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a b s t r a c t

Flexibility of a manufacturing system is quite important and advantageous in modern in-

dustry, which function in a competitive environment where market diversity and the need

for customized product are growing. Key machinery in a manufacturing system should be

reliable, flexible, intelligent, less complex, and cost effective. To achieve these goals, the

design methodologies for engineering systems should be revisited and improved. In par-

ticular, continuous or on-demand design improvements have to be incorporated rapidly

and effectively in order to address new design requirements or resolve potential weak-

nesses of the original design. Design of an engineering system, which is typically a multi-

domain system, can become complicated due to its complex structure and possible dy-

namic coupling between domains. An integrated and concurrent approach should be con-

sidered in the design process, in particular in the conceptual and detailed design phases. In

the context of multi-domain design, attention has been given recently to such subjects as

multi-criteria decision making, multi-domain modeling, evolutionary computing, and ge-

netic programing. More recently, machine condition monitoring has been considered for

integration into a scheme of design evolution even though many challenges exist for this

to become a reality such as lack of systematic approaches and the existence of technical

barriers in massive condition data acquisition, transmission, storage and mining. Recently,

the internet of things (IoT) and cloud computing (CC) are being developed quickly and they

offer new opportunities for evolutionary design for such tasks as data acquisition, storage

and processing. In this paper, a framework for the closed-loop design evolution of engi-

neering systems is proposed in order to achieve continuous design improvement for an

engineering system through the use of a machine condition monitoring system assisted by

IoT and CC. New design requirements or the detection of design weaknesses of an existing

engineering system can be addressed through the proposed framework. A design knowl-

edge base that is constructed by integrating design expertise from domain experts, on-line

process information from condition monitoring and other design information from various

sources is proposed to realize and supervise the design process so as to achieve increased

efficiency, design speed, and effectiveness. The framework developed in this paper is illus-

trated by using a case study of design evolution of an industrial manufacturing system.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Globalization has intensely changed the engineering

manufacturing sector as is the case in many other areas.
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The growing demand for novel, high quality and highly

customized products at low cost with rapid adaptation to

market diversity is fundamentally changing the way pro-

duction systems are designed and implemented [1]. With

the development of information, communication, manage-

ment, sensing and other technologies and theories, various

advanced manufacturing system methodologies have been

proposed such as lean manufacturing, agile manufacturing,

flexible manufacturing, concurrent manufacturing, sustain-

able manufacturing, global manufacturing, and so on, in

order to accommodate the current extremely dynamic op-

erating environment of manufacturing companies such as

market variations, changes to time and quantity of prod-

uct demand and manufacturing system failure [2]. Most of

this new research and development has contributed to ad-

vanced manufacturing system at the level of manufactur-

ing and planning. However, one fundamental and signifi-

cant element in forming a competitive manufacturing sys-

tem that can adapt to rapid market changes is the capa-

bility of automated and evolutionary reconfiguration and

design improvement of the system.

In modern production processes, most engineering sys-

tems are in fact multi-domain mechatronic systems [3,4],

which consist of different domains such as mechanical,

electrical, hydraulic, pneumatic, thermal, control, and so

on, examples of which are automated packaging lines [5]

and car assembly lines with industrial robots [6]. The re-

configuration or design improvement of a multi-domain

multi-component system will require simultaneous consid-

eration of all its components and characteristics [7]. This

particularly means that dynamic interactions between do-

mains should be considered concurrently throughout the

design process. Concurrent, multi-criteria and optimal de-

sign are the current main challenges in the design of

mechatronic systems [8]. Research on the design method-

ologies of mechatronic systems is becoming active, which

aims to achieve a design with increased reliability and flex-

ibility, greater intelligence, and reduced complexity and

cost. The design process of a multi-domain engineering

system can be complicated due to its complex structure

and dynamic coupling (interaction) between domains. Ide-

ally, designing a multi-domain system should be done in

an integrated and concurrent manner, where dynamic in-

teractions between domains in the entire system have to

be considered simultaneously, throughout the design pro-

cess [4,9]. In recent years, researchers have made some

progress in the integrated and optimal design of multi-

domain systems. Dynamic modeling tools such as Bond

Graphs (BG) [4,10] and Linear Graphs (LG) [4,9] have been

considered for modeling multi-domain systems, which can

facilitate the design process. Design optimization can then

be achieved by using methods of evolutionary computing,

genetic programing in particular. Koza et al. [11] employed

GP for the automated design of electrical circuits. The solu-

tion space represented in a tree-like structure is explored

by GP. Inspired by the work of Koza et al., Seo et al. [12]

combined bond graph modeling with GP to explore the de-

sign space of a mechatronic system in achieving an opti-

mal design. Wang et al. [13] utilized a similar framework

for the automated design of a controller. Design knowledge

was also acquired from their framework to supervise the
search of the design space. Behbahani [14] and de Silva

[15] extended the combined BG–GP approach for

nonlinear mechatronic systems. More recently, machine

condition monitoring has been integrated into the

framework of evolutionary design optimization

[16,17]. It can provide the information of locations of a

possible design weakness which may lead to system

malfunctions or unsatisfactory system performance. It

shows promising potential for precise and continuous

design improvement of complex engineering system.

