Fresnelets: New Multiresolution Wavelet Bases for
Digital Holography

Abstract—We propose a construction of new wavelet-like bases
that are well suited for the reconstruction and processing of
optically generated Fresnel holograms recorded on CCD-arrays.
The starting point is a wavelet basis of L, to which we apply a
unitary Fresnel transform. The transformed basis functions are
shift-invariant on a level-by-level basis but their multiresolution
properties are governed by the special form that the dilation
operator takes in the Fresnel domain. We derive a Heisenberg-like
uncertainty relation that relates the localization of Fresnelets with
that of their associated wavelet basis. According to this criterion,
the optimal functions for digital hologram processing turn out to
be Gabor functions, bringing together two separate aspects of the
holography inventor’s work.

We give the explicit expression of orthogonal and semi-orthog-
onal Fresnelet bases corresponding to polynomial spline wavelets.
This special choice of Fresnelets is motivated by their near-op-
timal localization properties and their approximation character-
istics. We then present an efficient multiresolution Fresnel trans-
form algorithm, the Fresnelet transform. This algorithm allows
for the reconstruction (backpropagation) of complex scalar waves
at several user-defined, wavelength-independent resolutions. Fur-
thermore, when reconstructing numerical holograms, the subband
decomposition of the Fresnelet transform naturally separates the
image to reconstruct from the unwanted zero-order and twin image
terms. This greatly facilitates their suppression. We show results of
experiments carried out on both synthetic (simulated) data sets as
well as on digitally acquired holograms.



[. INTRODUCTION

IGITAL holography [1]-[4] is an imaging method in
D which a hologram [5] is recorded with a CCD-camera
and reconstructed numerically. The hologram results from the
interference between the wave reflected or transmitted by the
object to be imaged and a reference wave. One arrangement
that is often used is to record the distribution of intensity in the
hologram plane at the output of a Michelson interferometer.
The digital reconstruction of the complex wave (amplitude and
phase) near the object is based on the Fresnel transform, an
approximation of the diffraction integral [6].

Digital holography’s applications are numerous. It has been
used notably to image biological samples [7]. As the range of
applications gets broader, demands toward better image quality
increases. Suppression of noise, higher resolution of the recon-

structed images, precise parameter adjustment and faster, more
robust algorithms are the essential issues.

Since it is in essence a lensless process, digital holography
tends to spread out sharp details like object edges over the en-
tire image plane. Therefore, standard wavelets, which are typ-
ically designed to process piecewise smooth signals, will give
poor results when applied directly to the hologram. We present
a new family of wavelet bases that is tailor-made for digital

holography.



While analytical solutions to the diffraction problem can be
given in terms of Gauss-Hermite functions [6], those do not sat-
isfy the completeness requirements of wavelet theory [8] and
are therefore of limited use for digital processing. This moti-
vates us to come up with basis functions that are well-suited for
the problem at hand. The approach that we are proposing here is
to apply a Fresnel transform to a wavelet basis of Lo to simulate
the propagation in the hologram formation process and build an
adapted wavelet basis.

We have chosen to concentrate on B-spline bases for the fol-
lowing reasons.

» The B-splines have excellent approximation characteris-
tics (in some asymptotic sense, they are 7 times better than
Daubechies wavelets [9]).

» The B-splines are the only scaling functions that have
an analytical form in both time and frequency domains;
hence, there is at least some hope that we can derive their
Fresnel transforms and associated wavelets explicitly.

» The B-splines are nearly Gaussians and their associated
wavelets very close to Gabor functions (modulated Gaus-
sians) [10]. This property will turn out to be crucial be-
cause we will show that these functions are well localized
with respect to the holographic process.

In the sequel, we use the following definition of the Fourier
Transform f(v) of a function f(r):

for= [ r@ei
f@= [ foyemea.

With this definition ||f|| = ||f]|-



II. FRESNEL TRANSFORM
A. Definition

We define the unitary Fresnel transform with parameter 7 &
% of a function f € L2(R) as the convolution integral

o) = (f k) (@) with k() = — 70 (1)

which is well defined in the L- sense. Our convention
throughout this paper will be to denote the Fresnel transform
with parameter 7 of a function using the tilde and the associated
index T.

