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With the acceptance of antibodies as therapeutics, a diversity of

engineered antibody forms have been created to improve their

efficacy, including enhancing the effector functions of full-length

antibodies, delivering toxins to kill cells or cytokines in order to

stimulate the immune system, and bispecific antibodies to target

multiple receptors. After years of in vitro investigation, many of

these are now moving into clinical trials and are showing

promise. A potential new type of effector function for antibodies,

that is, the generation of reactive oxygen species that may effect

inflammation or bacterial killing, has been elucidated. In addition,

the field has expanded beyond a concentration on

immunoglobulin G to include immunoglobulin A antibodies as

potential therapeutics.
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Introduction
Fueled by the success of therapeutic antibodies over the

past decade, research into antibody engineering has

expanded significantly. Early engineering work concen-

trated primarily on making the therapeutic tolerable to

the human immune system (e.g. humanization), the

generation of antibodies (e.g. via the use of transgenic

mice, and phage and ribosome display technologies), and

novel antibody formats (e.g. diabodies and scFv [single-

chain variable region fragment]) (Figure 1; Box 1).

Although studies in these areas continue, new areas have

blossomed — so much so that they cannot all be encom-

passed by a short review. This review covers selected

subjects from 2001 onwards; for subjects not covered

here, a selection of recent reviews are available covering

therapeutic antibodies in general [1–4].

Bispecific antibodies
Bispecific antibodies bind to two different epitopes, most

often on two different antigens, and can be constructed as

full-length IgG or smaller fragments, such as F(ab0)2 [an

F(ab0)2 consists of two disulfide-bonded Fab; each Fab, or

antigen-binding fragment, consists of the variable light

(VL), constant light (CL), variable heavy (VH) and con-

stant heavy domain 1 (CH1)] and diabodies [5] (Figure 1).

Although the field has significant potential, a major chal-

lenge has been the production of material of sufficient

quantity and purity to meet clinical needs. At the fore-

front are bispecific antibodies in which one arm targets

FcgR (Fc gamma receptor); these are designed to recruit

immune system effector cells to kill tumor cells. A phase

I/II trial using an anti-CD30 X anti-FcgRIII antibody

reported one complete and three partial remissions, and

four cases of stable disease among sixteen patients [6].

Pretreatment with interleukin (IL)-2 cytokine resulted

in augmented antitumor activity, putatively through

increased levels and activation of effector cells such as

natural killer cells. Another trial evaluated an anti-CD30

X anti-FcgRI bispecific antibody for Hodgkin’s lym-

phoma [7]; one complete and three partial remissions,

and four stable diseases were reported among the ten

patients. An anti-HER2 X anti-FcgRI antibody in com-

bination with interferon-gamma (IFN-g) or granulocyte-

macrophage colony-stimulating factor (GM-CSF) (again

to increase FcgRI expression and activate effector cells)

was evaluated in breast and prostate cancer patients to

determine pharmacokinetics and safety [8,9]; although

toxicity was acceptable, no responses were reported. An in
vitro analysis of peripheral blood polymorphonuclear cells

and monocytes isolated from these patients showed that

their effector cells were loaded with the bispecific anti-

body and could phagocytose HER2-positive SK-BR-3

tumor cells [10].

As with the clinical trials, the bulk of preclinical studies

have involved bispecific antibodies in which one arm

targets FcgR [11,12]; a more recent, exciting addition to

the fray has been bispecific antibodies with one arm

directed against the high-affinity IgA receptor (FcaRI;

CD89). In vitro and in vivo studies have shown not only

that targeting FcaRI can effect tumor cell killing equiva-

lent to anti-FcgR [13] but also that, on certain effector cells

(e.g. granulocytes), anti-FcaRI may be more efficacious

than anti-FcgR [14�]. Similarly, IgG and IgA (instead of

anti-FcgR and anti-FcaR) may be equally efficacious, but

trigger different cell types and systems [15�]. Simulta-

neous engagement of FcgRI and FcaRI has been reported

to enhance tumor cell killing even more [16�].

Antibody–cytokine fusion proteins
Cytokines can effect stimulation of several immune cell

types, including monocytes, macrophages, natural killer

cells, dendritic cells, and T and B cells. Treatment of

patients with cytokines can modulate immune responses,

but their use also evokes serious toxicity. If cytokines
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could be concentrated at the intended target (e.g.

tumors), the systemic toxicity of cytokine treatment

might be diminished or abolished. Engineered proteins

in which a cytokine is fused to an antibody have been

developed to address this problem [17�].