However, the progress of implementing machine

condition monitoring to engineering system design

improvement is still at the beginning as there are still

many issues to be solved. Monitoring of a complex

engineering system with a large amount of components

brings technical challenges and unaffordable cost in

sensing, massive data transmission, storage and

processing. For instance, acoustic emission sensors are

widely used in detecting early stage failure of rotating

machine such as bearings and gearboxes. However, use of

one acoustic emission sensor at sampling frequency of 1

MHz will create 200– 300 GB raw data per hour which

is unaffordable by traditional data storage and processing

approaches.

The internet of things (IoT) [18] and cloud computing

(CC) [19] have brought about new opportunities for

sensing, storage and mining of data, online computing,

ubiquitous accessibility and affordable cost. Technologies

of IoT and CC have been developed and applied at a rapid

rate, which have provided new opportunities to address

the challenges in achieving more efficient and effective

machine condition monitoring for reconfiguration and

design improvement of manufacturing systems. In the field

of engineering, evolution of an industrial system from its

original creative solution to a modern system progresses

gradually, with specific contributions from design experts

[20]. However, this process takes a comparatively long

time and heavily relies on reliable domain expertise. In

this paper, a framework for the design evolution of an

engineering system with the assistance of IoT and CC

is proposed. Through the process of closed loop design

evolution, the engineering system can be improved con-

tinuously, efficiently, and cost-effectively. The remaining

of the paper is organized as follows. Section 2 introduces

the related work on engineering system design, machine

condition monitoring and IoT and CC. The framework of

the closed loop design evolution of an engineering system

is described in Section 3. A comprehensive case study is

performed in Section 4 to demonstrate the application of

the proposed framework for design evolution. Section 5

concludes the paper and indicates possible future work.

2. Related work

2.1. Engineering system design

The design of an engineering system is carried out

broadly at two levels: the conceptual design where the

type and function of the subsystems are identified and

some high-level decisions about the operation of the system

are made [21], and the detailed design where the
topology and parameters of the subsystem are specified or

tuned [20].

http://dx.doi.org/10.1016/j.comnet.2015.12.016


3

C

C

C

In the conceptual phase, high-level decisions of the

system structure and feasible conceptual choices are made

according to the design expectation. Conceptual design is

rather important in a design process. The design space can

be huge as there can be a variety of possible configura-

tions, and it is not feasible to achieve the best design in

one step. In conceptual design, the designer divides the

complex design space into several subspaces and evaluates

all these subspaces properly and narrows the design down

to one or two subspaces. This offers a less complex search-

ing space for the subsequent phase of detailed design.

Moulianitis et al. [22] proposed a model to evaluate the

conceptual design of a mechatronic system. However, the

possible interactions between criteria were not considered

in criteria aggregation. A rather challenging task in design

optimization is to concurrently satisfy multiple design

objectives. Behbahani and de Silva [23] presented a sys-

tematic approach for concurrent and integrated design of a

mechatronic system by using the concepts of mechatronic

design quotient (MDQ). Their approach used MDQ in the

evaluation model to facilitate decision making to achieve

an optimal conceptual design of a 2-D manipulator. MDQ

is an effective tool in multi-criteria design evaluation for

mechatronic systems. It can be utilized to evaluate the

possible conceptual alternatives in the conceptual design

phase. In a design problem of n design criteria and r

constrains, MDQ can be written in the following form:

MDQ(a) = M[xa
1, xa

2, . . . , xa
n]

r∏
i=1

gi(a) (1)

where a represents a design alternative, M is an aggre-

gation operator, xa
i

is the partial score that shows the

degree of satisfaction of the ith criterion, and gi(a) is a

function indicating whether a constraint has been met. In

particular, gi(a) is equal to one if the ith constraint is met.

Otherwise, it equals to zero.

The evolution criteria in the MDQ formulation may

include “Meeting task requirement,” “Complexity,” “Re-

liability,” “Matching,” “Flexibility,” “Control friendliness,”

“Efficiency,” and “Cost” [15]. In practice, the designer may

decide to utilize other criteria if they are important for the

design problem, or drop some of the above criteria if they

are not important to the particular design problem. Some

of the criteria may take an analytical form while some oth-

ers may be qualitative and fuzzy and may involve human

perception [7]. A key step is the aggregation of criteria.

Interactions can exist between criteria. The traditional ag-

gregation method, weighted average, cannot deal with the

interaction between criteria and it is only suitable when

the criteria are independent. Fuzzy measure is effective

in modeling interactions between criteria. Fuzzy measures

are used to model the interactions between criteria in

many situations [24]. In the discrete case, a fuzzy measure

on N is a set function v : 2N → [0, 1] satisfying

v(φ) = 0 (2)

v(N) = 1 (3)

S ⊆ T ⇒ v(S) ≤ v(T ) (4)
For any S ⊆ N, v(S) can be interpreted as the weight

of the degree of importance of the combination S of cri-

teria [25]. Several fuzzy integrals have been developed in

aggregating the criteria in multi-criteria decision making

[26]. The Choquet integral has been developed and utilized

in many applications of multi-criteria evaluation [27,28]. A

Choquet integral can be used for the aggregation of criteria

in MDQ.