The frequency response of the Fresnel operator is

j;,?_(y) — pimfd E_iW(TV)Z (2)

with the property that )@r(y)| = 1,V v € R. As the transform
is unitary, we get a Parseval equality

V[.9€ LaR) (f.9)=([r:5r) 3)
and for f = g a Plancherel equality
VfeL® [Ifl=/ 4)

Therefore, we have that f- € Lo(R).
The inverse transform in the space domain is given by

f@) = (Fr k) (@) with k(@) = ki(z) = %e—fw(xrr){

()
It is simply derived by conjugating the operator in the Fourier
domain

k() = e 0D e = Fx(w). (6)



B. Example: Gaussian Function

The Fresnel transform of the Gaussian function
g(w) = @/
is again a Gaussian, modulated by a chirp function

i ( fE) — qe—T/ a' )P eim(x/ Ty

where a = /Y (g/\/02 +ir2) is the complex ampli-
tude, 0’ = (0* +7%)/0? is the new variance and 772 =
(o' +7%)/7? is the chirp parameter. As the parameter T
increases, the variance and therefore the spatial spreading of

the transformed function increases as well. This aspect of the
Fresnel transform is further investigated in Section III-E.

C. Two-Dimensional Fresnel Transform

We define the unitary two-dimensional (2-D) Fresnel trans-

form of parameter 7 € R* of a function f € Ly(R?) as the 2-D
convolution integral

f’r(f) = f?(ma y) = (f * K )(7)

where the kernel is

1 im(||2] /7)°
KT(ij:que (=l /m)=

A key property is that it is separable

() = 25 I/ = () k),



Thus, we will be able to perform most of our mathematical anal-
ysis in one dimension and simply extend the results to two di-
mensions by using separable basis functions.

The two-dimensional unitary Fresnel transform is linked to
the diffraction problem in the following manner. Consider a
complex wave traveling in the z-direction. Denote by 1(x, 1)
the complex amplitude of the wave at distance 0 and by ¥(z,y)
the diffracted wave at a distance d. If the requirements for the
Fresnel approximation are fulfilled, we have that [6]

U(z,y) = :

. 2 2
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where A is the wavelength of the light and & = 27/ its
wavenumber. In other words, the amplitudes and phases of the
wave at two different depths are related to each other via a 2-D
Fresnel transform.

[TII. PROPERTIES OF THE FRESNEL TRANSFORM

Conventional wavelet bases are built using scaled and dilated
versions of a suitable template. For building our new wavelet
family, it is thus essential to understand how the Fresnel trans-
form behaves with respect to the key operations in multires-
olution wavelet theory; i.e., dilation and translation. In Sec-
tions [II-A-D, we recall properties of the Fresnel transform that
are central to our discourse but are also documented in the optics
literature [6, pp. 114—119]. In Section III-E, we give a new result
which is an uncertainty relation for the Fresnel transform. For
clarity, the results are presented for 1-D functions but, using the
separability property, they can easily be extended to 2-D func-
tions.



A. Duality

To compute the inverse of the Fresnel transform we can use
following dual relation:

F@= () @, feL®. O

Computing the inverse Fresnel transform of a function is there-
fore equivalent to taking its complex conjugate, computing the

Fresnel transform and again taking the complex conjugate. In
other words, the operator f +— (f;)* is involutive.

B. Translation

As the Fresnel transform is a convolution operator, it is obvi-
ously shift-invariant

(f(-=20))T () = fr(z — 1), w0 €R. (8)

C. Dilation

The Fresnel transform with parameter 7 of the dilated func-

tion f(x/s) is
(O @in(®). s ©

This relation involves a dilation by s of the Fresnel transform of
f with a rescaled parameter 7/ = 7 /s. This ratio also appears
in the definition of the so-called Fresnel number Nr = (s/7)2,
where 72 = Ad; it is used to characterize the diffraction of light
by a square aperture of halfwidth s and at a distance d [6].



D. Link With the Fourier Transform

So far, we have considered the Fresnel transform as a convo-
lution operator. Interestingly, there is also a direct multiplicative
relation with the Fourier transform [6]. Computing the Fresnel
transform §; of a function g € L>(R) can be done by com-
puting the Fourier transform of an associated function f(z) =
Tk-(x)g(x). The frequency variable is then interpreted as an ap-
propriately scaled space variable

gr(@) = ke (@) (5) - (10)

E. Localization Issues

Our approach for the construction of a Fresnelet basis will
take a wavelet basis and transform it. This still leaves many pos-
sibilities to choose the original basis. A suitable basis should
take into account one of the least intuitive aspects of holography,
namely that the propagation process tends to spread out features
that are initially well localized in the object domain. Getting a
better understanding of the notion of resolution in holography
and setting up a criterion that will guide us in the choice of an
optimal wavelet is what we are after in this section.

