopt the following

search criterion for training sequence design

s
∗ = argmin

s∈S
tr
{

S
Tvdiag

{

S
(

S
T
S
)−2

S
T
}

µT
c̄

}

, (18)

whereS =
{

s
∣

∣|x| > ε, ∀x ∈ eig
{

S
T
S
}}

and ε is a small
number which guarantees that the eigen-values of matrixS

T
S

are not close to zero, e.g., in Section V, we chooseε = 10−9.

B. ISI-Free Training Sequence Design

One simple approach to estimate the CIR is to construct a
training sequence such that ISI is avoided during estimation.
In this case, in each symbol interval, the receiver will observe
molecules which have been released by the transmitter in only
one symbol interval and not in multiple symbol intervals.
To this end, the transmitter releasesN Tx molecules every
L + 1 symbol intervals and remains silent for the rest of the
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symbol intervals. In particular, the sequences is constructed
as follows:

s[k] =

{

1, if k−k0

L+1 ∈ Z

0, otherwise
(19)

wherek ∈ {1, . . . ,K}, andk0 is the index of the first symbol
interval in which the transmitter releases molecules. Moreover,
for this training sequence, the CIR can be straightforwardly
estimated as

ˆ̄cISIFl =
1

|Kl|

[

∑

k∈Kl

[

r[k]− ˆ̄cISIFn

]

]+

, l = 1, . . . , L (20a)

ˆ̄cISIFn =
1

|Kn|

∑

k∈Kn

r[k], (20b)

whereKl =
{

k|k−k0−l+1
L+1 ∈ Z ∧ k ∈ {1, . . . ,K}

}

, Kn =
{

k|k−k0−L
L+1 ∈ Z ∧ k ∈ {1, . . . ,K}

}

, and [·]+ is needed to
ensure that all estimated channel taps are non-negative, i.e.,
ˆ̄cISIF ≥ 0 holds.

V. PERFORMANCEEVALUATION

In this section, we evaluate the performances of the different
estimation techniques and training sequence designs developed
in this paper. For simplicity, for the results provided in this
section, we generate the CIR̄c based on (1) and (2). However,
we emphasize that the proposed estimation framework is not
limited to the particular channel and receiver models assumed
in (1) and (2). We use (1) and (2) only to obtain ac̄ which is
representative of a typical CIR in MC. In particular, we assume
a point source with impulsive molecule release andN Tx =
105, a fully transparent spherical receiver with radius45 nm,
and an unbounded environment withD = 4.365 × 10−10 m2

s
[9]. Additionally, we assume that the distance between the
transmitter and the receiver is given by|a| = |ā| + ã nm
where|ā| = 500 nm andã is a RV uniformly distributed in the
interval [−â, â]. The receiver counts the number of molecules
once per symbol interval at timeTsmp = argmax t C̄(ā, t)
after the beginning of the symbol interval wherēC(ā, t) is
computed based on (2). The noise mean is chosen asc̄n =
0.5max t C̄(ā, t). Furthermore, the symbol duration and the
number of tapsL are chosen such thatc̄L+1 < 0.1c̄1.

In order to compare the performances of the considered
estimators quantitatively, we define the normalized mean and
variance of the estimation errore = ˆ̄c− c̄ as

Meane =
‖E {e}‖2

‖E {c̄} ‖2
and (21)

Vare =
E

{

‖e‖2
}

− ‖E {e} ‖2

‖E {c̄} ‖2
, (22)

respectively. In Fig. 1, we show the normalized mean of
the estimation error,Meane, in dB vs. the training sequence
length, K, for L ∈ {1, 3, 5}. The training sequences are
constructed by concatenatingn copies of the binary sequence
[1100100101] of length 10, i.e., K = 10n. Furthermore, for
clarity of presentation, we assumêa = 0 which corresponds
to a time-invariant environment with deterministic CIR. The
results reported in Fig. 1 are Monte Carlo simulations where
each point of the curves is obtained by averaging over106
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Fig. 1. Normalized estimation error mean,Meane, in dB vs. the training
sequence length,K, for L ∈ {1, 3, 5}.

random realizations of observation vectorr. We observe that
the normalized error mean decreases as the sequence length
increases. Therefore, the ML and LSSE estimators are biased
for short sequence lengths but as the sequence length increases,
both the ML and LSSE estimators become asymptotically
unbiased, i.e.,E

{

ˆ̄c
}

→ c̄ as K → ∞. Furthermore, from
Fig. 1, we observe that the error mean increases as the number
of channel taps increases.