A Choquet integral can then be utilized to aggregate the

criteria to compute the global score of each alternative us-

ing the following equation

v(x) :=
n∑

i=1
x(i)[v(A(i)) − v(A(i+1))] (5)

where (·) indicates a permutation of N such that x(1) ≤
· · · ≤ x(n), A(i) = {(i), . . . , (n)} and A(n+1) = φ [24]. The

Choquet integral can be written in another form

v(x) =
∑
T⊆N

a(T ) ∧
i∈T

xi (6)

where ∧ denotes the minimum operator and the set func-

tion a : 2N → R is the Mobius transform of fuzzy measure

v as given by

a(S) =
∑
T⊆S

(−1)
s−tv(T ) (7)

where s = |S| and t = |T |.
The key problem in using the Choquet integral is that

2n coefficients in [0, 1] need to be specified to define the

fuzzy measure on every subset of n criteria. This is chal-

lenging for designer and is not practical in real application.

Grabisch [29] suggested to consider the 2nd order Choquet

integral that seems to be more practical in real applica-

tions. It allows to model interaction among criteria while

remaining very simple and operational. The 2nd order Cho-

quet integral is given by

v(x) =
∑
i∈N

a(i)xi+
∑

{i, j}∈N

a(i j)(xi ∧ x j) (8)

where a(i) = v(i) and a(i j) = v(i j) − v(i) − v( j) by Eq. (7).

After the specification of v(i) and v(i j), all a(i) and

a(i j) can be calculated. Therefore, instead of 2n coeffi-

cients, only n + C2
n = n(n + 1)/2 coefficients are required.

In the phase of detailed design, first the best topol-

ogy is determined, for example, system components and

their interconnection. Then component details are speci-

fied to achieve a best satisfaction of the design require-

ment. Methods of evolutionary computing, genetic pro-

graming (GP) in particular, have received much attention

in recent years for autonomous topology generation. Evo-

lutionary algorithms are proved to be effective in assisting

designers to search the detailed design space and achieve

an optimal design. The loop of GP operation is iterated un-

til a termination condition is reached or predefined num-

ber of iterations is carried out. The design outcome is then

further evaluated for practical implementation.

However, many issues are still to be addressed be-

fore this approach can be applied in practice for complex

mechatronic systems. For example, arbitrary evolution of a

design model of complex system can result in vast compu-

tation [12] as well as infeasible outcomes that cannot be

http://dx.doi.org/10.1016/j.comnet.2015.12.016
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Fig. 1. System framework of design evolution with machine health monitoring system [16].
implemented in reality [16]. Therefore, it is important to

narrow down the search space by detecting the potential

weaknesses where redesign or design improvement should

be conducted.

2.2. Machine condition monitoring

With the growing capabilities of condition data

acquisition and data mining of a running system, machine

condition monitoring has shown much potential in

identifying weaknesses in engineering systems that can

be related to inappropriate design. De Silva [4] and then

Gamage et al.

[16] proposed a framework that can specifically integrate

a machine health monitoring system and an expert system

to carry out design evolution of a multi-domain dynamic

system, as shown in Fig. 1. The utilization of information

from condition monitoring of the engineering system was

proved to be useful in design improvement of the system

by detecting a malfunction of the system.

Machine condition monitoring (or, machine health

monitoring) has been traditionally used to detect,

diagnose and correct system faults [30]. In the past

several decades, much research has been conducted in

the area of condition monitoring and fault diagnosis of

industrial engineering systems [31–34]. Another significant

application area of machine condition monitoring is

prognostics and condition-based maintenance. Through

the information from condition monitoring of a dynamic

system, the remaining useful life (RUL) of the system

can be predicted and an appropriate maintenance plan

can be established to achieve good performance of the

system at a minimum maintenance cost [35–39]. Besides

fault detection, more valuable information such as system

performance and remaining useful life can be evaluated

from the condition monitoring data to detect potential
system weakness. Xia and de Silva [40] presented a

methodology
for design weakness detection of an engineering system

through machine health monitoring. Using the sensed condi-

tion data, system performance evaluation, fault diagnosis

and remaining useful life estimation are performed to

identify the weaknesses of the current design.

Still, there are many important and unresolved issues of

integrating machine condition monitoring and engineering

system design. For instance: (1) The traditional monitoring

systems face many challenges related to communication

of sensed data and storage of huge amounts of data.

(2) Computing capability of a local computer to analyze

and interpret large quantities of data. (3) How to collect

sufficient condition data. (4) How to monitor the same or

similar modules at different locations. (5) How to analyze

the data and translate the results into knowledge. (6)

How to manage and share the knowledge for assisting the

design process, especially collaborative design. (7) How to

keep it cost effective due to the large amount of sensors

and data acquisition devices needed.