The tight link between the Fresnel and the Fourier transform
(10) suggests that they should both have similar (de)localization
properties. Here we derive an uncertainty relation for the Fresnel
transform that is the analog of the Heisenberg inequality for the
Fourier transform.

In the sequel, we denote the average /i f of the squared mod-
ulus of a function f € Lx(R) by

_ 1 > 2
Hf = ||f||2/ z|f(x)|*dx

-0

and its variance J% around this average by



Theorem 1 (Uncertainty Relation for the Fresnel Trans-
form): Let g € Ly(R) and g, € Ly(R) its Fresnel transform
with parameter 7. We have following inequality for the product
of their variances:

1

2 2 T
0g0%, = 1672 (11)

This inequality is an equality if and only if there exist xq, wp, b
real and a complex amplitude @ such that

g(fﬂ) — ﬂﬂamn;re—b(r—xg)g E—i’:r(;rj*rjg' (12)

Furthermore, if g(r) is real valued, the following relation holds:

4

T .
049%, 2 163 T g (13)

This inequality is an equality if and only if there exist xg, a, b
real, such that

g(w) = ae~b@=0), (14)

Also, (13) implies a lower bound on the variance for g_ that is
independent of g



The proof of Theorem 1 is given in Appendix L.

This result implies that narrow functions yield functions with
a large energy support when they are transformed. It suggests
that Gaussians and Gabor-like functions, modulated with the
kernel function as in (12) should be well suited for processing
and reconstructing holograms as they minimize the spatial
spreading of the energy. This is especially satisfying because
it brings two separate aspects of Gabor’s research together:
he is both the inventor of holography [5] and of the Gabor
transform [11], [12], which is a signal representation as a linear
combination of atoms of the form (12). We are not aware of
anyone having pointed out this connection before.

We will base our Fresnelets construction on wavelet bases
that are close to these optimal functions. Practically, in the case
of a digital hologram measurement where a transformed func-
tion is available over a finite support and with a given sampling
step, we may use the above uncertainty relation to get a bound
on the maximal resolution to expect when reconstructing the
original function.

A direct illustration of the second part of this Theorem can be
found in the example of Section II-B; indeed, it can be verified
that the product of the variance of the Gaussian and that of its
Fresnel transform achieves the lower bound in (13).

IV. FRESNELET BASES

To construct our new Fresnelet bases, we will apply a Fresnel
transform to a wavelet basis. Here, we will explain what happens
when we apply the transform to a general Riesz basis of Lo((2),

where the dimension of the domain {? is arbitrary e.g., {} = R
or R2.



A. Fresnel Transform of a Riesz Basis

Let {u; };cz be a Riesz basis of Lo(£2) and {v; };c7 its dual.
Then,V f € Lo(£2), we can write following expansion:

f=) {(fhropu=) (fiuu. (15)
; U1} U ; U )V

L&)

Let 7i; = Uw; where U is a unitary operator (e.g., the Fresnel
transform). First, it is easy to see that [/ maps the biorthog-
onal set S = {u;,v;};ez into another biorthogonal set S =

{1, Ui }iez
(ﬂf! ﬁm} :<Uﬂh Uum}
:(UUT ULy U ) = O,m-

1

Here U denotes the adjoint of U. Let us now show that S is
also complete. For the set .S, we define the sequence

N

fir: Z(f!ﬁi}uh Vf EL?(Q)

1=1
and have the completeness equation

Jim ||f = fwl® =0. (16)

Note that the Riesz basis hypothesis ensures that fy € Lo(£2).
Because [/ is unitary, we have

(o) =(Uf,Uw)
=(f,0r) (17)

and therefore

1f = £xIP = 11f = fwl?




which proves that the transformed set S is complete as well.