A variety of cytokines have been linked to full-length

antibodies or scFv fragments through the N or C termini

of the antibody. Antibody–IL-2 fusion proteins have

shown some efficacy against a variety of tumors in mouse

models, not only decreasing tumor size [18,19�,20] but

also reducing metastasis [21]. The antitumor effect of

these constructs may arise from the activation of infiltrat-

ing effector cells, as evident from the efficacy of IL-2

fusion proteins with scFv, as well as with full-length

antibodies [18,19�]. However, the presence of an IgG

Fc (the portion of an immunoglobulin composed of con-

stant heavy domains 2 and 3) may further augment

efficacy by providing two binding sites for an effector

cell: one through the cytokine receptor and one through

an FcgR. This not only may activate the cell via the

cytokine but may also simultaneously provide FcgR

engagement to effect antibody-dependent cellular cyto-

toxicity (ADCC); indeed, a fusion protein composed of

IL-2–mouse IgG2b Fc (effectively, IL-2 was substituted

for the antibody F[ab]s) showed enhanced tumor protec-

tion and decreased metastasis compared to IL-2 or IgG2b

alone [21]. To further increase the effectiveness of these

types of fusion proteins, a recent study reported the

construction of novel antibody fusions in which two

different cytokines (IL-2 and IL-12, or IL-4 and GM-

CSF) were either fused in tandem to the C terminus of an

antibody heavy chain, or one cytokine was fused to the C

terminus while the other was fused at the N terminus of

the heavy or light chain [22��]. In vitro and in vivo models

showed enhanced efficacy, but, as the authors point out,

access of these large constructs to in vivo solid tumors

needs evaluation.

Antibody–IL-12 fusions have also shown antitumor effi-

cacy. One study showed increased efficacy of antitumor

activity of IL-12 fused to the N terminus of the variable

heavy domain of a fibronectin-specific scFv (compared to

Figure 1
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Box 1 Glossary of terms.

ADCC antibody-dependent cellular cytotoxicity

CDC complement-dependent cytotoxicity

Fab portion of an immunoglobulin comprising the variable

light (VL ), constant light (CL ), variable heavy (VH) and

constant heavy domain 1 (CH1)

Fc portion of an immunoglobulin composed of constant

heavy domains 2 and 3 (CH2 and CH3)

FcaRI high-affinity IgA receptor (also known as CD89)

FccR Fc gamma receptor

FcRn neonatal Fc receptor

GM-CSF granulocyte-macrophage colony-stimulating factor
Ig immunoglobulin

IL interleukin

PEG polyethylene glycol

scFv single-chain variable region fragment

520 Engineering and design

Current Opinion in Structural Biology 2003, 13:519–525 www.current-opinion.com



a nonspecific construct) and an increase in tumor-infil-

trating effector cells [23]; thus, extracellular matrix pro-

teins may be an alternative to membrane-bound targets

on tumor cells. Whereas several studies have correlated

effector cell activity with tumor cell killing, results from

another antibody–IL-12 fusion protein underscore that T

cells may also potentiate tumor rejection [24�]. Finally, a

recent report showed that anti-HER2–cytokine fusion

proteins enhanced in vivo response to vaccination with

HER2 extracellular domain protein [25�], revealing a new

potential use for these engineered constructs.

Immunotoxins
Immunotoxins are antibodies that have a conjugated or

genetically linked toxin, and are designed to deliver the

toxin to target cell-surface molecules, followed by inter-

nalization of the immunotoxin–target complex into the

cell and subsequent cell killing by a mechanism depen-

dent on the toxin. One member of this class of antibody,

Mylotarg1, a calichaemicin-conjugated anti-CD33, has

already been approved for the treatment of acute mye-

logenous leukemia.

In clinical trials of constructs composed of protein toxins,

some therapeutic success has been reported, although the

immunogenicity of non-human-derived toxins has been

problematic [26]. In addition, several protein toxins (e.g.

ricin A chain [27] and Pseudomonas exotoxin [28]) have

been shown to elicit vascular leak syndrome, character-

ized by an increase in vascular permeability resulting in

interstitial edema and organ failure; vascular leak syn-

drome may also occur with antibody–cytokine fusions

[29]. A structural motif in protein toxins and IL-2 that

may initiate vascular leak syndrome has been identified

and the protein toxins have been re-engineered to alter

the motif, thus preventing vascular leak syndrome [30��].
One unique form of immunotoxin utilizes cytotoxic

RNase fused to an antibody [31], a cross between more

traditional immunotoxins and antibody-directed enzyme

prodrug constructs [32]. The use of human RNase may

obviate the immunogenicity and toxicity seen with plant/

bacterial-derived protein toxins.