2.3. IoT and CC

In order to address the issues mentioned above, the

present work utilizes a machine condition monitoring system

based on IoT and CC to assist the design improvement of

an engineering system. As an emerging technology, IoT

has seen considerable development. It is expected to offer

promising solutions to improve the operation and the role

of many systems such as manufacturing, healthcare and

transportation [41–43]. The application of IoT in modern

manufacturing is an active topic. Tao et al. [44] proposed

a cloud manufacturing service system that uses CC and

IoT, addressing the bottlenecks experienced by the current

manufacturing system. Their system consisted of four

layers: IoT layer, service layer, application layer, and bottom

supporting layer. Wang et al. [45] discussed a framework

http://dx.doi.org/10.1016/j.comnet.2015.12.016
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Fig. 2. Framework for closed-loop design evolution of an engineering system.
for implementing a smart factory based on IoT, industrial

wireless networks, and cloud and mobile terminals. IoT

has shown a great potential in collecting information from

production resources, manufacturing devices, supply chain,

and so on to assist decision-making at various levels of

manufacturing enterprises. One fundamental technology of

IoT is wireless sensor network (WSN) that interconnects

intelligent sensors to sense, communicate, and moni-

tor [46]. WSN has been successfully applied in various

monitoring scenarios such as environmental, health and

wellness, power, inventory location, seismic, structural,

factory, and process automation [47]. Due to its advantages

of smaller size, easier connection and communication and

lower cost compared with wired systems, WSN has been

widely used in industrial monitoring application [48]. Lee

et al. [49] designed an autonomous networked wireless

sensing system for monitoring mechanical wear-out of the

parts in a CNC machine. WSN has been utilized for in-

dustrial machine condition monitoring and fault diagnosis

[50,51], and industrial automation [52,53]. In the present

work, a condition monitoring system under the framework

of IoT is utilized to collect system operational data (pro-

duction speed, capacity, precision, energy consumption,

etc.), machine condition monitoring data, and database of

available resources such as different engineering models,

modules or components for representation, reconfiguration

or design improvement of an engineering system, as well

as any other useful data that is related to the system per-

formance, which will be considered in the design process.

Furthermore, with IoT support, data collected not only

from the manufacturing system at one site, but also from
the same or a similar manufacturing system at different

sites can be utilized to generate a more precise estimation

of the system status.

At present, CC is rapidly developing as a promising

paradigm for the usage of resources in the form of a

service over the network [54]. It offers more flexible,

more accessible and on-demand computing and data

storage services. With decreasing cost of implementation

and maintenance, and improving reliability and capacity

of CC, more and more enterprises have begun to

embrace this paradigm by moving their data-base and

applications into the cloud [55]. Valilai and Houshmand

[56] proposed an integrated and collaborative platform

for distributed manufacturing agents based on CC. Bahga

and Madisetti [57] presented a novel framework with CC

for storage, processing and analysis of massive machine

maintenance data, collected from a large number of

sensors embedded in industrial machines. With the

advantages of CC, the problem of massive data storage

and analysis can be dealt with in a more rapid, efficient

and effective way. Thus, CC is used in the architecture

that is proposed in the present paper to address the

issues of the traditional condition monitoring system in

data transmission, data storage, sharing and computing of

data (and information) to assist the decision making.

3. System architecture

Fig. 2 shows the overall framework of design evolu-

tion of engineering system through condition monitoring

using IoT and CC. With the support of IoT, condition

http://dx.doi.org/10.1016/j.comnet.2015.12.016
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Fig. 3. Proposed scheme of condition monitoring through the IoT and CC.
data are collected at different sites of the engineering

system. The status of the operational system and of the

subsystem modules are analyzed through data mining

technologies by evaluation of the system performance,

diagnosis of faults, and estimation of the remaining useful

life. Then design weaknesses are detected for the

monitored system and provided for consideration in a

future stage of design improvement. New design

methodologies, available technologies, developed

functional modules and their parameters can be

collected from domain experts, handbooks, Internet and

other information sources. This information, together

with the information from condition monitoring, can be

utilized in forming a design knowledge base. The

design knowledge base is continuously updated in

this manner. It can assist the designers in generating

a more innovative and efficient design solution both in

the conceptual design stage and the detailed design

stage. In this manner, a closed-loop design

improvement process is achieved to accommodate

new design requirements or to correct any system

design weakness.

3.1. Condition monitoring through IoT and CC

The main task of condition monitoring is to acquire
condition data of an engineering system such as through
put, capacity, speed, torque, power consumption, size,

weight, vibration, current, voltage, and other response

variables and parameters that can be valuable for evaluating

the current status of the system. The proposed scheme of

condition monitoring through IoT and CC is shown in

Fig. 3. With the support of IoT, the condition data from

various modules of an engineering system, not just at one

site but at different and geographically separated sites can

be collected. When a system consists of multiple sites (or

sensor nodes), fusion of the condition data from different

sites can provide a more reliable estimation of the system

performance. This process includes three main steps: data

acquisition and preprocessing, data transmission, and data

analysis.

3.1.1. Data transmission

A network layer is utilized to transmit the sensed data.

Short-range wireless networks such as WiFi, Bluetooth,

Zigbee and Sensor Area Network (SAN) are common

technologies to support the connection of sensors, devices

and users, for data transmission. Internet Protocol version

4/Internet Protocol version 6 (IPv4/IPv6) are common

standards for the transport networks. Data on the system

condition (condition data), after preprocessing, are trans-

mitted through the network layer to the cloud database.

http://dx.doi.org/10.1016/j.comnet.2015.12.016
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3.1.2. Data mining

From the condition data, three main types of analysis

are conducted: system performance evaluation, machine

fault detection, and prediction of the remaining useful life.