In Fig. 2, we show the normalized estimation error vari-
ance,Vare, in dB vs. the training sequence length,K, for
L ∈ {1, 3, 5}. The parameters used in Fig. 2 are identical
to those used in Fig. 1. As expected, the variance of the
estimation error decreases with increasing training sequence
length. Moreover, forL ∈ {3, 5}, we observe that the variance
of the estimation error for the LSSE estimator is slightly higher
than that for the ML estimator, whereas forL = 1, the variance
of the estimation error for the LSSE estimator coincides with
that of the ML estimator. These results suggest that the simple
LSSE estimator provides a favorable complexity-performance
tradeoff for CIR estimation in the considered MC system. For
short sequence lengths, the variances of the ML and LSSE
estimators can even be lower than the CR bound as these
estimators are biased and the CR bound is a valid lower
bound only for unbiased estimators, see Fig. 1. However,
as K increases, both the ML and LSSE estimators become
asymptotically unbiased, see Fig. 1. Fig. 2 shows that, for
largeK, the error variance of the ML estimator coincides with
the CR bound and the error variance of the LSSE estimator
is very close to the CR bound. We note that for the adopted
training sequence, the matrix inversion required in (15) cannot
be computed forK = 10 andL = 5 since matrix

∑K
k=L

sks
T

k

c̄T sk

has one zero eigen-value. Therefore, we do not report the value
of the CR bound for this case in Fig. 2.

Next, we investigate the performances of the optimal and
ISI-free training sequence designs developed in Section IV.
Here, we employ a computer-based search to find the optimal
sequence based on the criterion in (18) whereε = 10−9.
We consider short sequence lengths, i.e.,K ≤ 20, due to
exponential increase of the computational complexity of the
exhaustive search with respect to the sequence length. More-
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Fig. 2. Normalized estimation error variance,Vare, in dB vs. the training
sequence length,K, for L ∈ {1, 3, 5}.

TABLE I
EXAMPLES OF OPTIMAL LSSE SEQUENCESOBTAINED BY A

COMPUTER-BASED SEARCH FORL ∈ {1, . . . , 5} AND K ∈ {10, 16}.

K = 10 K = 16
L = 1 s

∗ = [1010101010]T s
∗ = [0101010101010101]T

L = 2 s
∗ = [0010001110]T s

∗ = [0110011101000001]T

L = 3 s
∗ = [0100001101]T s

∗ = [0101101101100000]T

L = 4 s
∗ = [1010110000]T s

∗ = [1111100001000100]T

L = 5 s
∗ = [0110100010]T s

∗ = [1001010011000000]T

over, since there areL+1 unknown parameters, we require at
leastL+1 observations for estimation, i.e.,K−L+1 ≥ L+1
or equivalentlyK ≥ 2L. In Table I, we present the optimal
sequences obtained forL ∈ {1, 2, 3, 4, 5}, K ∈ {10, 16}, and
â = 100 nm. We note that the optimal sequence which is
obtained from (18) is not unique and only one of the optimal
sequences is shown in Table I for each value ofK andL. The
optimal sequences shown in blue font in Table I are identical
to the ISI-free sequences proposed in (19). In particular, for
L = 1, the optimal sequences for bothK = 10 and 16 are
ISI-free, whereas forL > 1, none of the optimal sequences is
ISI-free.

In Fig. 3, we show the normalized LSSE estimation error,
Vare, in dB vs. the training sequence length,K, for L ∈
{1, 2, 3, 5} andâ = 100 nm. Thereby, we report the analytical
results for the upper bound in (17) and Monte Carlo simulation
results for106 random realizations. Fig. 3 confirms that (17) is
a tight upper bound even for short sequence lengths. Moreover,
we observe from Fig. 3 that the performance of the ISI-free
sequence coincides with that of the optimal sequence for all
sequence lengths whenL = 1, and forL > 1, the difference
between the error variances of the ISI-free sequence and the
optimal sequence increases asL increases. This result suggests
that for MC channels with small numbers of taps, a simple
ISI-free training sequence is a suitable option. Furthermore,
as expected, the estimation error decreases with increasing
training sequence length.

VI. CONCLUSIONS

In this paper, we developed a training-based CIR estimation
framework which enables the acquisition of the CIR based
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Fig. 3. Normalized LSSE estimation error variance,Vare, in dB vs. the
training sequence length,K, for L ∈ {1, 2, 3, 5}.

on the observed number of molecules at the receiver due to
emission of a sequence of known numbers of molecules by
the transmitter. We derived the optimal ML estimator, the
suboptimal LSSE estimator, and the CR lower bound. Further-
more, we studied both an optimal and a suboptimal training
sequence design for the considered MC system. Simulation
results confirmed the analysis and compared the performance
of the proposed estimation techniques with the CR lower
bound.

REFERENCES

[1] T. Nakano, M. Moore, F. Wei, A. Vasilakos, and J. Shuai, “Molecular
Communication and Networking: Opportunities and Challenges,” IEEE
Trans. NanoBiosci, vol. 11, no. 2, pp. 135–148, June 2012.

[2] H. Arjmandi, A. Gohari, M. Kenari, and F. Bateni, “Diffusion-Based
Nanonetworking: A New Modulation Technique and Performance Anal-
ysis,” IEEE Commun. Lett., vol. 17, no. 4, pp. 645–648, Apr. 2013.