As with antibody–cytokine fusion proteins, a protein toxin

can be fused at either the N or C terminus of an antibody

or antibody fragment. During the design, consideration of

the natural protein toxin may be important. An example

of this is evident in a study using a diphtheria toxin

fragment fused at either the N or C terminus of an

anti-CD3 scFv [33��]. The toxin–scFv form showed

reduced binding to CD3 (probably through steric hin-

drance) compared to the scFv–toxin construct; however,

the toxin–scFv was 100-fold more potent in cell killing.

This may be due to the fact that, in the toxin–scFv

construct, the scFv replaces the toxin cell-binding domain

and effects optimal internalization, processing and activa-

tion of the toxin domain subsequent to cell binding.

Related to immunotoxins, inasmuch as they use anti-

bodies to deliver toxins, are immunoliposomes — self-

assembled lipid bilayers that have toxins inside;

polyethylene glycol (PEG) may also be incorporated into

the lipid layer. Antibody fragments (e.g. Fab or scFv) are

linked to the lipid or PEG. The antibody directs the

immunoliposome to the target, followed by fusion of the

liposome with the cell and delivery of the toxin inside

the cell. Use of antibody fragments that have been select-

ed for superior internalization signaling [34�,35] may

enhance the function of the immunoliposome [36]; alter-

natively, judicious choice of a target that internalizes well

can also accomplish this [37�]. Recent studies on immu-

noliposomes coated with anti-HER2 scFv have shown

that delivery of doxorubicin via immunoliposomes im-

proved the antitumor efficacy and reduced the toxicity

compared to the systemic administration of doxorubicin,

liposomal doxorubicin (i.e. without the anti-HER2 scFv

or Fab fragment coating the liposome) or anti-HER2

antibody alone [36,38�]. Another study used immunoli-

posomes coated with scFv targeting the ED-B domain of

B-fibronectin [39]. In vivo mouse studies showed that,

whereas the immunoliposomes provided only a modest

increase in the rate of tumor accumulation (compared

to non-scFv-coated liposomes), the reduction in tumor

growth was 62% (day 5) and 90% (day 8) over that of

untreated animals or animals treated with scFv-coated

liposomes without toxin; however, in contrast to the anti-

HER2 study [38�], there was no statistical difference in

tumor reduction between scFv-coated immunoliposomes

and non-scFv-coated. One difference between the two

studies is that the anti-HER2 liposomes target a cell-bound

protein, whereas the anti-ED-B targets an extracellular-

matrix-associated protein expressed around nascent blood

vessels in the vicinity of tumors, but not actually on the

tumor cells (see also [23]).

Engineering the effector functions of
antibodies
Monoclonal antibodies elicit four effector functions:

ADCC, phagocytosis, complement-dependent cytotoxi-

city (CDC) and half-life/clearance rate. ADCC and phago-

cytosis are mediated through the interaction of cell-bound

antibodies with FcgR; CDC through the interaction of

cell-bound antibodies with a series of proteins that con-

stitute the complement system; and half-life by the bind-

ing of antibody to FcRn (neonatal Fc receptor). If a

therapeutic antibody utilizes ADCC, induces FcgR-bear-

ing cells to activate a cytotoxic T-lymphocyte response or

merely uses the FcgR-bearing cell as a cross-linking agent,

improving the binding of the antibody to FcgR could

improve its efficacy. Recently, new methods for enhanc-

ing the antibody–FcgR interaction have been reported.