Desirable system performance and low cost are two key

objectives in mechatronic system design. Factors related to

performance of a mechatronic system include: capacity, effi-

ciency, reliability, stability, accuracy, and so on. Require-

ments of system performance can be extended to integrate

other requirements such as controllability and low cost.

Here, performance variables are defined by the designers

according to the design specifications.

Machine fault detection may be treated as a

procedure of mapping the information obtained in the

measurement space and/or features in the feature

space to machine faults in the fault space [30]. This

mapping process may be considered as a procedure

of pattern recognition. It is achieved by automatic

classification of the signals based on the features

extracted from them. Artificial Intelligence (AI) techniques

have been increasingly applied to machine diagnosis and

have shown improved performance over conventional

approaches. Some common AI techniques include

expert systems, fuzzy logic, artificial neural networks,

genetic algorithms and support vector machines. The

efficiency of AI techniques has been found to be

satisfactory in many case studies.

Prediction of the remaining useful life implies the

prediction of the time left before a failure would

occur given the current and past profile of the machine

condition. To perform prognosis, we must have a

knowledge (or information) on the failure mechanism

as well as knowledge (or information) on the fault

propagation process. Similar to fault diagnosis, there

are three main approaches of prognosis: statistical

approaches, artifi-cial intelligence approaches, and model-

based approaches. In particular, statistical approaches

such as the Hidden Markov Model and Particle Filter

are widely used in RUL prediction.

3.1.3. Design knowledge base through CC

In the proposed framework, the design knowledge base

is constructed on a cloud computing platform using the

design expertise of domain experts (design methodologies,

regularized design, etc.), technical solutions, available

function modules with their specifications, design hand-

books, data tables, catalogs, the Internet, information

from condition monitoring system (system performance,

detected fault, maintenance history, remaining useful

life), and so on. The knowledge base is updated in an

evolutionary manner through mining of the continuous

condition monitoring data, experts input, new technol-

ogy approaches, newly developed modules, etc. with the

support of IoT. Collaborative design can be promoted by

sharing the knowledge base between the designers from

different sites through ubiquitous access to the knowledge

base. Through an inference engine, the design knowledge

base is utilized to supervise the searching of design space

both in the conceptual and detailed phases by reducing
the search space and offering design guidance.
3.2. Closed-loop design improvement

As shown in Fig. 2, closed-loop design improvement of

an engineering system is achieved through design

weakness detection using condition monitoring and

subsequent conceptual design, detailed design, and

implementation of the design improvements. The process

of design improvement is carried out under the guidance

of a design knowledge base that is continuously updated.

In the stage of conceptual design, innovative ideas and

multi-criteria evaluation are crucial. With a cloud-based

design knowledge base and a collaborative design scheme,

creative design ideas can be investigated among the

design team more easily and efficiently. With the

assistance of the design knowledge base, the design space

for conceptual design can be structured to form possible

conceptual alternatives.

In the detailed design stage, after establishing a

dynamic model of a multi-domain system, an algorithm that

can explore the design space should be applied to achieve

the detailed design leading to a desired optimal behavior

of the system. Specifically, the model will be modified in

some manner so that the behavior approaches the desired

behavior, in an optimal manner, as represented by a cost

function. In the area of detailed design optimization,

genetic programing has been employed to realize an optimal

design in an evolutionary manner, so as to satisfy a set of

specified design objectives.

Using the outcome of detailed design, production of

the engineering system will be carried out. Then, this new

generation of the engineering system will be implemented

in manufacturing to achieve the required production task.

Condition monitoring will be conducted once the designed

system starts running. Fig. 4 shows the procedure of

detecting a potential design weakness in the current design.

From the monitored condition data, system

performance evaluation, fault diagnosis, and prognosis are

carried out. Design weakness candidates can be identified

using the Design Weakness Candidate Index, which is defined

as

DWCI = W

[
S(

−→
P )

E(
−→
T )

] f∏
i=1

gi(
−→
F ) (9)

where W is an r + k element row vector, and
∑r+k

i=1 wi = 1.

S(
−→
P ) is an r element column vector. Each element si(pi)

is a function that shows the degree of satisfaction of the

ith performance aspect.
−→
P = [p1, p2, . . . , pr]T is a vector

consisting of all performance aspects, E(
−→
T ) is a k element

column vector. Each element ei(ti) is a function that

indicates whether the estimated RUL of the ith component

is close to its designed life time.
−→
T = [t1, t2, . . . , tr]T is

a vector consisting of all estimated RUL values of the

components. gi(
−→
F ) is a function indicating whether a

fault has occurred. It is equal to 0 if a fault occurs and

1 otherwise. Both S(
−→
P ) and E(

−→
T ) should take into con-

sideration the situation of over performance and under

performance. This means if the performance or RUL of the

system considerably exceeds the designed specification, it

http://dx.doi.org/10.1016/j.comnet.2015.12.016
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Fig. 4. Procedure of design weakness detection.
is a wasteful situation, and those functions should be able

to add a punishment into the DWCI.

According to the definition of DWCI, once a failure is

detected, its value will drop to zero. If a fault does not oc-

cur and the system is running smoothly, DWCI should also

be as smooth as S(
−→
P ) and E(

−→
T ) would change slightly.