Similarly, the Parseval relation (17) can also be used to prove
that S and S have the same Riesz bounds. The Riesz bounds are
the tightest constants A > ( and B < oo that satisfy the Riesz
inequality

Al NIE, < 112, < B lICo, AIIZ,-

They are the same for the transformed set

Al DIz, < IANIZ, < BllKor, )

Thus, we can conclude that the Fresnel transform, which is a
unitary operator from Lo(£2) into L>(£2), maps Riesz bases into
other Riesz bases, with the same Riesz bounds. Similarly, if we
only consider a subset of basis functions that span a subspace
of L2(£2) (e.g., a multiresolution subspace) we can show that it
maps into a transformed set that is a Riesz basis of the trans-
formed subspace with the same Riesz bounds.

Relation (17) is important for this proof but it is also most
relevant for the reconstruction of an image f given its transform
f . It indicates that we can obtain the expansion coefficients in

2
fat

(15) directly by computing the series of inner products {f, ;).
This is one of the key ideas for our construction.



B. B-Splines

The uncertainty relation for the Fresnel transform suggests
the use of Gabor-like functions. Unfortunately, these functions
cannot yield a multiresolution basis of Lo(R). They do not sat-
isfy the partition of unity condition, implying that a representa-
tion of a function in term of shifted Gaussians will not converge
to the function as the sampling step goes to zero [13]. Further-
more, they do not satisfy a two-scale relation which is required
for building wavelets and brings many advantages regarding im-
plementation issues.

We will therefore base our construction on B-splines which
are Gaussian-like functions that do yield wavelet bases; they are
also well localized in the sense of the uncertainty principle for
the Fresnel transform (13).

B-splines [14] are defined in the Fourier domain by

1— E,—'Zi‘rrv

n—+1
— el —imr(n+1)
B e I’ e
ey ) @)

)= (
where sinc(z) = sin(wz)/(mx) and n € N.
The corresponding expression for the B-spline of degree n. in
the time domain (see Fig. 1) is

T
(@) = antt y B
n!
where ()7 = max(0,2)" (one-sided power function); A™*1
is the (n + 1)th finite-difference operator

n+1

ArH = S (=1 (” . 1) §(x— k)

k=0

which corresponds to the (n + 1)-fold iteration of the finite
difference operator (see [15]): A = 6(z) — 6(x — 1).

Explicitly, we have following expression for the B-spline of
degree n:

Fray= (D7) (a9

!
T
k=0

o= (n—l—l) (x =k)%



This definition is equivalent to the standard approach where the
B-splines of degree 1 are constructed from the (n + 1)-fold
convolution of a rectangular pulse

() =0 % - ()
n+1¥imes

1, O<xz <1

ﬁﬂ(m):{%, r=0or1

0, otherwise.

C. Polynomial Spline Wavelets

The B-splines satisfy all the requirements of a valid scaling
function of Lo(R), that is, they satisfy the three necessary and
sufficient conditions [8]

. 2
Riesz Basis: 0 < A < Z v+ Fs)’ <B<x

ked
Two-scale relation: " (g) = Z hk)™" (x — k)
keZ
Partition of unity: Z ' r—-k)=1 (19)

kEZ
where the filter h(k) is the binomial filter h(k) =

/2" (HZ I . These conditions ensure that B-splines can be

used to generate a multiresolution analysis of Lo (R).
Unser et al. [16] have shown that one can construct a general
family of semi-orthogonal spline wavelets of the form

6 (5) =D ak)F"(@ = k) (20)
k

such that the functions

. — =3/2) =i _ I
{q/{,_,:k_fz (20 ,!u)}j_g:kreE 1)



form a Riesz basis of Ly(R). These wavelets come in different
brands: orthogonal, B-spline (of compact support), interpo-
lating, etc... They are all linear combinations of B-splines
and are thus entirely specified from the sequence g(k) in (20).
Here, we will consider B-spline wavelets [16], which have the
shortest support in the family.

The main point here is that by using the properties
of the Fresnel transform (linearity, shift invariance and
scaling), we can easily derive the family of functions

{ (qf;"’f k) = kr )3 k} , , provided that we know the
T JEZ kET , )
Fresnel transform of their main constituent, the B-spline.

D. Fresnelets

In this section, we introduce our new wavelets: Fresnelets.
They will be specified by taking the Fresnel transform of (20).
Thus, the remaining ingredient is to determine the Fresnel trans-
form of the B-splines.