[3] A. Noel, K. Cheung, and R. Schober, “Optimal Receiver Design for
Diffusive Molecular Communication with Flow and Additive Noise,”
IEEE Trans. NanoBiosci., vol. 13, no. 3, pp. 350–362, Sept. 2014.

[4] M. Mahfuz, D. Makrakis, and H. Mouftah, “A ComprehensiveStudy of
Sampling-Based Optimum Signal Detection in Concentration-Encoded
Molecular Communication,”IEEE Trans. NanoBiosci., vol. 13, no. 3,
pp. 208–222, Sept. 2014.

[5] G. Wei and R. Marculescu, “Miniature Devices in the Wild:Modeling
Molecular Communication in Complex Extracellular Spaces,” IEEE J.
Select. Areas Commun., vol. 32, no. 12, pp. 2344–2353, Dec 2014.

[6] M. Moore, T. Nakano, A. Enomoto, and T. Suda, “Measuring Distance
From Single Spike Feedback Signals in Molecular Communication,”
IEEE Trans. Sig. Proc., vol. 60, no. 7, pp. 3576–3587, July 2012.

[7] A. Noel, K. Cheung, and R. Schober, “Bounds on Distance Estimation
via Diffusive Molecular Communication,” inIEEE Globecom, Dec.
2014, pp. 2813–2819.

[8] A. Akkaya, H. Yilmaz, C.-B. Chae, and T. Tugcu, “Effect ofReceptor
Density and Size on Signal Reception in Molecular Communication via
Diffusion With an Absorbing Receiver,”IEEE Commun. Lett., vol. 19,
no. 2, pp. 155–158, Feb. 2015.

[9] A. Ahmadzadeh, A. Noel, A. Burkovski, and R. Schober, “Amplify-and-
Forward Relaying in Two-Hop Diffusion-Based Molecular Communica-
tion Networks,”accepted for presentation in IEEE Globecom, 2015.

[10] M. Pierobon and I. Akyildiz, “A Physical End-to-End Model for Molec-
ular Communication in Nanonetworks,”IEEE J. Sel. Areas Commun.,
vol. 28, no. 4, pp. 602–611, May 2010.

[11] D. Miorandi, “A Stochastic Model for Molecular Communications,”
Nano Commun. Netw., vol. 2, no. 4, pp. 205–212, 2011.

[12] N. Farsad, A. Eckford, and S. Hiyama, “A Markov Chain Channel Model
for Active Transport Molecular Communication,”IEEE Trans. Signal.
Process., vol. 62, no. 9, pp. 2424–2436, May 2014.



8

[13] A. Noel, K. Cheung, and R. Schober, “A Unifying Model forExternal
Noise Sources and ISI in Diffusive Molecular Communication,” IEEE
J. Sel. Areas Commun., vol. 32, no. 12, pp. 2330–2343, Dec. 2014.

[14] A. Bicen and I. Akyildiz, “End-to-End Propagation Noise and Memory
Analysis for Molecular Communication over Microfluidic Channels,”
IEEE Trans. Commun., vol. 62, no. 7, pp. 2432–2443, July 2014.

[15] S. Crozier, D. Falconer, and S. Mahmoud, “Least Sum of Squared Errors
(LSSE) Channel Estimation,”IEE Proc. F Radar Sig. Process., vol. 138,
no. 4, pp. 371–378, Aug 1991.

[16] M. Ozdemir and H. Arslan, “Channel Estimation for Wireless OFDM
Systems,”IEEE Commun. Surveys Tutorials, vol. 9, no. 2, pp. 18–48,
2007.

[17] C. Gong and Z. Xu, “Channel Estimation and Signal Detection for Opti-
cal Wireless Scattering Communication with Inter-Symbol Interference,”
IEEE Trans. Wireless Commun., vol. PP, no. 99, pp. 1–1, 2015.

[18] X. Zhang, C. Gong, and Z. Xu, “Estimation of NLOS OpticalWireless
Communication Channels with Laser Transmitters,” inProc. Asilomar
Conf. Signals, Syst., Comput., Nov 2014, pp. 268–272.

[19] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin,Bayesian Data
Analysis. Taylor & Francis, 2014, vol. 2.

[20] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[21] P. H. Schonemann, “On the Formal Differentiation of Traces and
Determinants,”Multivariate Behavioral Research, vol. 20, no. 2, pp.
113–139, 1985.


	I Introduction
	I-A Motivation
	I-B Related Work
	I-C Contributions

	II Problem Formulation
	II-A System Model
	II-B CIR Estimation Problem

	III CIR Estimation
	III-A ML CIR Estimation
	III-B LSSE CIR Estimation
	III-C CR Lower Bound

	IV Training Sequence Design
	IV-A LSSE-Based Training Sequence Design
	IV-B ISI-Free Training Sequence Design

	V Performance Evaluation
	VI Conclusions
	References