If a significant decrease is observed in a comparatively

short time period, there must be some problem in the run-

ning system. Therefore, once DWCI drops to zero or de-

creases significantly, the design weakness candidates will

be isolated by checking the components of the index. Then

the design weakness candidates will be evaluated first to

see if the issues are related to non-design issues such as

inappropriate installation, non-standard operation or poor

maintenance. If so, these issues will be corrected and con-

dition monitoring of the system will be continued. Other-

wise, the design weakness will be imported to the design

process for design improvement. After the design improve-
ment is made, the redesigned engineering system will be

fabricated and put into production. Condition monitoring is

continued to detect further design weakness. The process

of design evolution is in a closed form and it can offer a

continuous design improvement.

4. Case study

Reconfiguration and design evolution of an automated

industrial fish cutting system is investigated as a case

study. This automated fish cutting system is designed

by the Industrial Automation Laboratory at University of

British Columbia and is used in industry to cut the fish

head automatically with minimized wastage of fish meat

[4,9]. The conventional machines used in the industry

cause about 10–15% wastage of useful meat, each unit

percentage of wastage costing about $5 million annually

in the province of British Columbia, Canada [16]. The

http://dx.doi.org/10.1016/j.comnet.2015.12.016
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Fig. 5. Schematic diagram of the automated fish cutting system.
automated fish cutting system is a multi-domain

manufacturing system that consists of mechanical,

electrical, hydraulic and pneumatic subsystems [58]. A

schematic diagram of the system is shown in Fig. 5.

The present case study employs the proposed closed loop

design improvement architecture for the reconfiguration

and design evolution of this engineering system, based

on a new set of production requirements.

4.1. Machine condition monitoring

Within the framework proposed in Section 3, both

real-time condition data of the system (production speed,

capacity, power consumption, size, weight, waste percent-

age, malfunction record, etc.) and condition data from

similar machines at other fish-processing plants can be

acquired by a variety of sensors and then be transmitted

to the cloud database through the network layer. The

sensed condition data provides a rather precise and up

to date status of the current manufacturing system. Also,

the system model, information of available subsystem

alternatives (technologies, devices, parameters, cost, etc.)

and design expertise are acquired and transmitted to the

cloud platform. Then the design knowledge base is formed

with this information to assist the design process.

Two key production requirements of the automated fish

cutting system are production speed and percent wastage.

The performance limit of the original system is 1.5 fish

per second with 3.5% wastage of fish meat according to

the sensed condition data. In the present case study, new

production requirements are given (2.0 fish per second
with 2% wastage) for the design task. Given the new pro
duction requirements, as the current system is not capable

for achieving these requirements, the performance of the

system is unsatisfactory. Consideration of a conceptual

redesign is needed as the new technical solutions for the

subsystems are available (e.g. robotic arms are more

capable and cost-effective that may replace the human

operator).

4.2. Conceptual design stage

First the conceptual design improvement is carried out.

Then the outcome of the improved conceptual design is

presented to the detailed design process for exploration

of the topologies and parameters of each component. This

case study will illustrate the closed-loop design

improvement framework, with a focus on detailed steps

of the multi-criteria decision making of the conceptual

design phase. MDQ is utilized here for the multi-criteria

evaluation of the design alternatives.

The current automated fish cutting system contains five

main subsystems as listed in Table 1.

Given the new production requirements, the following

steps are taken to achieve a conceptual design of the

automated fish cutting system that satisfies the production

requirements as well as other constrains.

Step 1: Review the design specifications.

The new production requirements are 2.0 fish per

second and 2% wastage of fish meat.

Step 2: Determine the system configuration. According

to the design expertise in the design knowl

edge base, the current configuration (feeding, conveying,

vision, positioning table and cutter blade) can achieve the

task of removing the fish head.

Step 3: Design specification estimation.

Condition monitoring data shows the current system

specifications. Based on the current values, designer can

estimate the requirements for each subsystem according to

the new production requirements. Table 2 lists the

specifications of the current subsystems and the estimated

required specifications for the new design requirements.

Step 4: Construct in the conceptual design space.

For each subsystem, search the knowledge base for

available and feasible design alternatives. Table 3 lists the

available technology choices for each subsystem to achieve

its function.

Step 5: Determine the criteria for evaluation.

The criteria of “meeting task requirements,” “reliability,”

“matching,” “efficiency,” “intelligence” and “cost” are

chosen as MDQ attributes for this problem.

Step 6: Reduce the design search space by veto effect

criteria.

Among these six criteria, “meeting task requirements”

has veto effect. Use this criterion to eliminate any design

alternative that cannot meet the task requirements. From

Table 3, for feeding and cutter blade, both their two

alternatives can meet the requirements. For the conveying

module, output speed of AC Motor #0002 is below the

required value. For the positioning table, only the electrical

solution can achieve the requirement of motion accuracy.

Camera kit type C can fulfill the image processing within

the time limit. The cropped tree structure of conceptual

http://dx.doi.org/10.1016/j.comnet.2015.12.016
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Table 1

Subsystems of the automated fish cutting system.

Subsystems Description

Feeding A human operator will place raw fish in the feeding area

of the conveyer, ideally at the same pace of movement of

the conveyer to achieve maximum productivity.

Conveying An electromechanical conveying subsystem delivers the

raw fish from the feeding area to the cutting area and then

off the fish cutting system after removing the head. The

conveying subsystem is driven by an AC induction motor.