1) F-splines: We define the Fresnel spline, or F-spline of de-
gree n € N and parameter 7 € R (denoted 37(x)) as the
Fresnel transform with parameter 7 of a B-spline 3" (x) of de-
gree n

() = (0" kr)(@).
Theorem 2: The F-spline of degree n and parameter 7 has
the closed form

n—+1
Fix) =Y (-1F (”’I ) “’”’T(.If!_ k) (22)

k=0

where

tpor () = /E; ' %m(g)dg. (23)

The proof of Theorem 2 is given in Appendix II.



F-splines have many similarities with B-splines. For example,
to get (22), one just substitutes the one-sided power function
used in the definition of the B-spline (18) with the functions

Un,T-
Theorem 3: The functions u,, - can be calculated recursively
2
T a1 T T
T)= — —— —2r(T)+—Un—1 (1) (24
uru;r( ) 21?]_“! 21?1_“%1 2;:"( )—l_TL T 1:7'( ) { )

For n = 0 we have

Uo,r(T) = % (G (?m) + 18 (?m))

where C'(x) and S(x) are the so-called Fresnel integrals

C(x) = L " cos (gtz) dt, S(z)= /D " sin (gﬁ) dt.

For n = 1 we have

uu@:mngﬁ(mw_g.

i

This gives us a straightforward way to evaluate the F-splines
as the Fresnel integrals can be computed numerically [17]. Fur-
thermore, we can also transpose the well-known B-spline recur-
sion formula

B (@) = =0 () +

to the Fresnel domain.
Theorem 4: We have following recursion formula for the
F-splines:

n+l—=x
T

Az —-1) (25)

2= (2) + (n+ 1= 2)F= ) (z = 1)
T

r(x) =

+i&26"—2() (26)
2mn T\



2) Fresnelet Multiresolutions: Let us now transpose the
classical multiresolution relations of wavelet theory to the
Fresnelet domain. The two scale relation (19) becomes

B (5) = ?fa(k)ﬁ’?’:(m — k). (27)

In classical wavelet theory, embedded multiresolution spaces
are generated through dilation and translation of one single
function. The Fresnel transform preserves the embeddedness of
those spaces. The important modification comes from the di-
lation relation (9) which changes the generating function from
one scale to the next. The difference is that in the transformed
domain there is one generating function for each scale.

Formally, we consider, for j € Z, the sequence of spaces
{Vj.+} defined as

o

V- =span { 32,277z — k) ¢ N Lo(R
jr =span { ra-i( )} (R)
corresponding to the sequence of spaces {V} defined as
V; =span {B" 277z — k)} N La(R).

1=

The subspaces V; satisfy the requirements for a multiresolution
analysis [8].
1) Vjy1 C Vyand (Vj = 0and JV; = La(R) (complete-
ness).
2) Scale invariance: f(x) € V; & f(2r) € Vj-1.
3) Shift invariance: f(z) € Vy & f(x —k) € W.
4) Shift-invariant basis: V; has a stable Riesz basis

{0 (x = k)}.



For the sequence {f’_f_.,r} the shift-invariance is preserved within
each scale but requirement 2 is clearly not fulfilled because of
the scaling property (9) of the Fresnel transform. We neverthe-
less get a modified set of multiresolution analysis requirements
for the Fresnel transform

1"y Viy1, C Vjrand NV, = 0and |V = L2(R)

[cnmpleteness}

2’) Scale invariance: f(1) € 1’; re f\,rgT(?_‘m) - 1{«, 1,7

3’) Shift invariance: f(z) € Vo < f(x— k) € Vo r.

4") Shift-invariant basis: Vp has a stable Riesz basis

{@=-k}
Condition 2’ is obtained by observing that f(x) € I’:’j;r < f*
kot € Vj. As we require the V/; to satisfy the scale invariance

cundltmn 2, wehave kT 1(2:1:) € Vj_1 hence (f*k= 1(‘? ) *
kr(x) € Vj—1.r. And finally

(f k71 (2) s For () = (f 5 K7) 5 g (20)
— a(’:r;’—l)f (23:)

Specifically, the generating functions corresponding to the
B-spline wavelets of (20) are

s (5) = BUCLACE

where 6’2 (x) is given by (22). The corresponding Fresnelets are
such that

o {92 (5 4)} g 2 5 -0))

ke ked

For the multiresolution subspaces, we have that the residual
spaces IV defined as

W, = SEE? {(,’/}:32_4, 277z - k‘)}



are such that
ﬁ"r:."+1;r L I’}:.-'+1;r
and
ﬁ{:"+1='r D ﬁ+1;T — fﬁ:?'