In IgG, the Asn297-linked carbohydrate comprises a core

oligosaccharide, including fucose (Figure 2), that may

contain various additional monosaccharides attached to
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the core. Two recent independent studies have reported

that lack of the fucose moiety on the antibody carbohy-

drate significantly enhances the binding of antibody to

FcgRIII and consequent ADCC [40�,41�]. In addition to

changing the Fc carbohydrate, the protein sequence can

be altered. A complete mapping of human IgG1 amino

acids that affect binding to human FcgR [42��] resulted in

several IgG1 variants with improved binding to specific

FcgR; the variants that showed superior binding to

FcgRIII also enhanced in vitro ADCC. In conjunction

with the crystal structures of several human FcgR [43]

and reports of the differential response of patients with

the two human polymorphs of FcgRIIIA [44�,45], engi-

neering human IgG to enhance the Fc–FcgR interaction,

especially for the lower-affinity human FcgRIIIA(F158)

polymorphic form, may lead to more efficacious thera-

peutic antibodies.

Another effector function of IgG involves its half-life. In

some instances, it might be advantageous to either

decrease or prolong the half-life of an antibody. FcRn

is structurally related to MHC class I molecules, com-

prising an a-chain that noncovalently associates with

b2-microglobulin [46�]. FcRn regulates homeostasis of

IgG [47�] and controls transcytosis across tissues

[48,49]. It has been shown that the alteration of specific

amino acids in murine IgG that improve binding to

murine FcRn also results in increased half-life in mice

[50]. The IgG–FcRn interaction is pH dependent, with

IgG binding at pH 6.0 but not at pH 7.4 (the pH of blood)

[50]. The epitope on human IgG1 for human FcRn has

been mapped and altering some IgG1 residues enhanced

binding to FcRn [42��]; notably, these alterations improve

binding only at pH 6.0 and not at pH 7.4. Another recent

study has underscored the requirement for improved

binding only at the lower pH — IgG variants that bound

better to FcRn at both pH 6.0 and pH 7.4 exhibited a

decreased half-life [51�]. The demonstration that FcRn is

expressed in brain microvasculature and that it may

actively transport IgG from brain to blood [52] opens

the potential for the use of FcRn-non-binding antibodies

in treating brain tumors; if the difficulty of introducing a

therapeutic antibody into the brain can be overcome, lack

of transport from brain to blood might increase the

residence time of the antibody at the tumor.

A series of interesting reports starting in 2000 [53] has

detailed a potential new effector function of antibodies,

that is, the ability of antibodies to catalyze the conversion

of singlet molecular oxygen and water to form hydrogen

peroxide [54,55] and ozone [56��,57,58�]. Production of

these toxic molecules does not seem to perturb the

antibody, but can cause bacterial killing and inflammation

[56��]. One potential source of the singlet molecular

oxygen may be from antibody-induced activation of the

NADPH oxidase pathway, as proposed from a study of

complement-independent platelet lysis by anti-GPIIIa49-

66 antibodies [59�]. If this holds true, it warrants greater

attention to the target of therapeutic antibodies. For some

targets, activation of the NAPDH oxidase pathway, sub-

sequent generation of reactive oxygen species and ensuing

inflammation might be advantageous; for other targets,

this might be deleterious. Along with the biochemical

studies, several crystal structures have elucidated the

portions of the antibody that may play a role in catalysis

[54,58�]. Whether it is possible to engineer antibodies

to remove (or possibly enhance) this effector function

remains unclear.

Conclusions
The potential of engineering increasingly efficacious

therapeutic antibodies has never been brighter. As in

all forms of human endeavor, problems will arise, but,

as in the past history of antibody engineering, creativity in

generating new types of antibodies will overcome these

problems. For example, the development of smaller anti-

body formats that can more effectively penetrate solid

tumors is currently being addressed by the evaluation of

scFv, diabodies and minibodies [60��,61,62], and the

ability to generate lower-cost antibody fragments in

Figure 2
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Schematic of carbohydrate forms attached to Asn297 of human IgG

heavy chains. Therapeutic monoclonal antibody preparations exhibit

heterogeneity in their carbohydrate. The common prevalent forms are:

G0, a core carbohydrate consisting of (N-acetylglucosamine)(fucose)-(N-

acetylglucosamine)-mannose-(mannose-N-acetylglucosamine)2; G1, in

which only one arm of the core has galactose attached; G2, in which

both arms of the core have galactose attached. Additional forms include

attachment of sialic acid to galactose and presence of a third mannose-

N-acetylglucosamine arm.
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bacterial systems and endow them with a reasonable half-

life has been fruitful [63,64]. With numerous clinical trials

of ‘naked’, radiolabeled bispecific and conjugated anti-

bodies underway, hopefully the next few years will see

additions to the therapeutic antibody armament already

available to patients.
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