Vision There are two primary tasks for the vision subsystem:

identifying the optimal cutting location and evaluating

cutting quality, particularly related to the wastage of fish

meat and the smoothness of the cut. One image is taken

for each fish before it enters the cutting area. Image

processing is then performed at a local computer to

identify the best reference location for the cut. The

corresponding coordinates are sent to the controller of the

positioning table control system. After the cut, another

image is taken to check the quality of the cut and the

percent wastage.

Positioning table This subsystem moves the positioning table that carries

the cutting blade accurately and rapidly to the desired

cutting location as identified by the vision subsystem.

Motion in the horizontal plane, perpendicular to the cutter

blade, is controlled to achieve this task. The positioning

table is powered by two hydraulic actuators.

Cutter blade This subsystem is assembled on the positioning table. The

cutter blade is pushed down by a pneumatic cylinder to

cut the fish head when a raw fish is brought to the cutting

area by the conveyor and the positioning table with the

cutter is moved to the correct location.

Table 2

Specifications of the current subsystems and estimated design requirements.

Subsystem Parameter Current Performance limit Required

Feeding Feed speed 1.50 1.50 2.00

Human operator (Fish/s/person)

Conveying Output speed with 2400 6000 4000

AC Motor #0001 desired output torque

(rpm)

Positioning table Motion time (s) 0.48 0.45 This plus cutting time

Hydraulic solution should be less than

0.50

Motion accuracy (mm) 5.00 5.00 3.00

Cutter blade Cutting time (s) 0.10 0.10 This plus motion time

Pneumatic solution should be less than

0.50

Vision Processing time (s) 0.55 0.55 0.50

Camera kit type A

Table 3

Available choices for each subsystem.

Subsystem Available choices Estimated cost ($) Parameter Performance limit

Feeding Two operators 85,000 Feed speed 3.0 (Fish/s)

Robotic arm 120,000 2.5 (Fish/s)

Conveying AC Motor #0001 8000 Output speed with desired output torque 6000 (rpm)

AC Motor #0002 5000 3800 (rpm)

AC Motor #0003 6000 5000 (rpm)

Positioning table Hydraulic solution 15,000 Motion time 0.45 (s)

Motion accuracy 5.0 (mm)

Electrical solution 18,000 Motion time 0.30 (s)

Motion accuracy 2.0 (mm)

Cutter blade Hydraulic solution 9000 Cutting time 0.15 (s)

Pneumatic solution 7000 0.11 (s)

Vision Camera kit type A 5000 Processing time 0.65 (s)

Camera kit type B 3000 0.80 (s)

Camera kit type C 7500 0.35 (s)

http://dx.doi.org/10.1016/j.comnet.2015.12.016


11

Fig. 6. Reduced conceptual design space.

Table 4

Typical interactions between criteria.

Interaction type Explanation Relation

Positive correlation High score in criterion i implies a high

score in criterion j, and vice versa.

v(i j) < v(i) + v( j)

Negative correlation High score in criterion i implies a low

score in criterion j, and vice versa.

v(i j) > v(i) + v( j)

Substitutiveness Satisfaction of only one criterion

produces almost the same effect than

the satisfaction of both.

v(T ) <
{v(T ∪ i)

v(T ∪ j)

}
≈ v(T ∪ i j), T ⊆ N\i j

Complementarity Satisfaction of only one criterion

produces a very weak effect compared

with the satisfaction of both.

v(T ) ≈
{v(T ∪ i)

v(T ∪ j)

}
< v(T ∪ i j), T ⊆ N\i j
design space is shown in Fig. 6. Eight design alternatives

need to be evaluated through the multi-criteria evaluation.

Step 7: Assign a fuzzy measure to each subset of the

criteria.

The remaining five criteria, “reliability,” “matching,”

“efficiency,” “intelligence,” and “cost” form a number

of 25 = 32 subsets of criteria. It needs 32 fuzzy mea-

sures using the ordinary Choquet integral (two of them

are self-evident: v(φ) = 0 and v(N) = 1). Here, the 2-

additive Choquet integral is adopted [25]. Thus, only

n(n + 1)/2 = 15 fuzzy measures need to be specified. The

common type of interactions and their fuzzy measure

representation are summarized in Table 4.

The fuzzy measures are typically assigned by expert de-

signers and the fuzzy measures used in this case study

are derived from [23] since the engineering system is

the same and the criteria are similar. The fuzzy measures

are listed as follows. v = 0.25, v = 0.35, v = 0.22, v =
1 2 3 4
0.18, v5 = 0.15, v12 = 0.52, v13 = 0.45, v14 = 0.50, v15 =
0.52, v23 = 0.50, v24 = 0.48, v25 = 0.60, v34 = 0.45, v35 =
0.50 and v45 = 0.42. These values reflect a negative cor-

relation between cost and the other criteria and a small

positive correlation between any two criteria except cost.

Step 8: Multi-criteria evaluation of each design

alternative.

Evaluate each design alternative according to the cho-

sen criteria except the ones of veto effect and assign a

score for each of the design alternatives. Evaluation guide-

line can be found in [23]. Aggregate the partial scores by

using 2-additive Choquet integral to determine the global

score of each design alternative. Choose the design alter-

native with the highest global score. The results are shown

in Table 5.