The above expressions extend the meaning of multiresolution to
the fresnelet domain.

3) Fresnelet Multiresolution Example: In Fig. 2 we show a
sequence of dyadic scaled B-splines of degree n = 3 and their
counterpart in the Fresnel domain. The effect of the spreading
is clearly visible: as the B-splines get finer (j = 1,2, 3,4) the
corresponding F-splines get larger. In contrast to the Fourier
transform, as the B-splines get larger (j = —1,—2), the
corresponding F-splines’ support does not get smaller than the
B-splines’. This behavior is in accordance with relation (13).

The main practical consequence for us is: if we want to re-
construct a hologram at a fine scale, that is, express it as a sum
of narrow B-splines, the equivalent basis functions on the holo-
gram get larger. Our special choice of Fresnelet bases limits this
phenomenon as much as possible; it is nearly optimal in the
sense of our uncertainty relation for real functions (13) as they
asymptotically converge to Gabor functions [10].



V. IMPLEMENTATION OF THE FRESNELET TRANSFORM

In this section we derive a numerical Fresnelet transform al-
gorithm based on our Fresnelets decomposition.

We consider a function fq—(itf) which is the Fresnel transform
of a function f € Ly(R), ie., fr(7) = kr * f(z). In a digital
holography experiment, this would be the measured phase and
amplitude of a propagated wave (without interference with a
reference wave). Given some measurements of f , the goal is
thus to find the best approximation of f in our multiresolution
basis. For instance, one can start the process by determining the
coefficients ¢y, that give the closest approximation of f (in the
L> sense) at the finest scale of representation

f:chu(:E—k), Ck:<f,“l}(1f—gi})}:<f?’ﬁ(fﬂ—k)}
k

where © and v (respectively @ and ©) are dual bases that are
linear combinations of B-splines 3" (respectively F-splines ,L‘":?,r}.

Therefore we only need to compute the inner-products of the
transformed function with the shifted F-splines that have been
appropriately rescaled

b= (157 (=) = (e (7)) 0

Our present implementation is based on a convolution evaluated
in the Fourier domain using FFTs. It can be justified as follows.
Using Plancherel’s identity for the Fourier transform, we ex-
press the inner products (28) as

dj, = <J"ie Tﬁ:;h(h')ﬁ_ﬁﬂkh)

fat 11

= fT (v3, ﬂl(hv]e_z’:“kh”dy.

In practice, we do not know f,(x) in a continuous fashion, but
we can easily compute a sampled version of its Fourier trans-
form by applying the FFT to the measured values. If we also



approximate the above integral by a Riemann sum, we end up
with the implementation formula

N/2

_ 1 2 (L \am l —2imkhl/(NT
= NT Z fr (—T).B’r;’h (h’ﬁ) € /(NT)

I=—N/2+1

where 7' is the sampling step of the measured function. We can
make use of the FFT a second time to compute this sum if we
consider sampling steps on the reconstruction side that are mul-
tiples of the sampling step of the measured function: h = mT,
m = 1,2,..., then

N/2 -

1 3 [ \3 L\ —oirmri/N
dk— W Z f-r(ﬁ)ﬁ?j(m’l’] (mﬁ) € (kl/ )'

I=—N/2+1

The algorithm is thus equivalent to a filtering followed by down-
sampling by m. It is also possible to proceed hierarchically by
applying the standard wavelet decomposition algorithm once we
have the fine scale coefficients d}..

VI. APPLICATIONS AND EXPERIMENTS

We will now validate our multiresolution Fresnelet-based al-
gorithm and illustrate it in practice on experimental digital holo-
graphic data.



A. Simulation: Propagation of a Test Wave Front

First, we will use our Fresnelet formalism to compute the
Fresnel transform of a test pattern that will be used as gold stan-
dard to evaluate our algorithm. Although our methodology is
more general, for explanatory purposes we consider the case of a
plane wave that is being reflected on a test target. The test target
is given by three bars. They are of a given thickness and have
a different reflectivity than the background they lie on. A plane
wave that travels in a normal direction to the target is reflected.
In a plane close to the target, the reflected wave’s phase is di-
rectly proportional to the target’s topology whereas the wave’s
amplitude characterizes the target’s reflectivity. The key motif

of this test pattern is a bar b(x, i) expressed as a tensor product
of two B-splines of degree 0

o (1) (2)

Wy wy
. e““f'l, on the bar

B { V2, outside.