The best conceptual design of the automated fish cut-

ting system is the No. 8 design alternative which corre-

sponds to a conceptual design solution of Robotic arm

http://dx.doi.org/10.1016/j.comnet.2015.12.016
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Table 5

MDQ evaluation of design alternatives.

#1 #2 #3 #4 #5 #6 #7 #8

Feeding

module

Human

operator

Human

operator

Human

operator

Human

operator

Robotic arm Robotic arm Robotic arm Robotic arm

Conveying Motor Motor Motor Motor Motor Motor Motor Motor

#0001 #0001 #0003 #0003 #0001 #0001 #0003 #0003

Positioning

table

Electrical

solution

Electrical

solution

Electrical

solution

Electrical

solution

Electrical

solution

Electrical

solution

Electrical

solution

Electrical

solution

Cutter blade Hydraulic

solution

Pneumatic

solution

Hydraulic

solution

Pneumatic

solution

Hydraulic

solution

Pneumatic

solution

Hydraulic

solution

Pneumatic

solution

Vision Type C Type C Type C Type C Type C Type C Type C Type C

Matching 0.70 0.60 0.70 0.60 0.80 0.70 0.80 0.70

Reliability 0.50 0.40 0.50 0.40 0.50 0.60 0.50 0.60

Intelligence 0.70 0.60 0.70 0.60 0.90 0.80 0.90 0.80

Efficiency 0.50 0.60 0.60 0.70 0.60 0.70 0.70 0.80

Cost 0.85 0.90 0.90 0.95 0.70 0.75 0.75 0.80

Global score 0.621 0.589 0.651 0.624 0.657 0.694 0.693 0.729

Fig. 7. Procedure of evolutionary design with GP.
(feeding module), Motor #003 (conveying), Electrical

solution (positioning table), Hydraulic solution (cutter

blade), Type C camera kit (vision module).

4.3. Detailed design stage

After the conceptual design process, detailed design

will be conducted to specify the topology and tune the

parameters to achieve the desired design requirements.

Genetic algorithms and genetic programing can be utilized

to explore the detailed design space to find the optimal
de
sign in the design space. The procedure of evolutionary

design with GP is shown in Fig. 7.

GP evolution for complex engineering system with a

large amount of subsystems and components can be com-

putationally expansive. The CC platform is utilized here as

well to executive the GP computation to find the optimal

detailed design with the specific topologies and parameters

for each subsystem of the fish cutting machine. The

design solution is further evaluated and then realized

physically. The redesigned fish cutting machine will be put

into production.

4.4. Continuous design improvement

The IoT and CC assisted condition monitoring system

will continue to collect real-time condition data of the

system (production speed, capacity, power consumption,

size, weight, waste percentage, malfunction record, etc.)

and condition data from similar machines at other fish-

processing plants once the redesigned engineering system

becomes operational. The condition data will continuously

update the knowledge base by evaluating the system

performance, detecting system mismatch or failure,

estimating remaining useful life, and so on. Design

weakness candidate index is monitored to detect further

design weakness. The knowledge base will be further

updated by new technical solutions, components with

higher capacity, devices with higher reliability and lower

maintenance cost and so on, guided by design experts,

design handbooks, data tables, catalogs, the Internet and

other information sources. Also, with any new

production requirement, current engineering system will

be evaluated to see if a redesign is needed and which

stage it should go, conceptual redesign or detailed

redesign. The evaluation of the current design can be

carried out continuously and throughout the lifetime of

the system for making design improvements.

5. Conclusion

A novel closed-loop design evolution framework for

engineering systems is presented in this paper. Compared

with other design evolution methodologies, firstly, it can
achieve continuous design improvement for engineering

http://dx.doi.org/10.1016/j.comnet.2015.12.016
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systems through conceptual design, detailed design, im-

plementation, condition monitoring and design weakness

detection. New design requirements or potential design

weaknesses can be addressed by the proposed framework.

Secondly, IoT and CC are introduced to address the lim-

itation of traditional machine condition monitoring ap-

proach in sensing, data transmission, data storage and data

processing. A condition monitoring scheme based on IoT

and CC is proposed to employ condition monitoring in

the design improvement process by evaluating system per-

formance, detecting system failure and estimating system

heath status. Thirdly, A systematic evaluation approach is

developed to detect potential design weaknesses that will

guild the redesign by narrowing down the search space. A

cloud-based design knowledge base is proposed using in-

formation on design expertise from domain experts, and

data and information from condition monitoring and other

sources to assist the design process by reducing the design

search space and offering design guidelines. Multi-criteria

evaluation and evolutionary algorithms are utilized in con-

ceptual and detailed design for a more effective and effi-

cient design process. A case study on industrial produc-

tion is conducted to demonstrate the procedure of the pro-

posed framework. The proposed approach shows great po-

tential in real application for complex engineering system

design evolution, especially with the advance of IoT and CC

technologies.

Future work will focus on the investigation of a sys-

tematic approach to specify the type of condition data that

needs to be collected for typical industry engineering con-

figurations as well as the related features that need to

be extracted for detecting potential design weaknesses. A

comprehensive scheme for constructing a design knowl-

edge base and the knowledge-based system for real appli-

cation needs to be developed as well.
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