[ts Fresnel transform of parameter 7 is

= A /4 T\ s 1 ~
br(x,y) = E{ESWK_lﬁgjwm (wx) ijy (wiy) + \/EE’FW"&.
(30)
The amplitude and phase of the target and of the propagated
target are shown in Figs. 3 and 4. More complex targets or dif-
ferent phases and amplitudes can be implemented easily with
this method.

(29)




B. Backpropagation of a Diffracted Complex Wave

In this experiment, we took the analytical propagated target
we just described as the input for our multiresolution Fresnelet
transform algorithm. We reconstructed the original target at
dyadic scales. In concrete terms, we computed the inner prod-
ucts with F-splines of varying widths: Bﬂﬁj (m/?j)fi’jﬁj (y/27),
7 =0,1,2 3,4, n = 3. We then reconstructed the corre-
sponding images using the underlying spline model. This
is also equivalent to running the inverse wavelet transform
algorithm up to a specified scale. The results are presented in
Fig. 5. At the finest scale (j = ), the sampling step is the same
as the one used to sample the propagated wave. To ensure that
the reconstructed wave agrees with the initial analytical target,
we computed the peak signal to noise ratio (PSNR) of the
reconstructed amplitude and phase for the finest reconstruction
scale 7 = (). We took following definition of the PSNR:

(max{|f]} = min|f]})?
PSNR = 101
0810 f‘lei‘fy ; |f(ky 1) — (kD)2

were [ is our (complex) gold standard target and f/ the recon-
structed target. We obtain a PSNR of 23.10 dB. We can thus say
that our algorithm reconstructs the target reasonably well.

C. Hologram Reconstruction

For this experiment, we considered true holographic data,
recorded using a similar system as in [4]. We give a simplified
diagram of the experimental setup in Fig. 6.

An object (USAF target) was illuminated using a He—Ne laser
(A = 632.8 nm). The reflected wave was then directed to the



776 x 572 pixels CCD camera. The camera recorded the inter-
ference (hologram) of this propagated wave with a plane ref-
erence wave in an off-axis geometry. The sampling step of the
CCD was 1" = 10 pm.

We denote f(x,y) the reflected wave in the vicinity of the
object and fT(m, 1) the complex amplitude of the propagated
wave in the CCD plane. The hologram is the intensity [(xz,y)
measured by the camera and results from the interference of the

propagated wave fr and the reference (plane) wave R(z,y) =
Aei(ke z+ky y)

) = ooy F = P HRP R R
The measured hologram is reproduced in Fig. 7.

The two first terms in (31) are known as the zero-order, the
third and fourth terms as the image and twin imageterms respec-
tively [6]. In the frequency domain, their energy is concentrated
around three frequencies: (0,0) for the zero-order, (—k;, —k;)
for the image and (k;,k,) for the twin image. This is clearly
visible in Fig. 8.

Prior to reconstructing f(x, %) we multiplied the hologram
by a numerical reference wave R’ = ¢*(¥= *+k, v)

R1=PR|fP+R|R+REfr+R(f;)'R

The values /. and k], were adjusted precisely to the experi-
mental values I.,x, k., such that the third term (which is the one
we are interested in) becomes R/ R* fT =a f.r where a is some
complex constant. We applied zero padding to the hologram (re-
sulting in a 2048 x 2048 input image) to ensure a clear spatial
separation of the three reconstructed terms.



We then applied our Fresnelet transform to this (de-)mod-
ulated hologram R'[. The reconstruction distance d was
adjusted to 35 ¢cm resulting in the proper parameter 7 = v/ \d.
In Fig. 9 we show the Fresnelet coefficients corresponding
to the inner products of R'I with the tensor product basis
Ranctions 2, (/232 s (0 20), U2, (2 202 0 20)

i (T 2007 105(y/27) and ﬁ:fﬁ;(m/?‘?),ﬁ':ffy(y/?‘rj for
n=3,7=0,...,.JJ and J = 4. These coefficients are complex
and we are only showing their modulus. From these coeffi-
cients we could recover the reconstructed signal (amplitude
and phase) at any dyadic scale as it is shown in the pyramids of
Fig. 10. It is important to remember that all the information to
get a finer scale from the coarsest scale (top left) is contained
in the subbands of the Fresnelet transform of Fig. 9.

The experiment shows that the three hologram terms are spa-
tially separated in the reconstruction: the zero-order term in
the center, the image below left and the twin image up right
(not visible). One can also notice how the zero-order term van-
ishes as the reconstruction scale gets coarser. This is visible
in both the pyramid (Fig. 10) where more and more energy
goes into the image term as the image gets coarser, and in the



Fresnelet transform (Fig. 9) where the zero-order term coeffi-
cient’s energy is mainly in the highpass subbands. The explana-
tion for this behavior is the following. As mentioned earlier, the
hologram’s energy is concentrated around the three frequencies
(—kzys —ky). (0,0), and (K, ky ), corresponding respectively to
the image, the zero-order, and the twin image. When we mul-
tiply the hologram by R’(x,1) =~ R(x,y) = e/*e+ks¥) the
different terms are shifted by (&, k) in frequency and their new
respective locations are (0,0), (kz, kyy) and (2k;, 2ky). As the
energy corresponding to the zero order and twin image terms is
shifted to high frequencies, it is mainly encoded in the fine scale
(highpass) Fresnelet coefficients. Coarse scale reconstructions
(which discard the high frequency information) will therefore
essentially suppress the zero order or twin image terms, which
is a nice feature of our algorithm.

VII. DISCUSSION

We have seen that the wavefronts reconstructed with the Fres-
nelet transform from the simulated data agree with the theoret-
ical gold standard and that the algorithm can be applied suc-
cessfully to reconstruct real-world holographic data as well. Al-
though ringing artifacts may be distinguished at fine scales, they
tend to disappear as the scale gets coarser.

The presented method differs from the traditional recon-
struction algorithms used in digital holography which imple-
ment an inverse Fresnel transform of the data. The Fresnel
transform algorithms fall into two main classes [18]. The first
approach [Fig. 11(a)], as described in [18], uses the convo-
lution relation (1). It is implemented in the Fourier domain
and needs two FFT’s. The transformed function’s sampling
step T” is the same as that of the original function. The three
terms—the image, the twin image (that is suppressed at all



scales in the Fresnelet algorithm) and the zero-order)—are vis-
ible in Fig. 11(a). The second method [Fig. 11(b)] uses the link
with the Fourier transform (10) [4], [18]. The discretization of
this relation requires only one FFT. As this method relies on
the special interpretation of the spatial frequency variable as a

rescaled space variable, the sampling step of the transformed
function is 7V = Ad/(NT) where N is the number of sam-
ples in one direction. Therefore it depends on the distance, the
wavelength and the number of measured samples. In particular
if the number of samples in the = and y directions are not the

same, e.g., in Fig. 11(b), the corresponding sampling steps do
not agree. In the work of Cuche et al., the parameters are set
such that the reconstruction is at approximately one fourth the
scale of the digitized hologram.

The first advantage of our approach is that it allows us to
choose the sampling step on the reconstruction side. It can be
any multiple 77 = mT for m = 1,2,4,8,... The computa-
tional cost of our algorithm is the same as that of a filtering in
the Fourier domain; i.e., roughly the cost of two FFT’s.

Also, as our method is based on the computation of inner
products, it leaves more freedom for treating boundary condi-
tions. One possibibility to reduce the influence of the finite sup-
port of the CCD camera is to use weighted, or renormalized
inner products.



More than just a Fresnel transform, our Fresnelet transform
provides us with wavelet coefficients. A remarkable feature is
that the energy of the unwanted zero-order and twin images is
concentrated within the fine scale subbands. This opens up new
perspectives for their selective suppression in the wavelet do-
main as an alternative to other proposed algorithms ([19], [20]).
In addition, it allows us to apply simple wavelet-domain thresh-
olding techniques to reduce the measurement noise in the recon-
structed images.

VIII. CONCLUSION

We have constructed a new wavelet basis for the processing
and reconstruction of digital holograms by taking advantage of
the mathematical properties of the Fresnel transform. We have
motivated our choice of B-splines as elementary building blocks
based on a new uncertainty relation.

We have demonstrated that the method works and that it is
applicable to the reconstruction of real data.

Our method offers several advantages: it allows to reconstruct
at different user-specified and wavelength independent scales.
Furthermore, reconstructions at coarse scale allow for optimal
filtering of the zero-order and the twin image and also result in
less noisy images.



